Influence of Different Nitrogen, Phosphorus, and Potassium Fertilizer Ratios on the Agronomic and Quality Traits of Foxtail Millet
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site and Materials
2.2. Experimental Design
2.3. Measurement of Foxtail Millet Characteristics
2.3.1. Agronomic Trait Measurements
2.3.2. Measurement of Soil Plant Analysis Development (SPAD) Values
2.3.3. Measurement of Photosynthetic Parameters
2.3.4. Measurement of Foxtail Millet Yield and Related Traits
2.3.5. Measurement of Foxtail Millet Grain Quality Traits
2.4. Recommended Fertilizer Application Quantity Calculation and Statistical Analysis
Recommended Fertilizer Calculation
with: i = 2, 3, …, 14,
with: i = 1, 2, 3, …, n,
with i = 1, 2, 3, …, n
with i = 1, 2, 3, …, n
3. Results
3.1. Effects of N, P, and K Fertilizers on Agronomics of JG21
3.2. Effects of N, P, and K Fertilizers on JG21 Photosynthetic Characteristics
3.3. Effects of N, P, and K Fertilizers on the Traits Related to Yield
3.4. Effects of N, P, and K Fertilizers on JG21 Quality Characteristics
3.5. Principal Component Analysis (PCA) and Membership Function Analysis of Related JG21 Traits under Coordinated Fertilization
3.6. Orthogonal Analysis and Regression Curve Analysis of Different Fertilization Treatments and JG21 Yield
4. Discussion
4.1. Screening and Evaluation of JG21 Agronomy Traits and Qualities
4.2. Comprehensive Evaluation of the Effects of N, P, and K Application on Foxtail Millet JG21
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Y.; Chen, Y.; Wu, W. Potassium and phosphorus transport and signaling in plants. J. Integr. Plant Biol. 2021, 63, 34–52. [Google Scholar] [CrossRef] [PubMed]
- Mu, X.; Chen, Y. The physiological response of photosynthesis to nitrogen deficiency. Plant Physiol. Biochem. 2021, 158, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Bassi, D.; Menossi, M.; Mattiello, L. Nitrogen supply influences photosynthesis establishment along the sugarcane leaf. Sci. Rep. 2018, 8, 2327. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.; Feng, Y.; Wang, X.; Li, J.; Xu, G.; Phonenasay, S.; Luo, Q.; Han, Z.; Lu, W. Effects of nitrogen application rate on the photosynthetic pigment, leaf fluorescence characteristics, and yield of indica hybrid rice and their interrelations. Sci. Rep. 2021, 11, 7485. [Google Scholar] [CrossRef]
- Xu, G.; Fan, X.; Miller, A.J. Plant nitrogen assimilation and use efficiency. Annu. Rev. Plant Biol. 2012, 63, 153–182. [Google Scholar] [CrossRef]
- Zhao, C.; Liu, G.; Chen, Y.; Jiang, Y.; Shi, Y.; Zhao, L.; Liao, P.; Wang, W.; Xu, K.; Dai, Q.; et al. Excessive nitrogen application leads to lower rice yield and grain quality by inhibiting the grain filling of inferior grains. Agriculture 2022, 12, 962. [Google Scholar] [CrossRef]
- Liu, L.; Zheng, X.; Wei, X.; Kai, Z.; Xu, Y. Excessive application of chemical fertilizer and organophosphorus pesticides induced total phosphorus loss from planting causing surface water eutrophication. Sci. Rep. 2021, 11, 23015. [Google Scholar] [CrossRef]
- Malhotra, H.; Vandana; Sharma, S.; Pandey, R. Phosphorus Nutrition: Plant Growth in Response to Deficiency and Excess. In Plant Nutrients and Abiotic Stress Tolerance, 6th ed.; Hasanuzzaman, M., Fujita, M., Oku, H., Nahar, K., Hawrylak-Nowak, B., Eds.; Springer: Singapore, 2018; pp. 171–190. [Google Scholar]
- Hopkins, B.G.; Hansen, N.C. Phosphorus management in high-yield systems. J. Environ. Qual. 2019, 48, 1265–1280. [Google Scholar] [CrossRef]
- Neocleous, D.; Savvas, D. The effects of phosphorus supply limitation on photosynthesis, biomass production, nutritional quality, and mineral nutrition in lettuce grown in a recirculating nutrient solution. Sci. Hortic. 2019, 252, 379–387. [Google Scholar] [CrossRef]
- Nam, H.I.; Shahzad, Z.; Dorone, Y.; Clowez, S.; Zhao, K.; Bouain, N.; Lay-Pruitt, K.S.; Cho, H.; Rhee, S.Y.; Rouached, H. Interdependent iron and phosphorus availability controls photosynthesis through retrograde signaling. Nat. Commun. 2021, 12, 7211. [Google Scholar] [CrossRef]
- Kaminsky, L.M.; Thompson, G.L.; Trexler, R.V.; Bell, T.H.; Kao-Kniffin, J. Medicago sativa has reduced biomass and nodulation when grown with soil microbiomes conditioned to high phosphorus inputs. Phytobiomes J. 2018, 2, 237–248. [Google Scholar] [CrossRef]
- Meng, X.; Chen, W.; Wang, Y.; Huang, Z.; Ye, X.; Chen, L.; Yang, L. Effects of phosphorus deficiency on the absorption of mineral nutrients, photosynthetic system performance and antioxidant metabolism in Citrus grandis. PLoS ONE 2021, 16, e0246944. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.; Hu, W.; Fan, X.; Chen, H.; Tang, M. Interactions Between Phosphorus, Zinc, and Iron Homeostasis in Nonmycorrhizal and Mycorrhizal Plants. Front. Plant Sci. 2019, 10, 1172. [Google Scholar] [CrossRef] [PubMed]
- Lay-Pruitt, K.S.; Wang, W.; Prom-u-thai, C.; Pandey, A.; Zheng, L.; Rouached, H. A tale of two players: The role of phosphate in iron and zinc homeostatic interactions. Planta 2022, 256, 23. [Google Scholar] [CrossRef]
- Zörb, C.; Senbayram, M.; Peiter, E. Potassium in agriculture--status and perspectives. J. Plant Physiol. 2014, 171, 656–669. [Google Scholar] [CrossRef]
- Johnson, R.; Vishwakarma, K.; Hossen, M.S.; Kumar, V.; Shackira, A.M.; Puthur, J.T.; Abdi, G.; Sarraf, M.; Hasanuzzaman, M. Potassium in plants: Growth regulation, signaling, and environmental stress tolerance. Plant Physiol. Biochem. 2022, 172, 56–59. [Google Scholar] [CrossRef]
- Kuzin, A.; Solovchenko, A. Essential role of potassium in apple and its implications for management of orchard fertilization. Plants 2021, 10, 2624. [Google Scholar] [CrossRef]
- Yasin, N.A.; Zaheer, M.M.; Khan, W.U.; Ahmad, S.R.; Ahmad, A.; Ali, A.; Akram, W. The beneficial role of potassium in Cd-induced stress alleviation and growth improvement in Gladiolus grandiflora L. Int. J. Phytoremediat. 2018, 20, 274–283. [Google Scholar] [CrossRef]
- Zahoor, R.; Zhao, W.; Abid, M.; Dong, H.; Zhou, Z. Potassium application regulates nitrogen metabolism and osmotic adjustment in cotton (Gossypium hirsutum L.) functional leaf under drought stress. J. Plant Physiol. 2017, 215, 30–38. [Google Scholar]
- Wang, Y.; Zhang, Z.; Liang, Y.; Han, Y.; Han, Y.; Tan, J. High potassium application rate increased grain yield of shading-stressed winter wheat by improving photosynthesis and photosynthate translocation. Front. Plant Sci. 2020, 11, 134. [Google Scholar] [CrossRef]
- Bednarz, C.W.; Oosterhuis, D.M.; Evans, R.D. Leaf photosynthesis and carbon isotope discrimination of cotton in response to potassium deficiency. Environ. Exp. Bot. 1998, 39, 131–139. [Google Scholar] [CrossRef]
- Rawat, J.; Pandey, N.; Saxena, J. Role of potassium in plant photosynthesis, transport, growth and yield. In Role of Potassium in Abiotic Stress, 1st ed.; Iqbal, N., Umar, S., Eds.; Springer: Singapore, 2022; pp. 1–14. [Google Scholar]
- Ray, K.; Banerjee, H.; Dutta, S.; Hazra, A.K.; Majumdar, K. Macronutrients influence yield and oil quality of hybrid maize (Zea mays L.). PLoS ONE 2019, 14, e0216939. [Google Scholar] [CrossRef]
- Ray, K.; Banerjee, H.; Dutta, S.; Sarkar, S.; Murrell, T.S.; Singh, V.K.; Majumdar, K. Macronutrient management effects on nutrient accumulation, partitioning, remobilization, and yield of hybrid maize cultivars. Front. Plant Sci. 2020, 11, 1307. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, J.; Dong, E.; Liu, Q.; Wang, L.; Chen, E.; Jiao, X.; Diao, X. Foxtail millet [Setaria italica (L.) P. Beauv.] grown under nitrogen defixiency exhibits a lower folate contents. Front. Nutr. 2023, 10, 1035739. [Google Scholar] [CrossRef] [PubMed]
- Guan, R.; Pan, H.; He, W.; Sun, M.; Wang, H.; Cui, X.; Lou, Y. Fertilizer recommendation for foxtail millet based on yield response and nutrient accumulation. J. Plant Nutr. 2022, 45, 332–345. [Google Scholar] [CrossRef]
- Shrivastav, P.; Prasad, M.; Singh, T.B.; Yadav, A.; Goyal, D.; Ali, A.; Dantu, P.K. Role of nutrients in plant growth and development. In Contaminants in Agriculture, 3rd ed.; Naeem, M., Ansari, A., Gill, S., Eds.; Springer: Cham, Switzerland, 2020; pp. 43–59. [Google Scholar]
- Selim, M.M. Introduction to the integrated nutrient management strategies and their contribution to yield and soil properties. Int. J. Agron. 2020, 2020, 2821678. [Google Scholar] [CrossRef]
- Zhang, G.; Liu, X.; Quan, Z.; Cheng, S.; Xu, X.; Pan, S.; Xie, M.; Zeng, P.; Yue, Z.; Wang, W.; et al. Genome sequence of foxtail millet (Setaria italica) provides insights into grass evolution and biofuel potential. Nat. Biotechnol. 2012, 30, 549–554. [Google Scholar] [CrossRef]
- Yang, Q.; Yu, Z.; Guimei, C.; Panpan, Z. Water use efficiency of foxtail millet (Panicum italicum L.) under climate change conditions in Northwest regions of China. Agrociencia 2016, 50, 665–676. [Google Scholar]
- Yan, J.; Zhang, N.; Kang, F.; Wang, J.; Wang, X. Cultivar replacement increases water use efficiency in foxtail millet in Shaanxi Province, China. Plant Physiol. Biochem. 2021, 164, 73–81. [Google Scholar] [CrossRef]
- Nadeem, F.; Ahmad, Z.; Hassan, M.U.; Wang, R.; Diao, X.; Li, X. Adaption of foxtail millet (Setaria italica L.) to abiotic stresses: A special perspective of responses to nitrogen and phosphate limitations. Front. Plant Sci. 2020, 11, 187. [Google Scholar] [CrossRef]
- Lata, C.; Gupta, S.; Prasad, M. Foxtail millet: A model crop for genetic and genomic studies in bioenergy grasses. Rev. Environ. Sci. Biotechnol. 2013, 33, 328–343. [Google Scholar] [CrossRef]
- Hou, S.; Men, Y.; Wei, M.; Zhang, Y.; Li, H.; Sun, Z.; Han, Y. Total protein content, amino acid composition and eating-quality evaluation of foxtail millet (Setaria italica (L.) P. Beauv). Foods 2022, 12, 31. [Google Scholar] [CrossRef]
- Sun, M.; Kang, X.; Wang, T.; Fan, L.; Wang, H.; Pan, H.; Yang, Q.; Liu, H.; Lou, Y.; Zhuge, Y. Genotypic diversity of quality traits in Chinese foxtail millet (Setaria italica L.) and the establishment of a quality evaluation system. Food Chem. 2021, 353, 129421. [Google Scholar] [CrossRef]
- Yousaf, L.; Hou, D.; Liaqat, H.; Shen, Q. Millet: A review of its nutritional and functional changes during processing. Food Res. Int. 2021, 142, 110197. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Guo, Z.; Zhong, L.; Zhao, F.; Zhang, J.; Lin, X. Balanced fertilization decreases environmental filtering on soil bacterial community assemblage in North China. Front. Microbiol. 2017, 8, 2376. [Google Scholar] [CrossRef] [PubMed]
- Yousaf, M.; Li, J.; Lu, J.; Ren, T.; Cong, R.; Fahad, S.; Li, X. Effects of fertilization on crop production and nutrient supplying capacity under rice-oiled rape rotation system. Sci. Rep. 2017, 7, 1270. [Google Scholar] [CrossRef]
- Chuan, L.; He, P.; Pampolino, M.F.; Johnston, A.M.; Jin, J.; Xu, X.; Zhao, S.; Qiu, S.; Zhou, W. Establishing a scientific basis for fertilizer recommendations for wheat in China: Yield response and agronomic efficiency. Field Crops Res. 2013, 140, 1–8. [Google Scholar] [CrossRef]
- Sachdev, N.; Goomer, S.; Singh, L.R. Foxtail millet: A potential crop to meet future demand scenario for alternative sustainable protein. J. Sci. Food Agric. 2021, 101, 831–842. [Google Scholar] [CrossRef]
- Li, Y.; Yin, M.; Li, L.; Zheng, J.; Yuan, X.; Wen, Y. Optimized potassium application rate increases foxtail millet grain yield by improving photosynthetic carbohydrate metabolism. Front. Plant Sci. 2022, 13, 1044065. [Google Scholar] [CrossRef]
- Wu, Z.; Yan, J.; Shi, W.; Zeng, S. The Design and Statistic Analysis of Effect Experiment of Fertilizer “3414”. Xinjiang Agric. Sci. 2008, 17, 135–141. [Google Scholar]
- Yuan, Y.; Chen, X.; Li, M.; Li, P.; Jia, Y.; Han, Y.; Xing, G. Screening of germplasm tolerant to low phosphorus of seedling stage and response of root protective enzymes to low phosphorus in foxtail millet. Acta Agron. Sin. 2019, 45, 601–612. [Google Scholar]
- Ma, K.; Zhao, L.; Zhao, X.; Li, X.; Dong, S.; Zhang, L.; Guo, P.; Yuan, X.; Diao, X. The relationship between ecological factors and commercial quality of high-quality foxtail millet “Jinggu 21”. Food Res. Int. 2023, 163, 112225. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Zhao, W.; Min, G.; Li, P.; Zhang, A.; Zhang, J.; Wang, Y.; Liu, Y.; Liu, J. Effects of different amylose contents of foxtail millet flour varieties on textural properties of chinese steamed bread. Processes 2021, 9, 1131. [Google Scholar] [CrossRef]
- Song, T.; Das, D.; Hu, Q.; Yang, F.; Zhang, J. Alternate wetting and drying irrigation and phosphorus rates affect grain yield and quality and heavy metal accumulation in rice. Agric. Water Manag. 2019, 223, 105686. [Google Scholar] [CrossRef]
- Wang, N.; Fu, F.; Wang, H.; Wang, P.; He, S.; Shao, H.; Ni, Z.; Zhang, X. Effects of irrigation and nitrogen on chlorophyll content, dry matter and nitrogen accumulation in sugar beet (Beta vulgaris L.). Sci. Rep. 2021, 11, 16651. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, S.; Fu, W.; Wen, H. Effects of nitrogen application on yield, photosynthetic characteristics and water use efficiency of hybrid millet. J. Heilognjiang Bayi Agric. Univ. 2014, 20, 1119–1126. [Google Scholar]
- Xue, Y.; Miao, X.; Wang, Y. Effects of nitrogen application on photosynthetic yield and quality of foxtail millet. J. Heilognjiang Bayi Agric. Univ. 2019, 31, 1–7. [Google Scholar]
- Li, P.; Li, B.; Seneweera, S.; Zong, Y.; Li, F.Y.; Han, Y.; Hao, X. Photosynthesis and yield response to elevated CO2, C4 plant foxtail millet behaves similarly to C3 species. Plant Sci. 2019, 285, 239–247. [Google Scholar] [CrossRef]
- Yu, M.; Liu, Z.; Yang, B.; Chen, H.; Zhang, H.; Hou, D. The contribution of photosynthesis traits and plant height components to plant height in wheat at the individual quantitative trait locus level. Sci. Rep. 2020, 10, 12261. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.; Zhao, J.; Liu, Y.; Huang, N.; Tian, K.; Shah, F.; Liang, K.; Zhong, X.; Liu, B. Optimized nitrogen management enhances lodging resistance of rice and its morpho-anatomical, mechanical, and molecular mechanisms. Sci. Rep. 2019, 9, 20274. [Google Scholar] [CrossRef]
Treatment | Fertilization Level | Amount of Fertilizer (kg/hm2) | Actual Fertilizer Application (g/Basin) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
N (Urea) | P (P2O5) | K (K2O) | N (Urea) | P (P2O5) | K (K2O) | N (Urea) | P (P2O5) | K (K2O) | ||
T1 | N0P0K0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
T2 | N0P90K150 | 0 | 2 | 2 | 0 | 90 | 150 | 0 | 0.4 | 0.667 |
T3 | N80P90K150 | 1 | 2 | 2 | 80 | 90 | 150 | 0.356 | 0.4 | 0.667 |
T4 | N160P0K150 | 2 | 0 | 2 | 160 | 0 | 150 | 0.711 | 0 | 0.667 |
T5 | N160P45K150 | 2 | 1 | 2 | 160 | 45 | 150 | 0.711 | 0.2 | 0.667 |
T6 | N160P90K150 | 2 | 2 | 2 | 160 | 90 | 150 | 0.711 | 0.4 | 0.667 |
T7 | N160P135K150 | 2 | 3 | 2 | 160 | 135 | 150 | 0.711 | 0.6 | 0.667 |
T8 | N160P90K0 | 2 | 2 | 0 | 160 | 90 | 0 | 0.711 | 0.4 | 0 |
T9 | N160P90K75 | 2 | 2 | 1 | 160 | 90 | 75 | 0.711 | 0.4 | 0.333 |
T10 | N160P90K225 | 2 | 2 | 3 | 160 | 90 | 225 | 0.711 | 0.4 | 1 |
T11 | N240P90K150 | 3 | 2 | 2 | 240 | 90 | 150 | 1.067 | 0.4 | 0.667 |
T12 | N160P45K75 | 2 | 1 | 1 | 160 | 45 | 75 | 0.711 | 0.2 | 0.333 |
T13 | N80P90K75 | 1 | 2 | 1 | 80 | 90 | 75 | 0.356 | 0.4 | 0.333 |
T14 | N80P45K150 | 1 | 1 | 2 | 80 | 45 | 150 | 0.356 | 0.2 | 0.667 |
Period | Treatment | SPAD | Pn | E | C | IntCO2 | |
---|---|---|---|---|---|---|---|
(μmol/m2/s) | (mmol/m2/s) | (mmol/m2/s) | (μmol/mol) | ||||
Jointing stage | T1 | N0P0K0 | 47.22 ± 1.47 e | 19.7 ± 0.06 ab | 3.1 ± 0 cdef | 98.42 ± 3.46 bcde | 236 ± 2.89 a |
T2 | N0P90K150 | 53.58 ± 1.48 bcd | 20.65 ± 1.1 a | 3.1 ± 0.35 cdef | 103 ± 18.48 bcde | 185 ± 1.73 abcd | |
T3 | N80P90K150 | 54 ± 1.5 bcd | 20.92 ± 0.46 a | 3.05 ± 0.03 def | 85 ± 1.15 de | 174 ± 5.77 bcd | |
T4 | N160P0K150 | 51.84 ± 0.42 cd | 20.35 ± 0.43 a | 3.25 ± 0.2 bcde | 106.5 ± 11.26 bcd | 220.5 ± 38.39 ab | |
T5 | N160P45K150 | 53.34 ± 0.44 bcd | 20.05 ± 0.61 ab | 4.1 ± 0 a | 134 ± 1.73 a | 186 ± 21.83 abcd | |
T6 | N160P90K150 | 55.38 ± 0.92 b | 21.17 ± 0.09 a | 3.9 ± 0.21 a | 123.33 ± 11.1 ab | 156 ± 4.62 cd | |
T7 | N160P135K150 | 51.72 ± 1.33 cd | 16.7 ± 0.58 de | 3.55 ± 0.03 abcd | 112.5 ± 4.33 abc | 201 ± 15.59 abc | |
T8 | N160P90K0 | 54.34 ± 1.1 bcd | 18.05 ± 0.03 bcd | 2.55 ± 0.32 f | 82.5 ± 3.75 de | 210.5 ± 5.48 abc | |
T9 | N160P90K75 | 53.9 ± 1.09 bcd | 19.4 ± 0.17 abc | 3.75 ± 0.09 ab | 115 ± 4.62 abc | 177.5 ± 32.04 abcd | |
T10 | N160P90K225 | 54.98 ± 0.86 bc | 14.15 ± 0.95 f | 2.85 ± 0.38 ef | 77 ± 12.7 e | 137 ± 30.02 d | |
T11 | N240P90K150 | 58.46 ± 0.84 a | 14.2 ± 0.87 f | 3.05 ± 0.03 def | 91 ± 1.73 cde | 196.5 ± 10.1 abc | |
T12 | N160P45K75 | 52.98 ± 0.79 bcd | 15.5 ± 0.87 ef | 3.25 ± 0.03 bcde | 95.5 ± 1.44 cde | 191.5 ± 10.68 abcd | |
T13 | N80P90K75 | 51.28 ± 0.63 d | 17.55 ± 1.18 cd | 3.7 ± 0.12 abc | 115.5 ± 8.95 abc | 205.5 ± 2.02 abc | |
T14 | N80P45K150 | 51.96 ± 1.14 bcd | 14.85 ± 0.2 ef | 3.55 ± 0.03 abcd | 98.5 ± 2.02 bcde | 204.5 ± 0.87 abc | |
F value | 5.69 ** | 15.16 ** | 5.58 ** | 5.38 ** | 2.05 | ||
Heading stage | T1 | N0P0K0 | 57.12 ± 1.21 a | 25.07 ± 0.91 e | 5.31 ± 0.33 b | 122.9 ± 14.07 c | 199.1 ± 6.33 a |
T2 | N0P90K150 | 58.24 ± 1.22 ab | 28.27 ± 0.31 bcde | 5.89 ± 0.16 ab | 139.43 ± 10.1 bc | 169.67 ± 4.2 bc | |
T3 | N80P90K150 | 63.36 ± 0.72 a | 28.77 ± 1.02 bcd | 6.06 ± 0.2 a | 155.54 ± 11.97 abc | 161.4 ± 8.25 bcde | |
T4 | N160P0K150 | 58.84 ± 0.78 a | 29.82 ± 1.08 abc | 6.11 ± 0.19 a | 156.23 ± 11.85 abc | 151.9 ± 4.35 cde | |
T5 | N160P45K150 | 57.64 ± 0.39 ab | 31.05 ± 2.1 ab | 6.31 ± 0.1 a | 180.81 ± 9.77 a | 145.43 ± 11.01 cde | |
T6 | N160P90K150 | 62.2 ± 1.19 a | 33.17 ± 1.83 a | 6.28 ± 0.12 a | 184.06 ± 2.85 a | 140.87 ± 4.91 e | |
T7 | N160P135K150 | 61.56 ± 1.54 a | 28.17 ± 0.27 bcde | 6.12 ± 0.2 a | 166.1 ± 5.36 ab | 144.2 ± 8.07 de | |
T8 | N160P90K0 | 57.98 ± 0.49 ab | 31.34 ± 0.59 ab | 6.18 ± 0.19 a | 154.85 ± 4.32 abc | 165.83 ± 3.79 bcd | |
T9 | N160P90K75 | 61.62 ± 2.46 a | 29.29 ± 1.03 bcd | 6.04 ± 0.05 a | 169.13 ± 13.23 ab | 169.53 ± 3.5 bc | |
T10 | N160P90K225 | 51.6 ± 2.19 b | 26.34 ± 0.25 cde | 5.95 ± 0.21 ab | 166.11 ± 4.33 ab | 166.27 ± 17.85 bcd | |
T11 | N240P90K150 | 62.84 ± 0.87 a | 25.83 ± 0.42 de | 5.84 ± 0.18 ab | 162.54 ± 6.69 ab | 170.13 ± 3.28 bc | |
T12 | N160P45K75 | 60.5 ± 1.51 a | 26.32 ± 1.53 cde | 5.9 ± 0.35 ab | 164.7 ± 21.3 ab | 168.9 ± 1.53 bc | |
T13 | N80P90K75 | 57.96 ± 0.65 ab | 27.33 ± 0.24 cde | 5.92 ± 0.24 ab | 159.5 ± 11.22 ab | 176.73 ± 6.84 ab | |
T14 | N80P45K150 | 59.86 ± 0.69 a | 26.12 ± 1.31 de | 6.01 ± 0.09 a | 154.27 ± 7.97 abc | 179.6 ± 2.02 ab | |
F value | 1.79 | 4.77 ** | 1.42 | 2.05 | 4.48 ** | ||
Filling stage | T1 | N0P0K0 | 54.72 ± 3.22 ab | 19.35 ± 0.94 cd | 4.06 ± 0.33 c | 99.75 ± 17.7 c | 206.83 ± 17.63 a |
T2 | N0P90K150 | 55.02 ± 2.51 ab | 20 ± 0.86 bcd | 4.41 ± 0.29 bc | 112.69 ± 12.23 bc | 168.33 ± 6.56 abc | |
T3 | N80P90K150 | 58.86 ± 1.22 a | 22.28 ± 1.35 bcd | 4.82 ± 0.2 abc | 102.2 ± 13.16 c | 102.93 ± 7.32 c | |
T4 | N160P0K150 | 56.46 ± 1.01 ab | 21.26 ± 1.03 bcd | 4.34 ± 0.16 bc | 112.46 ± 12.7 bc | 178.4 ± 16.59 ab | |
T5 | N160P45K150 | 56.88 ± 0.58 ab | 25.69 ± 2.15 abc | 4.93 ± 0.06 abc | 106.89 ± 7.9 bc | 131.07 ± 17.44 bc | |
T6 | N160P90K150 | 59.46 ± 0.52 a | 30.5 ± 0.94 a | 5.79 ± 0.41 ab | 140.24 ± 6.61 abc | 125.6 ± 19.8 bc | |
T7 | N160P135K150 | 55.74 ± 0.96 ab | 22.81 ± 1.78 bcd | 5.13 ± 0.27 abc | 138.72 ± 14.29 abc | 159.93 ± 9 bc | |
T8 | N160P90K0 | 54.46 ± 1.22 ab | 24.73 ± 3.05 abc | 6.28 ± 0.26 a | 187.14 ± 14.21 a | 183.47 ± 8.58 ab | |
T9 | N160P90K75 | 56 ± 1.05 ab | 27.04 ± 2.22 ab | 5.84 ± 0.41 ab | 167.38 ± 28.26 a | 137.67 ± 23.47 bc | |
T10 | N160P90K225 | 52.8 ± 1.15 b | 23.28 ± 1.46 bcd | 6.11 ± 0.38 a | 156.77 ± 14.14 ab | 159.3 ± 17.17 bc | |
T11 | N240P90K150 | 56.62 ± 1.14 ab | 16.94 ± 1.4 d | 5.01 ± 0.74 abc | 100.74 ± 8.71 c | 130.77 ± 14.96 bc | |
T12 | N160P45K75 | 56.06 ± 0.71 ab | 20.29 ± 4.11 bcd | 5.89 ± 0.58 ab | 105.66 ± 25.72 bc | 147.33 ± 17.79 bc | |
T13 | N80P90K75 | 56.6 ± 0.42 ab | 18.79 ± 4.48 cd | 3.57 ± 0.33 c | 102.32 ± 19.94 c | 158.2 ± 16.78 bc | |
T14 | N80P45K150 | 57.72 ± 2.14 ab | 19.71 ± 1.53 bcd | 4.21 ± 1.14 c | 104.56 ± 13.23 bc | 161.93 ± 6.7 bc | |
F value | 1.35 | 2.66 ** | 3.18 ** | 3.21 ** | 2.45 * |
Treatment | PL (cm) | PD (mm) | SPW (g) | SGW (g) | TGW (g) | PPP (g) | |
---|---|---|---|---|---|---|---|
T1 | N0P0K0 | 22.75 ± 0.37 cd | 27.04 ± 0.71 c | 25.7 ± 1.24 cd | 20.6 ± 1.22 cd | 2.95 ± 0.08 fg | 61.81 ± 2.11 b |
T2 | N0P90K150 | 22.27 ± 0.17 de | 28.99 ± 1.35 bc | 29.98 ± 2.07 abcd | 25.39 ± 1.81 abc | 3.02 ± 0.02 efg | 76.17 ± 3.13 ab |
T3 | N80P90K150 | 24.7 ± 1.05 bc | 31.76 ± 1.3 ab | 32.92 ± 1.22 ab | 27.94 ± 1.73 ab | 3.11 ± 0.04 def | 83.82 ± 2.99 ab |
T4 | N160P0K150 | 24.25 ± 0.32 bcd | 30.11 ± 1.06 abc | 31.72 ± 1.04 abcd | 26.75 ± 0.95 ab | 3.03 ± 0.05 efg | 80.26 ± 1.65 ab |
T5 | N160P45K150 | 25.51 ± 0.99 ab | 30.06 ± 1.42 abc | 32.4 ± 1.27 abc | 27.26 ± 0.2 ab | 3.17 ± 0.04 bcde | 81.77 ± 0.35 ab |
T6 | N160P90K150 | 27.37 ± 0.41 a | 31.71 ± 0.53 ab | 33.06 ± 0.84 ab | 27.68 ± 0.82 ab | 3.29 ± 0.03 abc | 83.05 ± 1.42 a |
T7 | N160P135K150 | 22.67 ± 0.69 cde | 28.54 ± 0.74 bc | 31.58 ± 1.39 abcd | 23.88 ± 0.23 bcd | 3.24 ± 0.06 bcd | 71.65 ± 0.40 ab |
T8 | N160P90K0 | 22.55 ± 0.87 cde | 28.38 ± 2.08 bc | 24.89 ± 3.25 d | 18.62 ± 2.53 d | 3.13 ± 0.05 cde | 55.87 ± 4.39 b |
T9 | N160P90K75 | 22.7 ± 0.38 cde | 29.83 ± 1.06 abc | 29.66 ± 1.94 abcd | 24.24 ± 2.4 abcd | 3.31 ± 0.07 ab | 72.73 ± 4.16 ab |
T10 | N160P90K225 | 22.46 ± 0.52 de | 26.91 ± 1.06 c | 25.26 ± 1.7 d | 20.6 ± 1.4 cd | 3.31 ± 0.07 ab | 61.81 ± 2.43 b |
T11 | N240P90K150 | 24.75 ± 1.08 bc | 33.32 ± 1.97 a | 36.22 ± 1.25 a | 30.1 ± 1.32 a | 3.1 ± 0.01 def | 90.29 ± 2.28 a |
T12 | N160P45K75 | 23.15 ± 0.47 cd | 28.39 ± 0.67 bc | 28.32 ± 3.86 bcd | 23.37 ± 3.72 bcd | 3.15 ± 0.01 bcde | 70.1 ± 6.44 ab |
T13 | N80P90K75 | 20.54 ± 0.51 e | 26.18 ± 1.19 c | 24.89 ± 1.95 d | 18.75 ± 0.78 d | 2.93 ± 0.01 g | 56.25 ± 1.35 b |
T14 | N80P45K150 | 22.91 ± 0.68 cd | 29.68 ± 1.02 abc | 29.99 ± 2.89 abcd | 24.03 ± 2.56 bcd | 3.42 ± 0.1 a | 72.1 ± 4.43 ab |
F value | 6.40 ** | 2.65 ** | 3.00 ** | 3.86 ** | 7.63 ** | 3.86 ** |
Treatment | MC | CF | Pr | AC | |
---|---|---|---|---|---|
T1 | N0P0K0 | 10.94 ± 0.03 f | 3.07 ± 0.02 h | 5.08 ± 0.13 f | 18.95 ± 0.05 a |
T2 | N0P90K150 | 11.11 ± 0.07 de | 3.24 ± 0.02 ef | 5.46 ± 0.06 e | 18.86 ± 0.08 a |
T3 | N80P90K150 | 11.31 ± 0.02 abc | 3.38 ± 0.01 bcd | 6.13 ± 0.04 d | 18.24 ± 0.07 cd |
T4 | N160P0K150 | 11.19 ± 0.03 cde | 3.13 ± 0.02 gh | 5.93 ± 0.1 d | 18.43 ± 0.17 bc |
T5 | N160P45K150 | 11.28 ± 0.02 abc | 3.36 ± 0.03 cd | 5.99 ± 0.03 d | 18.5 ± 0.07 bc |
T6 | N160P90K150 | 11.4 ± 0.02 a | 3.48 ± 0.01 a | 6.77 ± 0.03 ab | 17.75 ± 0.06 e |
T7 | N160P135K150 | 11.33 ± 0.03 ab | 3.45 ± 0.05 ab | 6.14 ± 0.1 d | 18.24 ± 0.13 cd |
T8 | N160P90K0 | 11.22 ± 0.09 bcd | 3.24 ± 0.01 ef | 5.93 ± 0.08 d | 18.7 ± 0.06 ab |
T9 | N160P90K75 | 11.29 ± 0.05 abc | 3.39 ± 0.03 bc | 6.6 ± 0.07 b | 18.06 ± 0.08 d |
T10 | N160P90K225 | 11.18 ± 0.05 cde | 3.31 ± 0.04 cde | 6.69 ± 0.14 ab | 18.01 ± 0.02 d |
T11 | N240P90K150 | 11.2 ± 0.01 bcd | 3.2 ± 0.01 fg | 6.89 ± 0.01 a | 17.59 ± 0.04 e |
T12 | N160P45K75 | 11.17 ± 0.02 cde | 3.25 ± 0.02 ef | 6.36 ± 0.07 c | 18.15 ± 0.03 d |
T13 | N80P90K75 | 11.23 ± 0.03 bcd | 3.3 ± 0.01 de | 5.65 ± 0.03 e | 18.69 ± 0.05 ab |
T14 | N80P45K150 | 11.07 ± 0.02 e | 3.2 ± 0.06 fg | 5.92 ± 0.04 d | 18.58 ± 0.13 b |
F value | 7.73 ** | 18.89 ** | 45.98 ** | 22.21 ** |
Principal Component | Eigenvalue | Contributive Ratio (%) | Cumulative Contributive Ratio (%) |
---|---|---|---|
1 | 8.63 | 47.94 | 47.94 |
2 | 3.89 | 21.63 | 69.57 |
3 | 1.91 | 10.58 | 80.15 |
4 | 1.12 | 6.20 | 86.35 |
Treatment | μ(1) | μ(2) | μ(3) | μ(4) |
---|---|---|---|---|
T2 | 0.13 | 0.11 | 0.65 | 0.82 |
T3 | 0.70 | 0.19 | 0.74 | 0.34 |
T4 | 0.33 | 0.09 | 0.53 | 0.95 |
T5 | 0.59 | 0.35 | 0.77 | 0.73 |
T6 | 1.00 | 0.77 | 0.80 | 0.79 |
T7 | 0.43 | 0.66 | 0.68 | 0.50 |
T8 | 0.03 | 0.94 | 0.56 | 0.99 |
T9 | 0.61 | 0.92 | 0.52 | 0.58 |
T10 | 0.24 | 1.00 | 0.07 | 0.36 |
T11 | 0.75 | 0.00 | 0.00 | 0.38 |
T12 | 0.26 | 0.41 | 0.21 | 0.37 |
T13 | 0.00 | 0.33 | 1.00 | 0.00 |
T14 | 0.25 | 0.15 | 0.36 | 1.00 |
Treatment | D1 | D2 | D3 | D4 | D | Rank |
---|---|---|---|---|---|---|
T2 | 0.07 | 0.03 | 0.08 | 0.06 | 0.24 | 12 |
T3 | 0.39 | 0.05 | 0.09 | 0.02 | 0.55 | 4 |
T4 | 0.18 | 0.02 | 0.06 | 0.07 | 0.34 | 9 |
T5 | 0.33 | 0.09 | 0.09 | 0.05 | 0.56 | 3 |
T6 | 0.56 | 0.19 | 0.10 | 0.06 | 0.90 | 1 |
T7 | 0.24 | 0.17 | 0.08 | 0.04 | 0.52 | 5 |
T8 | 0.02 | 0.24 | 0.07 | 0.07 | 0.39 | 8 |
T9 | 0.34 | 0.23 | 0.06 | 0.04 | 0.68 | 2 |
T10 | 0.13 | 0.25 | 0.01 | 0.03 | 0.42 | 7 |
T11 | 0.42 | 0.00 | 0.00 | 0.03 | 0.44 | 6 |
T12 | 0.15 | 0.10 | 0.03 | 0.03 | 0.30 | 10 |
T13 | 0.00 | 0.08 | 0.12 | 0.00 | 0.20 | 13 |
T14 | 0.14 | 0.04 | 0.04 | 0.07 | 0.29 | 11 |
Treatment | N (Urea) | P (P2O5) | K (K2O) | Yield |
---|---|---|---|---|
(kg/hm2) | ||||
T1 | 0 | 0 | 0 | 1554.71 |
T2 | 0 | 2 | 2 | 1952.13 |
T3 | 1 | 2 | 2 | 2211.42 |
T4 | 2 | 0 | 2 | 2069.86 |
T5 | 2 | 1 | 2 | 2200.63 |
T6 | 2 | 2 | 2 | 2321.43 |
T7 | 2 | 3 | 2 | 1972.7 |
T8 | 2 | 2 | 0 | 1494.1 |
T9 | 2 | 2 | 1 | 2049.74 |
T10 | 2 | 2 | 3 | 1741.95 |
T11 | 3 | 2 | 2 | 2378.99 |
T12 | 2 | 1 | 1 | 1875.9 |
T13 | 1 | 2 | 1 | 1398.88 |
T14 | 1 | 1 | 2 | 2104.73 |
S0 | 3506.84 | 3624.57 | 3048.81 | |
S1 | 5715.03 | 6181.26 | 5324.52 | |
S2 | 15,726.31 | 15,548.64 | 17,211.89 | |
S3 | 2378.99 | 1972.7 | 1741.95 | |
K0 | 1753.42 | 1812.29 | 1524.41 | |
K1 | 1905.01 | 2060.42 | 1774.84 | |
K2 | 1965.79 | 1943.58 | 2151.49 | |
K3 | 2378.99 | 1972.7 | 1741.95 | |
R rage | 625.57 | 248.14 | 627.08 |
Fertilizer | Fertilizer Effect Equation | R2 | Maximum Fertilization Application (kg/hm2) | Maximum Yield (kg/hm2) |
---|---|---|---|---|
N (urea) | y = −0.0079x2 + 3.6295x + 1957 | 0.9956 | 229.72 | 2373.88 |
P (P2O5) | y = −0.0592x2 + 7.6124x + 2046.9 | 0.8481 | 64.29 | 2291.62 |
K (K2O) | y = −0.0504x2 + 12.705x + 1465.7 | 0.9587 | 126.04 | 2266.38 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xing, G.; Ma, J.; Liu, X.; Lei, B.; Wang, G.; Hou, S.; Han, Y. Influence of Different Nitrogen, Phosphorus, and Potassium Fertilizer Ratios on the Agronomic and Quality Traits of Foxtail Millet. Agronomy 2023, 13, 2005. https://doi.org/10.3390/agronomy13082005
Xing G, Ma J, Liu X, Lei B, Wang G, Hou S, Han Y. Influence of Different Nitrogen, Phosphorus, and Potassium Fertilizer Ratios on the Agronomic and Quality Traits of Foxtail Millet. Agronomy. 2023; 13(8):2005. https://doi.org/10.3390/agronomy13082005
Chicago/Turabian StyleXing, Guofang, Junwei Ma, Xiaojie Liu, Biao Lei, Guo Wang, Siyu Hou, and Yuanhuai Han. 2023. "Influence of Different Nitrogen, Phosphorus, and Potassium Fertilizer Ratios on the Agronomic and Quality Traits of Foxtail Millet" Agronomy 13, no. 8: 2005. https://doi.org/10.3390/agronomy13082005
APA StyleXing, G., Ma, J., Liu, X., Lei, B., Wang, G., Hou, S., & Han, Y. (2023). Influence of Different Nitrogen, Phosphorus, and Potassium Fertilizer Ratios on the Agronomic and Quality Traits of Foxtail Millet. Agronomy, 13(8), 2005. https://doi.org/10.3390/agronomy13082005