The Diseases and Pests of Rubber Tree and Their Natural Control Potential: A Bibliometric Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Data Analysis
3. Results
3.1. Overview of the Selected Publications
3.2. Cooperation Analysis
3.3. Analysis of Themes and Trend Topics
3.4. Plant Defense and Resistance
3.5. Biocontrol Candidates
4. Discussion
4.1. Disease Focuses of the Top Five Most Productive Countries
4.1.1. China
4.1.2. Brazil
4.1.3. France, Malaysia and Thailand
4.2. Induced Expression of Defense as a Hallmark of Resistance to Rubber Plant Fungal Pathogens
4.3. Biocontrol Candidates: Mechanisms and Applications
4.3.1. Antibiotic Ability
4.3.2. Cell Wall Degradation
4.3.3. Induced Plant Resistance
4.3.4. Plant Growth Promotion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sterling, A.; Janeth Martinez-Viuche, E.; Duban Suarez-Cordoba, Y.; Antonio Agudelo-Sanchez, A.; Andrea Fonseca-Restrepo, J.; Karolina Andrade-Ramirez, T.; Rocio Virguez-Diaz, Y. Assessing Growth, Early Yielding and Resistance in Rubber Tree Clones under Low South American Leaf Blight Pressure in the Amazon Region, Colombia. Ind. Crops Prod. 2020, 158, 112958. [Google Scholar] [CrossRef]
- Olaniyi, O.N.; Szulczyk, K. Estimating the Economic Impact of the White Root Rot Disease on the Malaysian Rubber Plantations. Forest Policy Econ. 2022, 138, 102707. [Google Scholar] [CrossRef]
- Lieberei, R. South American Leaf Blight of the Rubber Tree (Hevea spp.): New Steps in Plant Domestication Using Physiological Features and Molecular Markers. Ann. Bot. 2007, 100, 1125–1142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hunupolagama, D.M.; Chandrasekharan, N.V.; Wijesundera, W.S.S.; Kathriarachchi, H.S.; Fernando, T.H.P.S.; Wijesundera, R.L.C. Unveiling Members of Colletotrichum acutatum Species Complex Causing Colletotrichum Leaf Disease of Hevea brasiliensis in Sri Lanka. Curr. Microbiol. 2017, 74, 747–756. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.; Xu, X.; Che, H.; West, J.S.; Luo, D. Three Colletotrichum Species, Including a New Species, are Associated to Leaf Anthracnose of Rubber Tree in Hainan, China. Plant Dis. 2019, 103, 117–124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oktavia, F.; Kuswanhadi; Widodo; Dinarti, D.; Sudarsono. Pathogenicity and RDNA-ITS Sequence Analysis of the Corynespora cassiicola Isolates from Rubber Plantations in Indonesia. Emir. J. Food Agric. 2017, 29, 872–883. [Google Scholar] [CrossRef]
- Go, W.Z.; Chin, K.L.; H’ng, P.S.; Wong, M.Y.; Luqman, C.A.; Surendran, A.; Tan, G.H.; Lee, C.L.; Khoo, P.S.; Kong, W.J. Virulence of Rigidoporus microporus Isolates Causing White Root Rot Disease on Rubber Trees (Hevea brasiliensis) in Malaysia. Plants 2021, 10, 2123. [Google Scholar] [CrossRef]
- Rezende, J.M.; Pereira, J.M.; de Araujo, W.S.; Daud, R.D.; Andrade Peres, A.J. Population Dynamics of Rubber Tree Mites. Floresta Ambient. 2020, 27, e20180177. [Google Scholar] [CrossRef]
- Sterling, A.; Marieth Salas-Tobon, Y.; Virgueez-Diaz, Y. Erinnyis ello (Lepidoptera: Sphingidae) and Leptopharsa heveae (Hemiptera: Tingidae) in Hevea brasiliensis ILn Agroforestry System. Rev. Colomb. Entomol. 2016, 42, 124–132. [Google Scholar] [CrossRef]
- Fernando, T.H.P.S.; Jayasinghe, C.K.; Wijesundera, R.L.C.; Siriwardana, D. Screening of Fungicides against Corynespora Leaf Fall Disease of Rubber under Nursery Conditions. J. Plant Dis. Prot. 2010, 117, 117–121. [Google Scholar] [CrossRef]
- Cardoso Moraes, L.A.; Moreira, A.; Cordeiro, E.R.; de Figueiredo Moraes, V.H. Translocation of Cyanogenic Glycosides in Rubber Tree Crown Clones Resistant to South American Leaf Blight. Pesqui. Agropecu. Bras. 2012, 47, 906–912. [Google Scholar] [CrossRef] [Green Version]
- Maiden, N.A.; Noran, A.S.; Fauzi, M.A.F.A.; Atan, S. Screening and Characterisation of Chitinolytic Microorganisms with Potential to Control White Root Disease of Hevea brasiliensis. J. Rubber Res. 2017, 20, 182–202. [Google Scholar] [CrossRef]
- Campanharo, W.A.; Cecilio, R.A.; Sperandio, H.V.; de Jesus Junior, W.C.; Pezzopane, J.E.M. Modification of the Climatic Zoning of Rubber Trees for the Espirito Santo State Due to Climate Change Scenarios. Sci. For. 2011, 39, 105–116. [Google Scholar]
- Chiari, W.; Damayanti, R.; Harapan, H.; Puspita, K.; Saiful, S.; Rahmi, R.; Rizki, D.; Iqhrammullah, M. Trend of Polymer Research Related to COVID-19 Pandemic: Bibliometric Analysis. Polymers 2022, 14, 3297. [Google Scholar] [CrossRef]
- Zulkifli, B.; Fakri, F.; Odigie, J.; Nnabuife, L.; Isitua, C.C.; Chiari, W. Chemometric-Empowered Spectroscopic Techniques in Pharmaceutical Fields: A Bibliometric Analysis and Updated Review. Narra X 2022, 1, e80. [Google Scholar] [CrossRef]
- Li, J.; Goerlandt, F.; Reniers, G. An Overview of Scientometric Mapping for the Safety Science Community: Methods, Tools, and Framework. Saf. Sci. 2021, 134, 105093. [Google Scholar] [CrossRef]
- Aria, M.; Cuccurullo, C. Bibliometrix: An R-Tool for Comprehensive Science Mapping Analysis. J. Informetr. 2017, 11, 959–975. [Google Scholar] [CrossRef]
- Akin, M.; Eyduran, S.P.; Krauter, V. Food Packaging Related Research Trends in the Academic Discipline of Food Science and Technology: A Bibliometric Analysis. Clean. Circ. Bioeconomy 2023, 5, 100046. [Google Scholar] [CrossRef]
- Akın, M.; Bartkiene, E.; Özogul, F.; Eyduran, S.P.; Trif, M.; Lorenzo, J.M.; Rocha, J.M. Conversion of Organic Wastes into Biofuel by Microorganisms: A Bibliometric Review. Clean. Circ. Bioeconomy 2023, 6, 100053. [Google Scholar] [CrossRef]
- Hassan-Montero, Y.; De-Moya-Anegon, F.; Guerrero-Bote, V. SCImago Graphica: A New Too for Exploring and Visually Communicating Data. Prof. De La Inf. 2022, 31, e310502. [Google Scholar] [CrossRef]
- Van Eck, N.J.; Waltman, L. Text Mining and Visualization Using VOSviewer. arXiv 2011, arXiv:1109.2058. [Google Scholar]
- Waltman, L.; van Eck, N.J.; Noyons, E.C.M. A Unified Approach to Mapping and Clustering of Bibliometric Networks. J. Informetr. 2010, 4, 629–635. [Google Scholar] [CrossRef] [Green Version]
- Perianes-Rodriguez, A.; Waltman, L.; van Eck, N.J. Constructing Bibliometric Networks: A Comparison between Full and Fractional Counting. J. Informetr. 2016, 10, 1178–1195. [Google Scholar] [CrossRef] [Green Version]
- van Eck, N.J.; Waltman, L. VOSviewer: A Computer Program for Bibliometric Mapping. In Proceedings of the International Conference on Scientometrics and Informetrics, Rio de Janeiro, Brazil, 14–17 July 2009; University of Leuven: Leuven, Belgium, 2009; Volume 2, pp. 886–897. [Google Scholar]
- van Eck, N.J.; Waltman, L. Software Survey: VOSviewer, a Computer Program for Bibliometric Mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.; Liao, Z.; Feng, L.; An, B.; He, C.; Wang, Q.; Luo, H. Colletotrichum gloeosporioides Cg2LysM Contributed to Virulence toward Rubber Tree through Affecting Invasive Structure and Inhibiting Chitin-Triggered Plant Immunity. Front. Microbiol. 2023, 14, 9101. [Google Scholar] [CrossRef]
- Mei, S.; Hou, S.; Cui, H.; Feng, F.; Rong, W. Characterization of the Interaction between Oidium heveae and Arabidopsis thaliana. Mol. Plant Pathol. 2016, 17, 1331–1343. [Google Scholar] [CrossRef] [Green Version]
- Thanseem, I.; Joseph, A.; Thulaseedharan, A. Induction and Differential Expression of Beta-1,3-Glucanase MRNAs in Tolerant and Susceptible Hevea Clones in Response to Infection by Phytophthora meadii. Tree Physiol. 2005, 25, 1361–1368. [Google Scholar] [CrossRef] [Green Version]
- Martinez-Caballero, S.; Cano-Sanchez, P.; Mares-Mejia, I.; Diaz-Sanchez, A.G.; Macias-Rubalcava, M.L.; Hermoso, J.A.; Rodriguez-Romero, A. Comparative Study of Two GH19 Chitinase-like Proteins from Hevea brasiliensis, One Exhibiting a Novel Carbohydrate-Binding Domain. FEBS J. 2014, 281, 4535–4554. [Google Scholar] [CrossRef]
- Liu, M.; Wang, L.; Ke, Y.; Xian, X.; Wang, J.; Wang, M.; Zhang, Y. Identification of HbHSP90 Gene Family and Characterization HbHSP90.1 as a Candidate Gene for Stress Response in Rubber Tree. Gene 2022, 827, 146475. [Google Scholar] [CrossRef]
- Li, X.; He, Q.; Liu, Y.; Xu, X.; Xie, Q.; Li, Z.; Lin, C.; Liu, W.; Chen, D.; Li, X.; et al. Ectopic Expression of HbRPW8-a from Hevea brasiliensis Improves Arabidopsis Thaliana Resistance to Powdery Mildew Fungi (Erysiphe cichoracearum UCSC1). Int. J. Mol. Sci. 2022, 23, 12588. [Google Scholar] [CrossRef]
- Kuyyogsuy, A.; Deenamo, N.; Khompatara, K.; Ekchaweng, K.; Churngchow, N. Chitosan Enhances Resistance in Rubber Tree (Hevea brasiliensis), through the Induction of Abscisic Acid (ABA). Physiol. Mol. Plant Pathol. 2018, 102, 67–78. [Google Scholar] [CrossRef]
- Li, X.; Li, S.; Liu, Y.; He, Q.; Liu, W.; Lin, C.; Miao, W. HbLFG1, a Rubber Tree (Hevea brasiliensis) Lifeguard Protein, Can Facilitate Powdery Mildew Infection by Suppressing Plant Immunity. Phytopathology 2021, 111, 1648–1659. [Google Scholar] [CrossRef]
- Oghenekaro, A.O.; Omorusi, V.I.; Asiegbu, F.O. Defence-Related Gene Expression of Hevea brasiliensis Clones in Response to the White Rot Pathogen, Rigidoporus microporus. Forest Pathol. 2016, 46, 318–326. [Google Scholar] [CrossRef]
- Li, X.; Zhao, W.; Zhang, Z.; Fang, Y.; Dong, L.; Yin, J.; Liu, Y.; Chen, D.; Li, Z.; Liu, W.; et al. The Rubber Tree (Heveae brasiliensis) MLO Protein HbMLO12 Promotes Plant Susceptibility to Sustain Infection by a Powdery Mildew Fungus. Mol. Plant-Microbe Interact. 2022, 36, 273–282. [Google Scholar] [CrossRef]
- Qin, B.; Wang, M.; He, H.; Xiao, H.; Zhang, Y.; Wang, L. Identification and Characterization of a Potential Candidate Mlo Gene Conferring Susceptibility to Powdery Mildew in Rubber Tree. Phytopathology 2019, 109, 1236–1245. [Google Scholar] [CrossRef]
- Zhang, B.; Song, Y.; Zhang, X.; Wang, Q.; Li, X.; He, C.; Luo, H. Identification and Expression Assay of Calcium-Dependent Protein Kinase Family Genes in Hevea brasiliensis and Determination of HbCDPK5 Functions in Disease Resistance. Tree Physiol. 2022, 42, 1070–1083. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Guo, S.; Feng, L.; Wang, Q.; An, B.; Luo, H.; He, C. Functional Analysis of Rubber Tree Receptor-like Cytoplasmic Kinase HbBIK1 in Plant Root Development and Immune Response. Tree Genet. Genomes 2020, 16, 88. [Google Scholar] [CrossRef]
- Bergamini Lopes, M.P.; Gomes, M.E.; da Celin, G.S.; Bello, H.N.; Pinheiro Henrique, R.L.; Magalhaes, I.P.; Santos, L.V.; Tropaldi, L.; Pascholate, S.F.; Furtado, E.L.; et al. Initial Studies of the Response of Rubber Tree Seedlings Treated with Saprobic Fungi from the Semiarid Region of Northeast Brazil to Anthracnose. Plants 2022, 11, 2477. [Google Scholar] [CrossRef]
- Magalhaes, I.P.; Marques, J.P.R.; Gomes, M.E.; Scaloppi Junior, E.J.; Fischer, I.H.; Furtado, E.L.; Pinheiro Henrique, R.L.; Verechia Rodrigues, F.T.; Firmino, A.C. Structural and Biochemical Aspects Related to Resistance and Susceptibility of Rubber Tree Clones to Anthracnose. Plants 2021, 10, 985. [Google Scholar] [CrossRef]
- Zhai, W.; Zhao, Y.; Zhang, L.X.; Li, X.J. Structural and Phylogenetic Analysis of Pto-Type Disease Resistance Gene Candidates in Hevea brasiliensis. Genet. Mol. Res. 2014, 13, 4348–4360. [Google Scholar] [CrossRef]
- Kadow, D.; Voss, K.; Selmar, D.; Lieberei, R. The Cyanogenic Syndrome in Rubber Tree Hevea brasiliensis: Tissue-Damage-Dependent Activation of Linamarase and Hydroxynitrile Lyase Accelerates Hydrogen Cyanide Release. Ann. Bot. 2012, 109, 1253–1262. [Google Scholar] [CrossRef] [Green Version]
- Bangrak, P.; Chotigeat, W. Molecular Cloning and Biochemical Characterization of a Novel Cystatin from Hevea Rubber Latex. Plant Physiol. Biochem. 2011, 49, 244–250. [Google Scholar] [CrossRef]
- Bunyatang, O.; Chirapongsatonkul, N.; Bangrak, P.; Henry, R.; Churngchow, N. Molecular Cloning and Characterization of a Novel Bi-Functional Alpha-Amylase/Subtilisin Inhibitor from Hevea brasiliensis. Plant Physiol. Biochem. 2016, 101, 76–87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Liu, Y.; He, Q.; Li, S.; Liu, W.; Lin, C.; Miao, W. A Candidate Secreted Effector Protein of Rubber Tree Powdery Mildew Fungus Contributes to Infection by Regulating Plant ABA Biosynthesis. Front. Microbiol. 2020, 11, 591387. [Google Scholar] [CrossRef] [PubMed]
- Nicole, M.; Toppan, A.; Geiger, J.; Roby, D.; Nandris, D.; Rio, B. Defense Responses of Hevea brasiliensis of Elicitors From Root Rot Fungi. Can. J. Bot.-Rev. Can. Bot. 1991, 69, 1819–1824. [Google Scholar] [CrossRef]
- Schwob, I.; Ducher, M.; Coudret, A. An Arbuscular Mycorrhizal Fungus (Glomus mosseae) Induces a Defence-like Response in Rubber Tree (Hevea brasiliensis) Roots. J. Plant Physiol. 2000, 156, 284–287. [Google Scholar] [CrossRef]
- Ekchaweng, K.; Evangelisti, E.; Schornack, S.; Tian, M.; Churngchow, N. The Plant Defense and Pathogen Counterdefense Mediated by Hevea brasiliensis Serine Protease HbSPA and Phytophthora palmivora Extracellular Protease Inhibitor PpEPI10. PLoS ONE 2017, 12, e0175795. [Google Scholar] [CrossRef] [Green Version]
- Ekchaweng, K.; Khunjan, U.; Churngchow, N. Molecular Cloning and Characterization of Three Novel Subtilisin-like Serine Protease Genes from Hevea brasiliensis. Physiol. Mol. Plant Pathol. 2017, 97, 79–95. [Google Scholar] [CrossRef]
- Chen, Y.-Y.; Wang, L.-F.; Dai, L.-J.; Yang, S.-G.; Tian, W.-M. Characterization of HbEREBP1, a Wound-Responsive Transcription Factor Gene in Laticifers of Hevea brasiliensis Muell. Arg. Mol. Biol. Rep. 2012, 39, 3713–3719. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-Y.; Wang, L.-F.; Yang, S.-G.; Tian, W.-M. Molecular Characterization of HbEREBP2, a Jasmonate-Responsive Transcription Factor from Hevea brasiliensis Muell. Arg. Afr. J. Biotechnol. 2011, 10, 9751–9759. [Google Scholar]
- Chu, L.; Lao, G.; Gao, X.; Liu, W.; Lu, Z.; Jin, P.; Miao, W. Bacillus velezensis HN-2 Crude Extract Inhibits Erysiphe quercicola Infection of Rubber Tree Leaves. Physiol. Mol. Plant Pathol. 2022, 122, 101920. [Google Scholar] [CrossRef]
- Deenamo, N.; Kuyyogsuy, A.; Khompatara, K.; Chanwun, T.; Ekchaweng, K.; Churngchow, N. Salicylic Acid Induces Resistance in Rubber Tree against Phytophthora palmivora. Int. J. Mol. Sci. 2018, 19, 1883. [Google Scholar] [CrossRef] [Green Version]
- Yang, G.; Yang, J.; Zhang, Q.; Wang, W.; Feng, L.; Zhao, L.; An, B.; Wang, Q.; He, C.; Luo, H. The Effector Protein CgNLP1 of Colletotrichum gloeosporioides Affects Invasion and Disrupts Nuclear Localization of Necrosis-Induced Transcription Factor HbMYB8-Like to Suppress Plant Defense Signaling. Front. Microbiol. 2022, 13, 911479. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhu, J.; Ni, Y.; Cai, Y.; Zhang, Z. Expression Profiling of HbWRKY1, an Ethephon-Induced WRKY Gene in Latex from Hevea brasiliensis in Responding to Wounding and Drought. Trees-Struct. Funct. 2012, 26, 587–595. [Google Scholar] [CrossRef]
- Koop, D.M.; Rio, M.; Sabau, X.; Almeida Cardoso, S.E.; Cazevieille, C.; Leclercq, J.; Garcia, D. Expression Analysis of ROS Producing and Scavenging Enzyme-Encoding Genes in Rubber Tree Infected by Pseudocercospora ulei. Plant Physiol. Biochem. 2016, 104, 188–199. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Wang, Q.; Luo, H.; He, C.; An, B. HbWRKY40 Plays an Important Role in the Regulation of Pathogen Resistance in Hevea brasiliensis. Plant Cell Reports 2020, 39, 1095–1107. [Google Scholar] [CrossRef] [PubMed]
- Evueh, G.A.; Ogbebor, N.O. Use of Phylloplane Fungi as Biocontrol Agent against Colletotrichum Leaf Disease of Rubber (Hevea brasiliensis Muell. Arg.). Afr. J. Biotechnol. 2008, 7, 2569–2572. [Google Scholar]
- He, C.P.; Fan, L.Y.; Wu, W.H.; Liang, Y.Q.; Li, R.; Tang, W.; Zheng, X.L.; Xiao, Y.N.; Liu, Z.X.; Zheng, F.C. Identification of Lipopeptides Produced by Bacillus Subtilis Czk1 Isolated from the Aerial Roots of Rubber Trees. Genet. Mol. Res. 2017, 16, gmr16018710. [Google Scholar] [CrossRef] [PubMed]
- de Amaral, A.O.; Amorim Ferreira e Ferreira, A.F.T.; da Silva Bentes, J.L. Fungal Endophytic Community Associated with Hevea spp.: Diversity, Enzymatic Activity, and Biocontrol Potential. Braz. J. Microbiol. 2022, 53, 857–872. [Google Scholar] [CrossRef]
- Gu, L.; Zhang, K.; Zhang, N.; Li, X.; Liu, Z. Control of the Rubber Anthracnose Fungus Colletotrichum gloeosporioides using Culture Filtrate Extract from Streptomyces deccanensis QY-3. Antonie Van Leeuwenhoek 2020, 113, 1573–1585. [Google Scholar] [CrossRef]
- Zhang, K.; Gu, L.; Zhang, Y.; Liu, Z.; Li, X. Dinactin from a New Producer, Streptomyces badius Gz-8, and Its Antifungal Activity against the Rubber Anthracnose Fungus Colletotrichum gloeosporioides. Microbiol. Res. 2020, 240, 126548. [Google Scholar] [CrossRef] [PubMed]
- Abraham, A.; Philip, S.; Jacob, M.K.; Narayanan, S.P.; Jacob, C.K.; Kochupurackal, J. Phenazine-l-Carboxylic Acid Mediated Anti-Oomycete Activity of the Endophytic Alcaligenes sp EIL-2 against Phytophthora meadii. Microbiol. Res. 2015, 170, 229–234. [Google Scholar] [CrossRef]
- Abraham, A.; Narayanan, S.P.; Philip, S.; Nair, D.G.; Chandrasekharan, A.; Kochupurackal, J. In Silico Characterization of a Novel Beta-1,3-Glucanase Gene from Bacillus amyloliquefaciens-a Bacterial Endophyte of Hevea brasiliensis Antagonistic to Phytophthora meadii. J. Mol. Model. 2013, 19, 999–1007. [Google Scholar] [CrossRef] [PubMed]
- Abraham, A.; Philip, S.; Jacob, C.K.; Jayachandran, K. Novel Bacterial Endophytes from Hevea brasiliensis as Biocontrol Agent against Phytophthora Leaf Fall Disease. Biocontrol 2013, 58, 675–684. [Google Scholar] [CrossRef]
- Vaz, A.B.M.; Fonseca, P.L.C.; Badotti, F.; Skaltsas, D.; Tome, L.M.R.; Silva, A.C.; Cunha, M.C.; Soares, M.A.; Santos, V.L.; Oliveira, G.; et al. A Multiscale Study of Fungal Endophyte Communities of the Foliar Endosphere of Native Rubber Trees in Eastern Amazon. Sci. Rep. 2018, 8, 16151. [Google Scholar] [CrossRef] [Green Version]
- Brito, V.N.; Alves, J.L.; Araujo, K.S.; de Leite, T.S.; de Queiroz, C.B.; Pereira, O.L.; de Queiroz, M.V. Endophytic Trichoderma Species from Rubber Trees Native to the Brazilian Amazon, Including Four New Species. Front. Microbiol. 2023, 14, 1095199. [Google Scholar] [CrossRef]
- de Mello, S.C.M.; de Santos, M.F.; da Silva, J.B.T. Didyma pulvinata Isolates Colonizing Microcyclus ulei Stromata in Rubber. Pesqui. Agropecu. Bras. 2006, 41, 359–363. [Google Scholar] [CrossRef] [Green Version]
- Ogbebor, N.O.; Adekunle, A.T.; Enobakhare, D.A. Inhibition of Colletotrichum gloeosporioides (Penz) Sac. Causal Organism of Rubber (Hevea brasiliensis Muell. Arg.) Leaf Spot Using Plant Extracts. Afr. J. Biotechnol. 2007, 6, 213–218. [Google Scholar]
- Ogbebor, N.; Adekunle, A.T. Inhibition of Conidial Germination and Mycelial Growth of Corynespora cassiicola (Berk and Curt) of Rubber (Hevea brasiliensis Muell. Arg.) Using Extracts of Some Plants. Afr. J. Biotechnol. 2005, 4, 996–1000. [Google Scholar]
- Rocha, A.C.S.; Garcia, D.; Uetanabaro, A.P.T.; Carneiro, R.T.O.; Araujo, I.S.; Mattos, C.R.R.; Goes-Neto, A. Foliar Endophytic Fungi from Hevea brasiliensis and Their Antagonism on Microcyclus ulei. Fungal Divers. 2011, 47, 75–84. [Google Scholar] [CrossRef]
- Mahendran, T.R.; Thottathil, G.P.; Surendran, A.; Nagao, H.; Sudesh, K. Biocontrol Potential of Aspergillus terreus, Endophytic Fungus against Rigidoporus microporus and Corynespora cassiicola, Pathogens of Rubber Tree. Arch. Phytopathol. Plant Protect. 2021, 54, 1014–1032. [Google Scholar] [CrossRef]
- Khompatara, K.; Pettongkhao, S.; Kuyyogsuy, A.; Deenamo, N.; Churngchow, N. Enhanced Resistance to Leaf Fall Disease Caused by Phytophthora palmivora in Rubber Tree Seedling by Sargassum polycystum Extract. Plants 2019, 8, 168. [Google Scholar] [CrossRef] [Green Version]
- Pujade-Renaud, V.; Deon, M.; Gazis, R.; Ribeiro, S.; Dessailly, F.; Granet, F.; Chaverri, P. Endophytes from Wild Rubber Trees as Antagonists of the Pathogen Corynespora cassiicola. Phytopathology 2019, 109, 1888–1899. [Google Scholar] [CrossRef]
- Liyanage, K.K.; Khan, S.; Brooks, S.; Mortimer, P.E.; Karunarathna, S.C.; Xu, J.; Hyde, K.D. Morpho-Molecular Characterization of Two Ampelomyces spp. (Pleosporales) Strains Mycoparasites of Powdery Mildew of Hevea brasiliensis. Front. Microbiol. 2018, 9, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sirikamonsathien, T.; Kenji, M.; Dethoup, T. Potential of Endophytic Trichoderma in Controlling Phytophthora Leaf Fall Disease in Rubber (Hevea brasiliensis). Biol. Control 2023, 179, 105175. [Google Scholar] [CrossRef]
- Sudirman, L.; Lefebvre, G.; Kiffer, E.; Botton, B. Purification of Antibiotics Produced by Lentinus squarrosulus and Preliminary Characterization of a Compound Active Against Rigidoporus lignosus. Curr. Microbiol. 1994, 29, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Sudirman, L.; Housseini, A.; Lefebvre, G.; Kiffer, E.; Botton, B. Screening of Some Basidiomycetes for Biocontrol of Rigidoporus lignosus, a Parasite of the Rubber Tree Hevea brasiliensis. Mycol. Res. 1992, 96, 621–625. [Google Scholar] [CrossRef]
- Shabbir, I.; Abd Samad, M.Y.; Othman, R.; Wong, M.-Y.; Sulaiman, Z.; Jaafar, N.M.; Bukhari, S.A.H. Evaluation of Bioformulation of Enterobacter sp. UPMSSB7 and Mycorrhizae with Silicon for White Root Rot Disease Suppression and Growth Promotion of Rubber Seedlings Inoculated with Rigidoporus microporus. Biol. Control 2021, 152, 104467. [Google Scholar] [CrossRef]
- Goh, Y.K.; Marzuki, N.F.; Liew, Y.A.; Goh, Y.K.; Goh, K.J. Antagonistic Effects of Fungicolous Ascomycetous Cladobotryum semicirculare on Rigidoporus microporus White Root Disease in Rubber Trees (Hevea brasiliensis) under in Vitro and Nursery Experiments. J. Rubber Res. 2018, 21, 62–72. [Google Scholar] [CrossRef]
- de Araujo Diniz, P.F.; Mota de Oliveira, L.E.; Gomes, M.P.; de Castro, E.M.; Mesquita, A.C.; da Silva Bonome, L.T.; da Silva, L. Growth, Biophysical Parameters and Anatomical Aspects of Young Rubber Tree Plants Inoculated with Arbuscular Mycorrhizal Fungi Glomus clarum. Acta Bot. Bras. 2010, 24, 65–72. [Google Scholar]
- Go, W.Z.; H’ng, P.S.; Wong, M.Y.; Tan, G.H.; Chuah, A.L.; Salmiah, U.; Toczylowska-Maminska, R.; Soni, O.; Wong, W.Z.; Chin, K.L.; et al. Occurrence and Characterisation of Mycoflora in Soil of Different Health Conditions Associated with White Root Rot Disease in Malaysian Rubber Plantation. J. Rubber Res. 2015, 18, 159–170. [Google Scholar]
- Abd Hadi, S.M.H.S.; Nasir, M.S.; Noh, N.A.M.; Yahya, A.R.M.; Nor, N.M.I.M. The Potential of Rhamnolipid as Biofungicide against Rigidoporus microporus Isolated from Rubber Tree (Hevea brasiliensis). Pertanika J. Trop. Agr. Sci. 2022, 45, 285–299. [Google Scholar] [CrossRef]
- Siri-Udom, S.; Suwannarach, N.; Lumyong, S. Applications of Volatile Compounds Acquired from Muscodor heveae against White Root Rot Disease in Rubber Trees (Hevea brasiliensis Mull. Arg.) and Relevant Allelopathy Effects. Fungal Biol. 2017, 121, 573–581. [Google Scholar] [CrossRef] [PubMed]
- Abraham, A.; Philip, S.; Joseph, J.; Pramod, S.; Jacob, K.C.; Sindhu, R.; Pandey, A.; Sang, B.-I.; Jayachandran, K. Growth Promoting Activities of Antagonistic Bacterial Endophytes from Hevea brasiliensis (Willd. Ex A.Juss.) Mull.Arg. Indian J. Exp. Biol. 2021, 59, 827–833. [Google Scholar]
- Suryanto, D.; Munthe, R.A.; Nurwahyuni, I.; Munir, E. An Assay on Potential of Local Trichoderma spp. to Control White Root Rot Disease Caused by Rigidoporus microporus in Rubber Plant Stump. J. Pure Appl. Microbiol. 2017, 11, 717–723. [Google Scholar] [CrossRef]
- Chaiharn, M.; Sujada, N.; Pathom-aree, W.; Lumyong, S. Biological Control of Rigidoporus microporus the Cause of White Root Disease in Rubber Using PGPRs In Vivo. Chiang Mai J. Sci. 2019, 46, 850–866. [Google Scholar]
- Go, W.Z.; Chin, K.L.; H’ng, P.S.; Wong, M.Y.; Lee, C.L.; Khoo, P.S. Exploring the Biocontrol Efficacy of Trichoderma spp. against Rigidoporus microporus, the Causal Agent of White Root Rot Disease in Rubber Trees (Hevea brasiliensis). Plants 2023, 12, 1066. [Google Scholar] [CrossRef] [PubMed]
- Nakaew, N.; Rangjaroen, C.; Sungthong, R. Utilization of Rhizospheric Streptomyces for Biological Control of Rigidoporus sp Causing White Root Disease in Rubber Tree. Eur. J. Plant Pathol. 2015, 142, 93–105. [Google Scholar] [CrossRef] [Green Version]
- Noveriza, R.; Rahajoeningsih, S.; Harni, R. Miftakhurohmah Molecular Identification of White Root Fungal Pathogens and in Vitro Effect of Nanopesticide. In Proceedings of the 1st International Conference on Sustainable Plantation, Bogor, Indonesia, 20–22 August 2019; Iop Publishing Ltd.: Bristol, UK, 2020; Volume 418. [Google Scholar]
- Ogbebor, N.O.; Adekunle, A.T.; Eghafona, O.N.; Ogboghodo, A.I. Biological Control of Rigidoporus lignosus in Hevea brasiliensis in Nigeria. Fungal Biol. 2015, 119, 1–6. [Google Scholar] [CrossRef]
- Wu, H.; Pan, Y.; Di, R.; He, Q.; Rajaofera, M.J.N.; Liu, W.; Zheng, F.; Miao, W. Molecular Identification of the Powdery Mildew Fungus Infecting Rubber Trees in China. Forest Pathol. 2019, 49, e12519. [Google Scholar] [CrossRef]
- Liu, X.; Li, B.; Cai, J.; Shi, T.; Yang, Y.; Feng, Y.; Huang, G. Whole Genome Resequencing Reveal Patterns of Genetic Variation within Colletotrichum acutatum Species Complex from Rubber Trees in China. Fungal Genet. Biol. 2023, 167, 103801. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, C.; Rajaofera, M.J.N.; Zhu, L.; Xu, X.; Liu, W.; Zheng, F.; Miao, W. WY195, a New Inducible Promoter From the Rubber Powdery Mildew Pathogen, Can Be Used as an Excellent Tool for Genetic Engineering. Front. Microbiol. 2020, 11, 610252. [Google Scholar] [CrossRef]
- Li, X.; Ke, Z.; Yu, X.; Liu, Z.; Zhang, C. Transcription Factor CgAzf1 Regulates Melanin Production, Conidial Development and Infection in Colletotrichum gloeosporioides. Antonie Van Leeuwenhoek 2019, 112, 1095–1104. [Google Scholar] [CrossRef]
- Gao, X.; Wang, Q.; Feng, Q.; Zhang, B.; He, C.; Luo, H.; An, B. Heat Shock Transcription Factor CgHSF1 Is Required for Melanin Biosynthesis, Appressorium Formation, and Pathogenicity in Colletotrichum gloeosporioides. J. Fungi 2022, 8, 175. [Google Scholar] [CrossRef]
- Liu, N.; Wang, W.; He, C.; Luo, H.; An, B.; Wang, Q. NADPH Oxidases Play a Role in Pathogenicity via the Regulation of F-Actin Organization in Colletotrichum gloeosporioides. Front. Cell. Infect. Microbiol. 2022, 12, 845133. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; An, B.; Wang, W.; Zhang, B.; He, C.; Luo, H.; Wang, Q. Actin-Bundling Protein Fimbrin Regulates Pathogenicity via Organizing F-Actin Dynamics during Appressorium Development in Colletotrichum gloeosporioides. Mol. Plant Pathol. 2022, 23, 1472–1486. [Google Scholar] [CrossRef] [PubMed]
- Song, M.; Fang, S.; Li, Z.; Li, X.; Liu, W.; Zhang, Y.; Lin, C.; Miao, W. CsAtf1, a BZIP Transcription Factor, Is Involved in Fludioxonil Sensitivity and Virulence in the Rubber Tree Anthracnose Fungus Colletotrichum siamense. Fungal Genet. Biol. 2022, 158, 103649. [Google Scholar] [CrossRef]
- Lin, C.; Huang, G.; Zheng, F.; Miao, W. Functional Characterization of CgPBS(2), a MAP Kinase Kinase in Colletotrichum gloeosporioides, Using Osmotic Stress Sensitivity as a Selection Marker. Eur. J. Plant Pathol. 2018, 152, 801–813. [Google Scholar] [CrossRef]
- Liu, Z.-Q.; Wu, M.-L.; Ke, Z.-J.; Liu, W.-B.; Li, X.-Y. Functional Analysis of a Regulator of G-Protein Signaling CgRGS1 in the Rubber Tree Anthracnose Fungus Colletotrichum gloeosporioides. Arch. Microbiol. 2018, 200, 391–400. [Google Scholar] [CrossRef]
- Li, X.; Liu, S.; Zhang, N.; Liu, Z. Function and Transcriptome Analysis of an Oligopeptide Transporter CgOPT2 in the Rubber Anthracnose Fungus Colletotrichum gloeosporioides. Physiol. Mol. Plant Pathol. 2021, 115, 101661. [Google Scholar] [CrossRef]
- Liu, N.; Wang, Q.; He, C.; An, B. CgMFS1, a Major Facilitator Superfamily Transporter, is Required for Sugar Transport, Oxidative Stress Resistance, and Pathogenicity of Colletotrichum gloeosporioides from Hevea brasiliensis. Curr. Issues Mol. Biol. 2021, 43, 1548–1557. [Google Scholar] [CrossRef]
- An, B.; Wang, W.; Guo, Y.; Wang, Q.; Luo, H.; He, C. BAS2 Is Required for Conidiation and Pathogenicity of Colletotrichum gloeosporioides from Hevea brasiliensis. Int. J. Mol. Sci. 2018, 19, 1860. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, W.; An, B.; Feng, L.; He, C.; Luo, H. A Colletotrichum gloeosporioides Cerato-Platanin Protein, CgCP1, Contributes to Conidiation and Plays Roles in the Interaction with Rubber Tree. Can. J. Microbiol. 2018, 64, 826–834. [Google Scholar] [CrossRef]
- Liyanage, K.K.; Khan, S.; Brooks, S.; Mortimer, P.E.; Karunarathna, S.C.; Xu, J.; Hyde, K.D. Taxonomic Revision and Phylogenetic Analyses of Rubber Powdery Mildew Fungi. Microb. Pathog. 2017, 105, 185–195. [Google Scholar] [CrossRef]
- Silva, C.C.; Mantello, C.C.; Campos, T.; Souza, L.M.; Goncalves, P.S.; Souza, A.P. Leaf-, Panel- and Latex-Expressed Sequenced Tags from the Rubber Tree (Hevea brasiliensis) under Cold-Stressed and Suboptimal Growing Conditions: The Development of Gene-Targeted Functional Markers for Stress Response. Mol. Breed. 2014, 34, 1035–1053. [Google Scholar] [CrossRef] [Green Version]
- Silva, L.G.; Junior, W.C.J.; Souza, A.F.; Alves, F.R.; Furtado, E.L. Performance of Different Rubber Tree Clones against South American Leaf Blight (Microcyclus ulei). Forest Pathol. 2014, 44, 211–218. [Google Scholar] [CrossRef]
- Rivano, F.; Maldonado, L.; Simbana, B.; Lucero, R.; Gohet, E.; Cevallos, V.; Yugcha, T. Suitable Rubber Growing in Ecuador: An Approach to South American Leaf Blight. Ind. Crops Prod. 2015, 66, 262–270. [Google Scholar] [CrossRef]
- Vieira, M.R.; de Souza da Silva, H.A.; Cardoso, M.M.; Figueira, J.C. Rubber Tree Progenies with Potential to Confer Resistance to the Mite (Calacarus heveae Feres e Tenuipalpus heveae Baker). Cienc. Rural 2009, 39, 1953–1959. [Google Scholar] [CrossRef]
- Daud, R.D.; Fazzio Feres, R.J. Population Dynamics of Phytophagous Mites (Acari, Eriophyidae, Tenuipalpidae) on Six Rubber Trees Clones in Southern Mato Grosso State. Rev. Bras. Entomol. 2007, 51, 377–381. [Google Scholar] [CrossRef]
- Castro, E.B.; Nuvoloni, F.M.; Feres, R.J.F. Population Dynamics of the Main Phytophagous and Predatory Mites Associated with Rubber Tree Plantations in the State of Bahia, Brazil. Syst. Appl. Acarol. 2018, 23, 1578–1591. [Google Scholar] [CrossRef]
- Vieira, M.R.; Celoto, F.J.; Scaloppi Junior, E.J.; Agustini, J.A. Mites Resistance of Rubber Tree Clones in the Northwestern Sao Paulo State Conditions. Bragantia 2017, 76, 102–107. [Google Scholar] [CrossRef] [Green Version]
- Vieira, M.R.; Mamore Martins, G.L.; Scaloppi Junior, E.J. Resistance of Rubber Tree Clones to Mite Infestation. Bragantia 2013, 72, 367–372. [Google Scholar] [CrossRef] [Green Version]
- de Souza da Silva, H.A.; Vieira, M.R.; Valerio Filho, W.V.; de Monteverde Cardoso, M.S.; Figueira, J.C. Rubber Tree Clones with Resistance to Mites. Bragantia 2011, 70, 383–388. [Google Scholar]
- Nandris, D.; Nicole, M.; Geiger, J. Root-Rot Diseases of Rubber Trees. Plant Dis. 1987, 71, 298–306. [Google Scholar] [CrossRef]
- Aguiar, F.M.; Vallad, G.E.; Timilsina, S.; Veloso, J.S.; Fonseca, M.E.N.; Boiteux, L.S.; Reis, A. Phylogenetic Network Analysis of South and North American Corynespora cassiicola Isolates from Tomato, Cucumber, and Novel Hosts. Eur. J. Plant Pathol. 2022, 163, 657–671. [Google Scholar] [CrossRef]
- Qu, W.; Li, Z.; Huang, G.; Lin, C.; Ni, W. The Current and Future Potential Geographic Range of Corynespora Leaf Fall Disease in China. Sens. Lett. 2012, 10, 439–446. [Google Scholar] [CrossRef]
- Nghia, N.A.; Kadir, J.; Sunderasan, E.; Abdullah, M.P.; Malik, A.; Napis, S. Morphological and Inter Simple Sequence Repeat (ISSR) Markers Analyses of Corynespora cassiicola Isolates from Rubber Plantations in Malaysia. Mycopathologia 2008, 166, 189–201. [Google Scholar] [CrossRef]
- Wu, J.; Xie, X.; Shi, Y.; Chai, A.; Wang, Q.; Li, B. Variation of Cassiicolin Genes among Chinese Isolates of Corynespora cassiicola. J. Microbiol. 2018, 56, 634–647. [Google Scholar] [CrossRef] [PubMed]
- Deon, M.; Fumanal, B.; Gimenez, S.; Bieysse, D.; Oliveira, R.R.; Shuib, S.S.; Breton, F.; Elumalai, S.; Vida, J.B.; Seguin, M.; et al. Diversity of the Cassiicolin Gene in Corynespora cassiicola and Relation with the Pathogenicity in Hevea brasiliensis. Fungal Biol. 2014, 118, 32–47. [Google Scholar] [CrossRef]
- Carpenter, J. An Epidemic of Phytophthora Leaf Fall of Hevea Rubber Trees in COSTA-RICA. Phytopathology 1954, 44, 597–601. [Google Scholar]
- Fernando, T.H.P.S.; Jayasinghe, C.K.; Wijesundera, R.L.C.; Silva, W.P.K.; Nishantha, E.A.D.N. Evaluation of Screening Methods against Corynespora Leaf Fall Disease of Rubber (Hevea brasiliensis). J. Plant Dis. Prot. 2010, 117, 24–29. [Google Scholar] [CrossRef]
- da Silva Angelo, P.C.; Beleza Yamagishi, M.E.; da Cruz, J.C.; da Silva, G.F.; Gasparotto, L. Differential Expression and Structural Polymorphism in Rubber Tree Genes Related to South American Leaf Blight Resistance. Physiol. Mol. Plant Pathol. 2020, 110, 101477. [Google Scholar] [CrossRef]
- Hoell, I.A.; Klemsdal, S.S.; Vaaje-Kolstad, G.; Horn, S.J.; Eijsink, V.G.H. Overexpression and Characterization of a Novel Chitinase from Trichoderma atroviride Strain P1. BBA-Proteins Proteom. 2005, 1748, 180–190. [Google Scholar] [CrossRef] [PubMed]
- Mello, S.C.M.; Estevanato, C.E.; Brauna, L.M.; de Capdeville, G.; Queiroz, P.R.; Lima, L.H.C. Antagonistic Process of Dicyma pulvinata against Fusicladium macrosporum on Rubber Tree. Trop. Plant Pathol. 2008, 33, 5–11. [Google Scholar] [CrossRef] [Green Version]
- Abraham, A.; Philip, S.; Narayanan, S.P.; Jacob, K.C.; Sindhu, R.; Pandey, A.; Sang, B.-I.; Jayachandran, K. Induction of Systemic Acquired Resistance in Hevea brasiliensis (Willd. Ex A.Juss.) Mull.Arg. by an Endophytic Bacterium Antagonistic to Phytophthora meadii McRae. Indian J. Exp. Biol. 2019, 57, 796–805. [Google Scholar]
- Khotchanalekha, K.; Saksirirat, W.; Ayutthaya, S.I.N.; Sakai, K.; Tashiro, Y.; Okugawa, Y.; Tongpim, S. Isolation and Selection of Plant Growth Promoting Endophytic Bacteria Associated with Healthy Hevea brasiliensis for Use as Plant Growth Promoters in Rubber Seedlings under Salinity Stress. Chiang Mai J. Sci. 2020, 47, 39–48. [Google Scholar]
Description | Results |
---|---|
Main information about data | |
Timespan | 1915:2023 |
Sources (Journals, Books, etc.) | 222 |
Documents | 624 |
Annual Growth Rate % | 3.06 |
Document Average Age | 17.1 |
Average citations per doc | 10.95 |
References | 16,229 |
Document Types | |
Article | 534 |
News Item | 17 |
Note | 17 |
Review | 16 |
Editorial Material | 13 |
Meeting Abstract | 13 |
Article; Early Access | 7 |
Article; Proceedings Paper | 4 |
Book Review | 1 |
Letter | 1 |
Review; Book Chapter | 1 |
Position | Diseases or Pests | Causal Agents | Documents | Average Publication Year | Average Citation |
---|---|---|---|---|---|
1 | South American leaf blight | Pseudocercospora ulei | 95 | 2003 | 11.7 |
2 | Colletotrichum leaf disease | Colletotrichum acutatum, C. gloeosporioides, C. siamense, etc. | 72 | 2011 | 8.7 |
3 | root rot diseases | Rigidoporus microporus, Phellinus noxius, Armillaria sp., etc. | 69 | 2001 | 13.1 |
4 | Phytophthora leaf fall | Phytophthora meadii, P. palmivora, P. botryosa, etc. | 56 | 1999 | 10.8 |
5 | emerging diseases | Stemphylium lycopersici, Ceratocystis fimbriata, Euplatypus sp., etc. | 55 | 2014 | 5.7 |
6 | Corynespora leaf disease | Corynespora cassiicola | 51 | 2014 | 13.8 |
7 | powdery mildew | Oidium heveae/Erysiphe quercicola, E. necator, etc. | 39 | 2019 | 7.4 |
8 | phytophagous mites | Calacarus heveae, Tenuipalpus heveae, Eutetranychus banksi, etc. | 33 | 2012 | 9.5 |
9 | subterranean termites | Coptotermes curvignathus, Heterotermes tenuis, Coptotermes gestroi, etc. | 8 | 2019 | 1.5 |
10 | lace bug | Leptopharsa heveae | 7 | 2009 | 8.9 |
# | Author(s) | Title | Journal | Publisher | Year | TC | TC/Y |
---|---|---|---|---|---|---|---|
1 | Vanparijs et al. | Hevein-an antifungal protein from rubber-tree (Hevea-brasiliensis) latex | Planta | Springer Verlag | 1991 | 258 | 8.1 |
2 | Pearce et al. | Antimicrobial defences in the wood of living trees | New Phytologist | Wiley | 1996 | 252 | 9.3 |
3 | Shewry et al. | Plant proteins that confer resistance to pests and pathogens | Advances In Botanical Research | Elsevier Academic Press Inc. | 1997 | 147 | 5.7 |
4 | Galliano et al. | Lignin degradation by Rigidoporus-lignosus involves synergistic action of 2 oxidizing enzymes-mn peroxidase and laccase | Enzyme and Microbial Technology | Butterworth-Heinemann | 1991 | 132 | 4.1 |
5 | Lieberei, R | South American leaf blight of the rubber tree (Hevea spp.): New steps in plant domestication using physiological features and molecular markers | Annals of Botany | Oxford Univ Press | 2007 | 110 | 6.9 |
6 | Rocha et al. | Foliar endophytic fungi from Hevea brasiliensis and their antagonism on Microcyclus ulei | Fungal Diversity | Springer Verlag | 2011 | 69 | 5.8 |
7 | Chaverri et al. | Trichoderma amazonicum, a new endophytic species on Hevea brasiliensis and H. guianensis from the Amazon basin | Mycologia | Allen Press Inc. | 2011 | 66 | 5.5 |
8 | Chye et al. | β-1,3-glucanase is highly-expressed in laticifers of Hevea-brasiliensis | Plant Molecular Biology | Kluwer Academic Publ | 1995 | 59 | 2.1 |
9 | Nandris et al. | Root-rot diseases of rubber trees | Plant Disease | Amer Phytopathological Soc | 1987 | 58 | 1.6 |
10 | Chen et al. | Plant disease recognition model based on improved YOLOv5 | Agronomy-Basel | MDPI | 2022 | 55 | 55 |
Biocontrol Agents/Biofertilizers of R. microporus | |||
---|---|---|---|
Bacteria | Ascomycota | Basidiomycota | Glomeromycota |
Bacillus subtilis [77] | Aspergillus terreus [72] | Lentinus squarrosulus [77,78] | Glomus mosseae [79] |
Burkholdcria sp. [12] | Cladobotryum semicirculare [80] | Cerrena meyenii [78] | Glomus clarum [81] |
Enterobacter sp. [79] | Chaetomiurn cupreum [82] | Gloeophyllum striatum [78] | |
Pseudomonas aeruginosa [83] | Muscodor heveae [84] | Lentinus squarrosulus [77,78] | |
Pseudomonas sp. [12,85] | Trichoderma spp. [86] | ||
Streptomyces malaysiensis [87] | T. asperellum [88] | ||
Streptomyces ahygroscopicus [87] | Trichoderma spirale [88] | ||
Streptomyces sp. [89] | Trichoderma harzianum [90] | ||
Streptomyces sioyaensis [89] | Hypocrea lixii [91] | ||
Hypocrea virens [91] | |||
Hypocrea jecorina [91] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, L.; Xu, L.; Li, X.; Wang, Y.; Feng, Y.; Huang, G. The Diseases and Pests of Rubber Tree and Their Natural Control Potential: A Bibliometric Analysis. Agronomy 2023, 13, 1965. https://doi.org/10.3390/agronomy13081965
Chen L, Xu L, Li X, Wang Y, Feng Y, Huang G. The Diseases and Pests of Rubber Tree and Their Natural Control Potential: A Bibliometric Analysis. Agronomy. 2023; 13(8):1965. https://doi.org/10.3390/agronomy13081965
Chicago/Turabian StyleChen, Liqiong, Lidan Xu, Xiaona Li, Yilin Wang, Yun Feng, and Guixiu Huang. 2023. "The Diseases and Pests of Rubber Tree and Their Natural Control Potential: A Bibliometric Analysis" Agronomy 13, no. 8: 1965. https://doi.org/10.3390/agronomy13081965
APA StyleChen, L., Xu, L., Li, X., Wang, Y., Feng, Y., & Huang, G. (2023). The Diseases and Pests of Rubber Tree and Their Natural Control Potential: A Bibliometric Analysis. Agronomy, 13(8), 1965. https://doi.org/10.3390/agronomy13081965