Maize Grain Germination Is Accompanied by Acidification of the Environment
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Acidification of the Milieu by Zea mays Grains upon Imbibition
3.2. Anatomy of Maize Grains
3.3. Acidification Process of Maize Grains Is Mediated by a Two-Step Process and Caused by Different Tissues
4. Discussion
4.1. Early Acidification Is a Passive Proton Diffusion of Protons Stored in the Pericarp/Testa
4.2. The Late, Delayed Acidification Is Caused by Active Enzymatic Transport of Protons from the Living Cells of the Seed
4.3. Physiological Mechanisms and Ecological Relevance of Acidification of the Environment during Maize Grain Germination
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rodríguez, M.V.; Barrero, J.M.; Corbineau, F.; Gubler, F.; Benech-Arnold, R.L. Dormancy in cereals (not too much, not so little): About the mechanisms behind this trait. Seed Sci. Res. 2015, 25, 99–119. [Google Scholar] [CrossRef] [Green Version]
- Awata, L.O.A.; Tongoona, P.; Danquah, E.; Ilfie, B.E.; Suresh, L.M.; Jumbo, M.B.; Marchelo-D’ragga, P.W.; Sitonik, C. Understanding tropical maize (Zea mays L.): The major monocot in modernization and sustainability of agriculture in sub-Saharan Africa. IJAAR 2019, 7, 32–77. [Google Scholar] [CrossRef]
- ISTA. International Rules for Seed Testing; International Seed Testing Association: Zurich, Switzerland, 2021. [Google Scholar]
- Lado, P.; Rasi-Caldogno, F.; Colombo, R. Acidification of the Medium Associated with Normal and Fusicoccin-Induced Seed Germination. Physiol. Plant 1975, 34, 359–364. [Google Scholar] [CrossRef]
- Bewley, J.D. Seed germination and dormancy. Plant Cell 1997, 9, 1055–1066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weitbrecht, K.; Müller, K.; Leubner-Metzger, G. First off the mark: Early seed germination. J. Exp. Bot. 2011, 62, 3289–3309. [Google Scholar] [CrossRef] [Green Version]
- Mulkey, T.J.; Kuzmanoff, K.M.; Evans, M.L. Promotion of growth and hydrogen ion efflux by auxin in roots of maize pretreated with ethylene biosynthesis inhibitors. Plant Physiol. 1982, 70, 186–188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Winch, S.; Pritchard, J. Acid-induced wall loosening is confined to the accelerating region of the root growing zone. J. Exp. Biol. 1999, 338, 1481–1487. [Google Scholar] [CrossRef]
- Wade, W.N.; Beuchat, L.R. Proteolytic fungi isolated from decayed and damaged raw tomatoes and implications associated with changes in pericarp pH favorable for survival and growth of foodborne pathogens. J. Food Prot. 2003, 66, 911–917. [Google Scholar] [CrossRef]
- Neina, D. The role of soil pH in plant nutrition and soil remediation. Appl. Environ. Soil Sci. 2019, 3, 5794869. [Google Scholar] [CrossRef] [Green Version]
- Msimbira, L.A.; Naamala, J.; Antar, M.; Subramanian, S.; Smith, D.L. Effect of Microbial Cell-Free Supernatants Extracted from a Range of pH Levels on Corn (Zea mays L.) and Tomato (Solanum lycopersicum L.) Seed Germination and Seedling Growth. Front. Sustain. Food Syst. 2022, 6, 789335. [Google Scholar] [CrossRef]
- De Giorgi, J.; Piskurewicz, U.; Loubery, S.; Utz-Pugin, A.; Bailly, C.; Mene-Saffrane, L.; Lopez-Molina, L. An endosperm-associated cuticle is required for Arabidopsis seed viability, dormancy and early control of germination. PLoS Genet. 2015, 11, e1005708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beresniewicz, M.M.; Taylor, A.G.; Goffinet, M.C.; Koeller, W.D. Chemical Nature of a Semipermeable Layer in Seed Coats of Leek, Onion (Liliaceae), Tomato and Pepper (Solanaceae). Seed Sci. Technol. 1995, 23, 135–145. [Google Scholar]
- Yim, K.O.; Bradford, K.J. Callose deposition is responsible for apoplastic semipermeability of the endosperm envelope of muskmelon seeds. Plant Physiol. 1998, 118, 83–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kiesselbach, T.A.; Walker, E.R. Structure of certain specialized tissue in the kernel of corn. Am. J. Bot. 1952, 39, 561–569. [Google Scholar] [CrossRef]
- Delsart, C. Plant cell wall: Description, role in transport, and effect of electroporation. In Handbook of Electroporation; Miklavčič, D., Ed.; Springer International Publishing: Cham, Switzerland, 2016; pp. 1–22. [Google Scholar] [CrossRef]
- Chateigner-Boutin, A.L.; Ordaz-Ortiz, J.J.; Alvarado, C.; Bouchet, B.; Durand, S.; Verhertbruggen, Y.; Barrière, Y.; Saulnier, L. Developing pericarp of maize: A model to study arabinoxylan synthesis and feruloylation. Front. Plant Sci. 2016, 7, 1476. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Linares, L.; Gavilanes-Ruíz, M.; Díaz-Pontones, D.; Guzmán-Chávez, F.; Calzada-Alejo, V.; Zurita-Villegas, V.; Luna-Loaiza, V.; Moreno-Sánchez, R.; Bernal-Lugo, I.; Sánchez-Nieto, S. Early carbon mobilization and radicle protrusion in maize germination. J. Exp. Bot. 2012, 63, 4513–4526. [Google Scholar] [CrossRef] [Green Version]
- Pielot, R.; Kohl, S.; Manz, B.; Rutten, T.; Weier, D.; Tarkowská, D.; Rolčík, J.; Strnad, M.; Volke, F.; Weber, H.; et al. Hormone-mediated growth dynamics of the barley pericarp as revealed by magnetic resonance imaging and transcript profiling. J. Exp. Bot. 2015, 66, 6927–6943. [Google Scholar] [CrossRef]
- Planes, M.D.; Niñoles, R.; Rubio, L.; Bissoli, G.; Bueso, E.; García-Sánchez, M.J.; Alejandro, S.; Gonzalez-Guzmán, M.; Hedrich, R.; Rodriguez, P.L.; et al. A mechanism of growth inhibition by abscisic acid in germinating seeds of Arabidopsis thaliana based on inhibition of plasma membrane H+-ATPase and decreased cytosolic pH, K+, and anions. J. Exp. Bot. 2015, 66, 813–825. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Nieto, S.; Enríquez-Arredondo, C.; Guzmán-Chávez, F.; Hernández-Muñoz, R.; Ramírez, J.; Gavilanes-Ruíz, M. Kinetics of the H+-ATPase from dry and 5-hours-imbibed maize embryos in its native, solubilized, and reconstituted forms. Mol. Plant 2011, 4, 505–515. [Google Scholar] [CrossRef]
- Falhof, J.; Pedersen, J.T.; Fuglsang, A.T.; Palmgren, M. Plasma membrane H+-ATPase regulation in the center of plant physiology. Mol. Plant 2016, 9, 323–337. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Wei, J.; Li, D.; Kong, X.; Rengel, Z.; Chen, L.; Yang, Y.; Cui, X.; Chen, Q. The role of the plasma membrane H+-ATPase in plant responses to aluminum toxicity. Front. Plant Sci. 2017, 8, 1757. [Google Scholar] [CrossRef] [Green Version]
- Enríquez-Arredondo, C.; Sánchez-Nieto, S.; Rendón-Huerta, E.; González-Halphen, D.; Gavilanes-Ruíz, M.; Díaz-Pontones, D. The plasma membrane H+-ATPase of maize embryos localizes in regions that are critical during the onset of germination. Plant Sci. 2005, 169, 11–19. [Google Scholar] [CrossRef]
- Williams, S.E.; Bennett, A.B. Leaf closure in the venus flytrap: An Acid growth response. Science 1982, 218, 1120–1122. [Google Scholar] [CrossRef]
- Rayle, D.L.; Cleland, R.E. The Acid Growth Theory of auxin-induced cell elongation is alive and well. Plant Physiol. 1992, 99, 1271–1274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Majda, M.; Robert, S. The Role of Auxin in Cell Wall Expansion. Int. J. Mol. Sci. 2018, 19, 951. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gámez-Arjona, F.; Sánchez-Rodríguez, C.; Montesinos Lopez, J.C. The root apoplastic pH as an integrator of plant signaling. Front. Plant Sci. 2022, 13, 931979. [Google Scholar] [CrossRef] [PubMed]
- Steinbrecher, T.; Leubner-Metzger, G. Tissue and cellular mechanics of seeds. Curr. Opin. Genet. Dev. 2018, 51, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Yan, F.; Schäffer, S.; Fortmeier, H.; Schubert, S. Adaptation of active proton pumping and plasmalemma ATPase activity of corn roots to low root medium pH. Plant Physiol. 1998, 117, 311–319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crowe, J.H.; Crowe, L.M. Membrane integrity in anhydrobiotic organisms: Towards a mechanism for stabilizing dry cells. In Water and Life; Somero, G.N., Osmond, C.B., Bolis, C.L., Eds.; Springer: Berlin/Heidelberg, Germany, 1992; pp. 87–103. [Google Scholar] [CrossRef]
- Pompelli, M.F.; Jarma-Orozco, A.; Rodriguez-Páez, L.A. Imbibition and Germination of Seeds with Economic and Ecological Interest: Physical and Biochemical Factors Involved. Sustainability 2023, 15, 5394. [Google Scholar] [CrossRef]
- Powell, A.A. Cell membranes and seed leachate conductivity in relation to the quality of seed for sowing. J. Seed Technol. 1986, 10, 81–100. [Google Scholar]
- Ocvirk, D.; Špoljarević, M.; Marković, S.; Lisjak, M.; Hanzer, R.; Teklić, T. Seed germinability after imbibition in electrical conductivity test and relations among maize seed vigour parameters. J. Food Agric. Environ. 2014, 12, 140–145. [Google Scholar]
- Hallauer, A.R. Specialty Corns; CRC Press: Boca Raton, FL, USA, 2000. [Google Scholar]
- Ranum, P.; Peña-Rosas, J.P.; Garcia-Casal, M.N. Global maize production, utilization, and consumption. Ann. N. Y. Acad. Sci. 2014, 1312, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, S.; Mayland-Quellhorst, S.; Müller, C.; Mummenhoff, K. Two-tier morpho-chemical defence tactic in Aethionema via fruit morph plasticity and glucosinolates allocation in diaspores. Plant Cell Environ. 2018, 42, 1381–1392. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, S.; Bhattacharya, S.; Gesing, M.A.; Klupsch, K.; Theißen, G.; Mummenhoff, K.; Müller, C. Morphologically and physiologically diverse fruits of two Lepidium species differ in allocation of glucosinolates into immature and mature seed and pericarp. PLoS ONE 2020, 15, e0227528. [Google Scholar] [CrossRef] [PubMed]
- Gembeh, S.V.; Brown, R.L.; Grimm, C.; Cleveland, T.E. Identification of chemical components of corn kernel pericarp wax associated with resistance to Aspergillus flavus infection and aflatoxin production. J. Agric. Food Chem. 2001, 49, 4635–4641. [Google Scholar] [CrossRef]
- Singh, S.; Kariyat, R.R. Exposure to polyphenol-rich purple corn pericarp extract restricts fall armyworm (Spodoptera frugiperda) growth. Plant Signal. Behav. 2020, 15, 1784545. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wellmann, K.; Varnskühler, J.; Leubner-Metzger, G.; Mummenhoff, K. Maize Grain Germination Is Accompanied by Acidification of the Environment. Agronomy 2023, 13, 1819. https://doi.org/10.3390/agronomy13071819
Wellmann K, Varnskühler J, Leubner-Metzger G, Mummenhoff K. Maize Grain Germination Is Accompanied by Acidification of the Environment. Agronomy. 2023; 13(7):1819. https://doi.org/10.3390/agronomy13071819
Chicago/Turabian StyleWellmann, Konrad, Jens Varnskühler, Gerhard Leubner-Metzger, and Klaus Mummenhoff. 2023. "Maize Grain Germination Is Accompanied by Acidification of the Environment" Agronomy 13, no. 7: 1819. https://doi.org/10.3390/agronomy13071819
APA StyleWellmann, K., Varnskühler, J., Leubner-Metzger, G., & Mummenhoff, K. (2023). Maize Grain Germination Is Accompanied by Acidification of the Environment. Agronomy, 13(7), 1819. https://doi.org/10.3390/agronomy13071819