Genetic Potential of Tropically Adapted Exotic Maize (Zea mays L.) Heat-Tolerant Donor Lines in Sub-Tropical Breeding Programs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Germplasm
2.2. Experimental Design and Trial Management
2.3. Data Collection
2.4. Data Analysis
3. Results
3.1. Performance of the Hybrids and the Parents under Heat Stress and Non-Stress Conditions
3.2. Exotic Donor Lines That Confer Heat Tolerance Attributes in Combination with the Locally Adapted Parental Lines
3.3. Exotic HSTDLs That Can Positively Contribute to Grain Yield Performance in Single-Cross Hybrid Combinations with Local Elite Lines under Managed Heat Stress and Optimal Conditions
3.4. Per se Performance of Exotic HSTDLs and the CIMMYT-Zimbabwe Elite Lines under Stress and Non-Stress Conditions
4. Discussion
5. Conclusions and Recommendations
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Prasanna, B.M.; Cairns, J.E.; Zaidi, P.H.; Beyene, Y.; Makumbi, D.; Gowda, M.; Magorokosho, C.; Zaman-Allah, M.; Olsen, M.; Das, A.; et al. Beat the stress: Breeding for climate resilience in maize for the tropical rainfed environments. Theor. Appl. Genet. 2021, 134, 1729–1752. [Google Scholar] [CrossRef]
- Wahid, A.; Gelani, S.; Ashraf, M.; Foolad, M.R. Heat tolerance in plants: An overview. Environ. Exp. Bot. 2007, 61, 199–223. [Google Scholar] [CrossRef]
- Smith, K.L. Ohio Agronomy Guide for Corn Production; Ohio State University: Columbus, GA, USA, 1996. [Google Scholar]
- Badu-Apraku, B.; Fakorede, M.A.B. Improvement of Early and Extra-Early Maize for Combined Tolerance to Drought and Heat Stress in Sub-Saharan Africa. In Advances in Genetic Enhancement of Early and Extra-Early Maize for Sub-Saharan Africa; Springer: Cham, Switzerland, 2017; Volume 12, pp. 318–358. [Google Scholar]
- Khodarahmpour, Z.; Choukan, R.; Bihamta, M.R.; Majidi-Hervan, E. Determination of the best heat stress tolerance indices in maize (Zea mays L.) inbred lines and hybrids under Khuzestan Province conditions. J. Agric. Sci. Technol. 2011, 13, 111–121. [Google Scholar]
- Intergovernmental Panel on Climate Change. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth ASSESSMENT Report. 2016. Available online: https://www.ipcc.ch/site/assets/uploads/2018/05/SYR_AR5_FINAL_full_wcover.pdf (accessed on 20 January 2023).
- Jodage, K.; Kuchanur, P.H.; Zaidi, P.H.; Patil, A.; Seetharam, K.; Vinayan, M.T.; Arunkumar, B. Genetic analysis of heat stress tolerance and association of traits in tropical maize (Zea mays L.). Environ. Ecol. 2017, 35, 2354–2360. [Google Scholar]
- Deryng, D.; Conway, D.; Ramankutty, N.; Price, J.; Warren, N. Global crop yield response to extreme heat stress under multiple climate change futures. Environ. Res. Lett. 2014, 9, 034011. [Google Scholar] [CrossRef] [Green Version]
- Rani, N.; Nirala, R.B.R.; Pal, A.K.; Ranjan, T. Combining ability for quantitative traits under normal and heat stress conditions in maize (Zea mays L.). Bangladesh J. Bot. 2021, 50, 659–669. [Google Scholar] [CrossRef]
- Cairns, J.E.; Sonder, K.; Zaidi, P.H.; Verhulst, N.; Mahuku, G. Maize Production in a Changing Climate: Impacts, Adaptation, and Mitigation Strategies. Adv. Agron. 2012, 114, 1–58. [Google Scholar] [CrossRef]
- Gazala, P.; Kachanur, P.; Zaidi, P.H.; Amnkumar, B.; Ayyanagouda, P.; Seetharam, K.; Vanayan, M.T. Combining ability and heterosis for heat stress tolerance in maize (Zea mays L.). Bangladesh J. Plant Breed. Genet. 2018, 21, 21–28. [Google Scholar] [CrossRef] [Green Version]
- Byerlee, D.; Edmedes, G.O. Fifty Years of Maize Research in the Cgiar: Diversity, Change and Ultimate Success; CIMMYT: Mexico City, México, 2021; p. 68. [Google Scholar]
- Akula, D.; Patil, A.; Zaidi, P.H.; Kuchanur, P.H.; Vinayan, M.T.; Seetharam, K. Line x testers analysis of tropical maize inbred lines under heat stress for grain yield and secondary traits. Maydica 2016, 61, 3–6. [Google Scholar]
- Naveed, M.; Ahsan, M.; Akram, H.M.; Aslam, M.; Ahmed, N. Genetic effects conferring heat tolerance in a cross of tolerant × susceptible maize (Zea mays L.) genotypes. Front. Plant Sci. 2016, 7, 729. [Google Scholar] [CrossRef] [Green Version]
- Jodage, K.; Kuchanur, P.H.; Zaidi, P.H.; Patil, A.; Seetharam, K.; Vinayan, M.T.; Arunkumar, B. Genetic Analysis of Heat Adaptive Traits in Tropical Maize (Zea mays L.). Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 3237–3246. [Google Scholar] [CrossRef]
- Acquaah, G. Principles of Plant Genetics and Breeding; Wiley-Blackwell: Baltimore, MD, USA, 2020; p. 63. [Google Scholar]
- Umar, U.U.; Ado, S.G.; Aba, D.A.; Bugaje, S.M. Combining Ability, Gene Action and Heterosis in Maize (Zea mays L.) under Drought Stress. Int. J. Agric. Innov. Res. 2014, 3, 934–939. [Google Scholar]
- Begna, T. Role and economic importance of crop genetic diversity in food security. Int. J. Agric. Sci. Food Technol. 2021, 7, 164–169. [Google Scholar] [CrossRef]
- Osuman, A.S.; Badu-Apraku, B.; Ifie, B.E.; Nelimor, C.; Tongoona, P. Combining Ability and Heterotic Patterns of Tropical Early-Maturing Maize Inbred Lines under Individual and Combined Heat and Drought Environments. Plants 2022, 11, 1365. [Google Scholar] [CrossRef]
- Begna, T. Combining ability and heterosis in plant improvement. Open J. Plant Sci. 2021, 6, 108–117. [Google Scholar] [CrossRef]
- Chapman, S.C.; Chakraborty, S.; Dreccer, M.F.; Howden, S.M. Plant adaptation to climate change opportunities and priorities in breeding. Crop Pasture Sci. 2012, 63, 251–268. [Google Scholar] [CrossRef] [Green Version]
- Nyombayire, A.; Derera, J.; Sibiya, J.; Ngaboyisonga, C. Heterotic Groups, Gene Action and Heterosis among Maize Inbred Lines Selected for the Major Agro-ecologies of Rwanda. J. Plant Sci. 2021, 9, 245. [Google Scholar] [CrossRef]
- Hallauer, A.R.; Marcelo, J.C.; Miranda, J.B. Quantitative Genetics in Maize Breeding, 2nd ed.; Iowa State University Press: Ames, IA, USA, 2010. [Google Scholar]
- VSN. International. GenStat for Windows, 20th ed.; VSN International: Hemel Hempstead, UK, 2011; Available online: http://www.genstat.co.uk (accessed on 10 January 2023).
- Steel, R.G.; Torrie, J.H. Principles and Procedures of Statistics: A Biometrical Approach; American Statistical Association Stable: Alexandria, VA, USA, 2014; Volume 76, pp. 753–754. Available online: http://www.jstor.org/stable/2287561 (accessed on 20 December 2022).
- Barreto, H.J.; Edmeades, G.O. The Alpha Lattice Design in Plant Breeding and Agronomy: Generation and Analysisl; CIMMYT: Mexico City, Mexico, 1997; Available online: https://www.semanticscholar.org/paper/Thealpha-lattice-design-in-plant-breeding-and-and-Barreto-Edmeades/65d3efaaaee5396eef88d580c2799c5b448df6d2 (accessed on 19 August 2021).
- Alvarado, G.; Rodríguez, F.M.; Pacheco, A.; Burgueño, J.; Crossa, J. META-R: A software to analyze data from multi-environment plant breeding trials. Crop J. 2020, 8, 745–756. [Google Scholar] [CrossRef]
- Rodríguez, F.; Alvarado, G.; Pacheco, A.; Crossa, J.; Burgueno, J. AGD-R (Analysis of Genetic Designs with R for Windows) Version 5.0. CIMMYT Res. Data Softw. Repos. Netw. 2015, 12, 53. Available online: https://hdl.handle.net/11529/10202 (accessed on 20 December 2022).
- Baker, R.J. Issues in diallel analysis. Crop Sci. 1978, 18, 533–536. [Google Scholar] [CrossRef]
- Falconer, D.S.; Mackay, T.F.C. Introduction to Quantitative Genetics; John Wiley and Sons: New York, NY, USA, 1989; p. 128. [Google Scholar]
- Dabholkar, A.R. Elements of Biometrical Genetics; Concept Publishing Company: New Delhi, India, 1992; p. 166. [Google Scholar]
- Cobb, J.N.; Juma, R.U.; Biswas, P.S.; Arbelaez, J.D.; Rutkoski, J.; Altin, G.; Hagen, T.; Quinn, M.; Eng, H.N. Enhancing the rate of genetic gain in public-sector plant breeding programs: Lessons from the breeder’s equation. Theor. Appl. Genet. 2019, 132, 627–645. [Google Scholar] [CrossRef] [Green Version]
- Galluzzi, G.; Seyoum, A.; Halewood, M.; Noriega, I.L.; Welch, E.W. The role of genetic resources in breeding for climate change: The case of public breeding programmes in eighteen developing countries. Plants 2020, 9, 1129. [Google Scholar] [CrossRef] [PubMed]
- Fasahat, P. Principles and Utilization of Combining Ability in Plant Breeding. Biometrics Biostat. Int. J. 2016, 4, 1–22. [Google Scholar] [CrossRef]
- Chung, P.Y.; Liao, C.T. Identification of superior parental lines for biparental crossing via genomic prediction. PLoS ONE 2020, 15, e0243159. [Google Scholar] [CrossRef] [PubMed]
- Nelimor, C.; Badu-Apraku, B.; Tetteh, A.Y.; Assanvo, S.P.N. Assessment of Genetic Diversity for Drought, Heat and Combined Drought and Heat Stress Tolerance in Early Maturing Maize Landraces. Plants 2019, 8, 518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nelimor, C.; Badu-Apraku, B.; Tetteh, A.Y.; Oliveira, G.; Assanvo, S.P.N. Assessing the potential of extra-early maturing landraces for improving tolerance to drought, heat, and both combined stresses in maize. Agronomy 2020, 10, 318. [Google Scholar] [CrossRef] [Green Version]
- Nasser, L.M.; Badu-Apraku, B.; Gracen, V.E.; Mafouasson, H.N.A. Combining Ability of Early-Maturing Yellow Maize Inbreds under Combined Drought and Heat Stress and Well-Watered Environments. Agronomy 2020, 10, 1585. [Google Scholar] [CrossRef]
- Derera, J.; Tongoona, P.; Vivek, B.S.; Laing, M.D. Gene action controlling grain yield and secondary traits in southern African maize hybrids under drought and non-drought environments. Euphytica 2008, 162, 411–422. [Google Scholar] [CrossRef]
- Ifie, B.E.; Badu-Apraku, B.; Gracen, V.; Danquah, E.Y. Genetic Analysis of Grain Yield of IITA and CIMMYT Early-Maturing Maize Inbreds under Striga-Infested and Low–Soil-Nitrogen Environments. Crop Sci. Soc. Am. 2015, 55, 610–623. [Google Scholar] [CrossRef]
- Oyekunle, M.; Badu-Apraku, B. Genetic Analysis of Grain Yield and Other Traits of Early-Maturing Maize Inbreds under Drought and Well-Watered Conditions. Agron. Crop Sci. 2014, 200, 92–107. [Google Scholar] [CrossRef]
- Obeng-Bio, E. Genetic Analysis of Grain Yield and Other Traits of Early Maturing Provitamin A-Quality Maize Inbred Lines under Drought and Low Soil Nitrogen Conditions; University of Ghana: Accra, Ghana, 2018. [Google Scholar]
- Agaba, R.; Tukamuhabwa, P.; Rubaihayo, P.; Mwanga, R.O.M.; Ssenyonjo, A.; Ndirigwe, J.; Tumwegamire, S.; Gruneberg, W. Heritability, Combining Ability and inheritance of storage root dry matter in Yam Beans. Afr. Crop Sci. 2017, 25, 83–95. [Google Scholar] [CrossRef] [Green Version]
- Smale, M.; Byerlee, D.; Jayne, T. Maize Revolutions in Sub-Saharan Africa. In An African Green Revolution; Otsuka, K., Larson, D., Eds.; Springer: Dordrecht, The Netherlands, 2013. [Google Scholar] [CrossRef] [Green Version]
- Zaidi, P.H.; Zaman-Allah, M.; Trachsel, S.; Seetharam, K.; Cairns, E.J.; Vanayan, M.T. Phenotyping for Abiotic Stresstolerance in Maize Heat Stress: A Field Manual; CIMMYT: Hyderabad, India, 2016. [Google Scholar]
- Jha, U.C.; Bohra, A.; Singh, N.P. Heat stress in crop plants: Its nature, impacts and integrated breeding strategies to improve heat tolerance. Plant Breed. 2014, 133, 679–701. [Google Scholar] [CrossRef] [Green Version]
- Gissa, D.W.; Zelleke, H.; Labuschagne, M.T.; Hussien, T.; Singh, H. Heterosis and combining ability for grain yield and its components in selected maize inbred lines. S. Afr. J. Plant Soil 2007, 24, 133–137. [Google Scholar] [CrossRef] [Green Version]
- Muluneh, A.N.; Odong, T.L. Combining Ability Analysis and Determination of Controlling Gene Action for Yield and Other Key Traits of Open Pollinated Maize (Zea mays L.) Varieties and their Topcrosses with Inbred Line Testers in Uganda. Glob. J. Agric. Res. 2020, 8, 39–47. [Google Scholar]
- Jacobson, A.; Lian, L.; Zhong, S.; Bernardo, R. General Combining Ability Model for Genomewide Selection in a Biparental Cross. Crop Sci. Soc. Am. 2014, 54, 895–905. [Google Scholar] [CrossRef]
- Ikisa, A. Varietal and hybrid seed production: In agric informatics and services. 2022. Available online: https://www.ikisan.com/ap-maize-varietal-and-hybrid.html (accessed on 28 July 2023).
- Basavaraj, P.S.; Rane, J. Avenues to realize potential of phenomics to accelerate crop breeding for heat tolerance. Plant Physiol. Rep. 2020, 25, 594–610. [Google Scholar] [CrossRef]
- Zinn, K.E.; Tunc-Ozdemir, M.; Harper, J.F. Temperature stress and plant sexual reproduction: Uncovering the weakest links. J. Exp. Bot. 2010, 61, 1959–1968. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aiken, R. Climate change impacts on crop growth in the central high plains. In Proceedings of the 21st Annual Central Plains Irrigation Conference, Colby, KS, USA, 24–25 February 2009; Colorado State University Libraries: Fort Collins, CO, USA, 2009; pp. 14–24. [Google Scholar]
- Tao, Z.Q.; Chen, Y.Q.; Chao, L.I.; Zou, J.X.; Peng, Y.A.; Yuan, S.F.; Xia, W.U.; Peng, S.U. The causes and impacts for heat stress in spring maize during grain filling in the North China Plain—A review. J. Integr. Agric. 2016, 15, 2677. [Google Scholar] [CrossRef] [Green Version]
- Manoj, K.; Ghimire, S.K.; Ojha, B.R.; Shrestha, J. Genetic diversity for heat tolerant related traits in maize inbred lines. Agricultura 2018, 105, 23–34. [Google Scholar] [CrossRef]
- Rezende, W.S.; Beyene, Y.; Mugo, S.; Ndou, E.; Gowda, M.; Sserumaga, J.P.; Asea, G.; Ngolinda, I.; Jumbo, M.; Oikeh, S.O.; et al. Performance and yield stability of maize hybrids in stress-prone environments in eastern Africa. Crop J. 2020, 8, 107–118. [Google Scholar] [CrossRef]
Location | Management | Altitude (masl) | Latitude | Longitude | Soil Type |
---|---|---|---|---|---|
Chisumbanje | Managed heat stress and optimal | 423 | −20°47′97.10″ S | 32°14′05.0″ E | Black clays |
Save Valley | Managed heat stress and optimal | 450 | −20°51′94.9″ S | 33°15′93.3″ E | Ferralsols |
Entry | Line Name | Heterotic Group | Grain Color | Germplasm Source |
---|---|---|---|---|
Local Lines | ||||
FL1 | DJ194-3 | B | White | CIMMYT-Zimbabwe |
FL2 | DJ267-5 | A | White | CIMMYT-Zimbabwe |
FL3 | DJ267-6 | A | White | CIMMYT-Zimbabwe |
FL4 | DJ267-7 | A | White | CIMMYT-Zimbabwe |
FL5 | DJ267-8 | A | White | CIMMYT-Zimbabwe |
FL6 | DJ194-10 | A | White | CIMMYT-Zimbabwe |
FL7 | DJ194-2 | B | White | CIMMYT-Zimbabwe |
FL8 | DJ267-9 | A | White | CIMMYT-Zimbabwe |
FL9 | DJ265-6 | B | White | CIMMYT-Zimbabwe |
FL10 | DJ265-8 | A | White | CIMMYT-Zimbabwe |
FL11 | DJ265-10 | A | White | CIMMYT-Zimbabwe |
FL12 | DJ265-15 | A | White | CIMMYT-Zimbabwe |
FL13 | DJ265-13 | B | White | CIMMYT-Zimbabwe |
FL14 | DJ265-14 | B | White | CIMMYT-Zimbabwe |
FL15 | DJ265-15 | B | White | CIMMYT-Zimbabwe |
Exotic lines | ||||
ML1 | CAL14113 | B | Yellow | CIMMYT-India |
ML2 | CAL1412 | A | Yellow | CIMMYT-India |
ML3 | CAL14135 | B | Yellow | CIMMYT-India |
ML4 | CAL14138 | A | Yellow | CIMMYT-India |
ML5 | CAL1440 | A | Yellow | CIMMYT-India |
ML6 | CAL1469 | A | Yellow | CIMMYT-India |
ML7 | CAL152 | A | Yellow | CIMMYT-India |
ML8 | VL1010762 | A | Yellow | CIMMYT-India |
ML9 | VL1018816 | B | Yellow | CIMMYT-India |
ML10 | VL109126 | A | Yellow | CIMMYT-India |
ML11 | VL143518 | B | Yellow | CIMMYT-India |
ML12 | ZL111056 | A | Yellow | CIMMYT-India |
ML13 | ZL1312 | B | Yellow | CIMMYT-India |
ML14 | ZL132077 | A | Yellow | CIMMYT-India |
Trait | Trait Measurement |
---|---|
Grain yield (GY) | Shelled grain weight (kg) per plot adjusted to 12.5% grain moisture. |
Plant height (PH) | Distance (cm) of two average plants measured from the ground up to the flag leaf collar. |
Ear height (EH) | Distance (cm) of two average plants measured from the ground up to the ear height. |
Silking date (SD) | Number of days after planting when 50% of the plants in each plot produce silks |
Anthesis date (AD) | Number of days after planting when 50% of the plants in each plot shed pollen. |
Anthesis-silking interval (ASI) | Difference between the silking date and anthesis date ASI = SD − AD. |
Chisumbanje Experiment Station | Save Valley Experiment Station | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Temp (°C) | May | June | July | Aug | Sept | Oct | Nov | May | June | July | Aug | Sept | Oct | Nov |
Max | 27.0 | 23.8 | 23.7 | 28.2 | 30.0 | 31.2 | 34.1 | 29.7 | 26.4 | 26.3 | 30.4 | 32.1 | 34.6 | 36.3 |
Min | 13.9 | 12.2 | 10.9 | 13.0 | 15.4 | 16.5 | 20.1 | 15.8 | 13.9 | 12.5 | 15.0 | 17.1 | 19.3 | 21.7 |
R.H (%) | 59.0 | 65.9 | 60.3 | 53.4 | 55.2 | 55.7 | 57.4 | 52.1 | 59.7 | 54.1 | 50.5 | 51.5 | 52.7 | 56.2 |
Managed Heat Stress | Optimal Management | Across | ||||
---|---|---|---|---|---|---|
DF | MS | DF | MS | DF | MS | |
Site | 1 | 48.02 *** | 1 | 501.71 *** | 3 | 437.49 *** |
Rep (site) | 2 | 50.68 *** | 2 | 7.98 ** | 4 | 29.35 *** |
Block (rep × site) | 140 | 0.67 ns | 140 | 2.47 ** | 280 | 1.78 *** |
Female | 14 | 2.44 *** | 14 | 9.41 *** | 14 | 7.82 *** |
Male | 13 | 1.97 ** | 13 | 8.47 *** | 13 | 7.72 *** |
Female × male | 182 | 0.78 ns | 182 | 3.61 * | 182 | 2.85 *** |
Female × site | 14 | 0.83 ns | 14 | 7.49 *** | 42 | 3.7 *** |
Male × site | 13 | 2.10 *** | 13 | 6.82 *** | 39 | 6.12 *** |
Female ×male × site | 182 | 0.84 ns | 182 | 2.6 ** | 728 | 1.93 *** |
Male variance | 0.596 | 0.744 | 0.667 | |||
Female variance | 0.008 | 0.054 | 0.007 | |||
Male × female variance | 0.287 | 0.808 | 0.405 | |||
Genotype variance | 0.871 | 1.581 | 1.061 | |||
Additive variance (AV) | 3.486 | 6.325 | 4.244 | |||
Dominance variance (DV) | 1.149 | 3.234 | 1.620 | |||
Environmental variance (EV) | 0.473 | 1.704 | 0.631 | |||
Baker’s ratio | 0.68 | 0.50 | 0.62 | |||
Narrow sense heritability (h2f) | 0.023 | 0.052 | 0.01 | |||
Broad-sense heritability (H2) | 0.85 | 0.83 | 0.85 |
Managed Heat | Optimal Management | Across Environments | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Line | Exotic Donors | PSP | GCA | Rank_GCA | PSP | GCA | Rank_GCA | PSP | GCA | Rank_GCA |
A. Exotic HSTDLs (males) | ||||||||||
ML1 | CAL14113 | 0.43 | −0.374 ns | 8 | 0.60 | −0.597 ns | 12 | 0.51 | −0.500 * | 10 |
ML2 | CAL1412 | 0.88 | −0.761 ** | 14 | 1.28 | −0.585 ns | 10 | 1.08 | −0.709 * | 13 |
ML3 | CAL14135 | 0.58 | −0.385 ns | 10 | 0.58 | −0.981 * | 14 | 0.58 | −0.723 ** | 14 |
ML4 | CAL14138 | 1.84 | 1.889 *** | 1 | 1.60 | 1.840 *** | 1 | 1.72 | 1.918 *** | 1 |
ML5 | CAL1440 | 1.23 | 0.826 *** | 3 | 1.76 | 0.990 ** | 2 | 1.41 | 0.942 *** | 3 |
ML6 | CAL1469 | 0.52 | −0.235 ns | 6 | 0.53 | 0.450 ns | 4 | 0.53 | 0.134 ns | 5 |
ML7 | CAL152 | 1.71 | 1.017 *** | 2 | 2.09 | 0.952 * | 3 | 1.92 | 1.022 *** | 2 |
ML8 | VL1010762 | 0.33 | −0.376 ns | 9 | 0.55 | −0.650 ns | 13 | 0.44 | −0.531 * | 11 |
ML9 | VL1018816 | 0.94 | −0.186 ns | 5 | 0.91 | −0.069 ns | 6 | 0.93 | −0.124 ns | 6 |
ML10 | VL109126 | 1.57 | 0.275 ns | 4 | 2.22 | 0.016 ns | 5 | 1.89 | 0.147 ns | 4 |
ML11 | VL143518 | 1.33 | −0.541 * | 13 | 1.27 | −0.415 ns | 9 | 1.30 | −0.491 ns | 9 |
ML12 | ZL111056 | 0.39 | −0.247 ns | 7 | 0.58 | −0.107 ns | 7 | 0.47 | −0.176 ns | 7 |
ML13 | ZL1312 | 0.71 | −0.428 ns | 11 | 0.98 | −0.251 ns | 8 | 0.87 | −0.357 ns | 8 |
ML14 | ZL132077 | 1.08 | −0.474 * | 12 | 0.62 | −0.593 ns | 11 | 0.85 | −0.553 * | 12 |
B. CIMMYT-Zimbabwe elite lines (females) | ||||||||||
FL1 | DJ194-3 | 0.68 | −0.014 | 12 | 1.14 | −0.068 | 11 | 0.90 | −0.014 | 12 |
FL2 | DJ267-5 | 0.31 | 0.044 | 2 | 1.04 | −0.042 | 10 | 0.64 | 0.005 | 6 |
FL3 | DJ267-6 | 1.77 | −0.001 | 8 | 2.43 | −0.124 | 14 | 2.08 | −0.019 | 13 |
FL4 | DJ267-7 | 0.71 | 0.012 | 5 | 0.72 | 0.02 | 4 | 0.71 | 0.007 | 5 |
FL5 | DJ267-8 | 1.34 | −0.045 | 14 | 1.23 | 0.013 | 6 | 1.27 | −0.011 | 10 |
FL6 | DJ194-10 | 0.88 | −0.008 | 11 | 0.90 | −0.039 | 8 | 0.88 | −0.008 | 9 |
FL7 | DJ194-2 | 0.79 | 0.023 | 4 | 0.59 | 0.007 | 7 | 0.68 | 0.008 | 4 |
FL8 | DJ267-9 | 1.76 | 0.066 | 1 | 2.27 | 0.251 | 1 | 2.02 | 0.058 | 1 |
FL9 | DJ265-6 | 1.20 | −0.022 | 13 | 1.04 | 0.014 | 5 | 1.09 | −0.004 | 8 |
FL10 | DJ265-8 | 1.67 | 0.025 | 3 | 1.74 | −0.04 | 9 | 1.72 | 0.001 | 7 |
FL11 | DJ265-10 | 1.81 | −0.003 | 9 | 1.94 | 0.226 | 2 | 1.89 | 0.035 | 2 |
FL12 | DJ265-12 | 0.60 | −0.003 | 10 | 1.03 | −0.083 | 12 | 0.81 | −0.014 | 11 |
FL13 | DJ265-13 | 0.67 | 0.003 | 7 | 0.33 | −0.152 | 15 | 0.48 | −0.023 | 14 |
FL14 | DJ265-14 | 1.95 | 0.010 ns | 6 | 2.22 | 0.131 | 3 | 2.08 | 0.023 | 3 |
FL15 | DJ265-15 | 0.65 | −0.087 ns | 15 | 0.73 | −0.115 | 13 | 0.69 | −0.044 | 15 |
Grand mean | 1.05 | 1.23 | 1.14 | |||||||
LSD (0.05) | 0.74 | 0.77 | 0.77 | |||||||
Heritability | 0.27 | 0.57 | 0.77 |
Managed Heat | Optimal Management | Across Environments | ||||
---|---|---|---|---|---|---|
Hybrid | MGYP (tha−1)/Rank | SCA Effect | MGYP (tha−1)/Rank | SCA Effect | MGYP (tha−1)/Rank | SCA Effect |
DJ265-15 × VL1018816 | 5.36 (12) | 1.05 ** | 5.56 (77) | 0.03 | 5.46 (35) | 0.526 |
DJ267-9 × CAL1440 | 5.65 (7) | 0.73 * | 7.28(9) | 0.7 | 6.62 (5) | 0.739 |
DJ265-15 × CAL14138 | 6.45 (1) | 0.697 | 6.19 (40) | −0.21 | 6.40 (10) | 0.199 |
DJ265-14 ×ZL1312 | 4.23 (58) | 0.673 | 6.48 (27) | 0.93 | 5.64 (29) | 0.857 |
DJ194-3 × CAL1412 | 4.21 (64) | 0.624 | 5.33 (95) | 0.3 | 4.76 (81) | 0.492 |
DJ267-7×VL1010762 | 3.10 (146) | 0.603 | 5.52 (83) | −0.23 | 4.42 (114) | 0.174 |
DJ267-7×VL143518 | 4.37 (50) | 0.6 | 5.65 (69) | 0.39 | 5.04 (60) | 0.516 |
DJ265-15 × CAL14113 | 4.40 (44) | 0.541 | 6.23 (39) | 1 | 5.42 (37) | 0.825 |
DJ265-8 × VL1010762 | 4.46 (40) | 0.54 | 5.96 (50) | 0.63 | 5.27 (45) | 0.624 |
DJ267-5 × CAL1440 | 5.40 (10) | 0.533 | 5.40 (90) | −0.43 | 5.40 (39) | −0.003 |
Heritability | 80% | 66% | 80% | |||
Grand Mean | 3.95 | 5.43 | 4.7 | |||
LSD | 0.83 | 1.47 | 0.96 | |||
CV | 21.76 | 24.35 | 23.96 |
Managed Heat Stress | Optimum Management | Across Environments | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Exotic | Lines | GY (t ha−1) | AD (Days) | ASI (Days) | GY (t ha−1) | AD (Days) | ASI (Days) | GY (t ha−1) | AD (Days) | ASI (Days) |
A. Exotic HSTDLs | ||||||||||
ML4 | CAL14138 | 1.84 | 73 | 0.50 | 1.60 | 74 | 1 | 1.72 | 74 | 0.37 |
ML7 | CAL152 | 1.71 | 73 | −0.50 | 2.09 | 75 | 0.75 | 1.92 | 74 | −0.25 |
ML10 | VL109126 | 1.57 | 69 | 0.52 | 2.22 | 72 | 1.5 | 1.89 | 71 | 0.62 |
ML11 | VL143518 | 1.33 | 77 | 0.75 | 1.27 | 80 | 4.25 | 1.30 | 78 | 0.87 |
ML5 | CAL1440 | 1.23 | 75 | 0 | 1.76 | 77 | 0.5 | 1.41 | 76 | 1.50 |
ML14 | ZL132077 | 1.08 | 79 | −0.74 | 0.62 | 78 | 0.25 | 0.85 | 79 | −0.87 |
ML9 | VL1018816 | 0.94 | 79 | −0.01 | 0.91 | 80 | 0 | 0.93 | 79 | −0.13 |
ML2 | CAL1412 | 0.88 | 71 | 1.26 | 1.28 | 74 | 0.5 | 1.08 | 72 | 1.50 |
ML13 | ZL1312 | 0.71 | 73 | −0.01 | 0.98 | 73 | 0.75 | 0.87 | 73 | 0.75 |
ML3 | CAL14135 | 0.58 | 75 | 0.75 | 0.58 | 79 | −0.75 | 0.58 | 77 | 0.62 |
ML6 | CAL1469 | 0.52 | 74 | 0 | 0.53 | 75 | 1.5 | 0.53 | 74 | −0.12 |
ML1 | CAL14113 | 0.43 | 77 | −0.25 | 0.60 | 79 | 1 | 0.51 | 78 | 0 |
ML12 | ZL111056 | 0.39 | 74 | 1.50 | 0.58 | 75 | −0.75 | 0.47 | 75 | 1.50 |
ML8 | VL1010762 | 0.33 | 77 | −0.01 | 0.55 | 77 | 2.75 | 0.44 | 77 | 0.25 |
B. CIMMYT-Zimbabwe elite lines | ||||||||||
FL14 | DJ265-14 | 1.945 | 74 | −1.26 | 2.22 | 77 | −0.25 | 2.08 | 75 | −0.88 |
FL11 | DJ265-10 | 1.81 | 76 | 1.76 | 1.94 | 79 | −1 | 1.89 | 77 | 1.37 |
FL3 | DJ267-6 | 1.77 | 76 | 3.23 | 2.43 | 77 | 1 | 2.08 | 76 | 3.73 |
FL8 | DJ267-9 | 1.76 | 74 | 1.75 | 2.27 | 76 | −0.25 | 2.02 | 75 | 1.88 |
FL10 | DJ265-8 | 1.67 | 78 | 0 | 1.74 | 79 | 3 | 1.72 | 78 | 0.38 |
FL5 | DJ267-8 | 1.34 | 77 | 0.50 | 1.23 | 79 | 1.5 | 1.27 | 78 | 0.37 |
FL9 | DJ265-6 | 1.20 | 78 | 0.33 | 1.04 | 81 | 1.75 | 1.09 | 79 | 0.28 |
FL6 | DJ194-10 | 0.88 | 78 | 0.75 | 0.90 | 79 | −0.5 | 0.88 | 79 | 0.62 |
FL7 | DJ194-2 | 0.79 | 73 | 1.00 | 0.59 | 76 | 0.75 | 0.68 | 75 | 0.12 |
FL4 | DJ267-7 | 0.71 | 77 | 0.50 | 0.72 | 78 | 0.25 | 0.71 | 78 | 0.50 |
FL1 | DJ194-3 | 0.68 | 75 | 1.24 | 1.14 | 76 | 1 | 0.90 | 75 | 1.12 |
FL13 | DJ265-13 | 0.67 | 77 | −1.25 | 0.33 | 78 | 0.75 | 0.48 | 77 | −0.76 |
FL15 | DJ265-15 | 0.649 | 75 | 1.75 | 0.73 | 76 | −0.25 | 0.69 | 75 | 1.25 |
FL12 | DJ265-12 | 0.60 | 76 | 1.25 | 1.03 | 75 | 1.75 | 0.81 | 76 | 1.37 |
FL2 | DJ267-5 | 0.31 | 77 | −0.01 | 1.04 | 78 | 0.75 | 0.64 | 77 | 0.88 |
G.variance | 0.06 *** | 4.67 *** | 0.42 ** | 0.18 *** | 4.55 *** | 0.23 ns | 0.19 *** | 5.26 *** | 0.55 *** | |
G × E variance | 0.29 *** | 0.56 ns | 0.17 ns | 0.19 *** | 2.26 ** | 0.57 ns | 0.16 *** | 0.75 ** | 0.15 ns | |
Heritability | 0.27 | 0.80 | 0.47 | 0.57 | 0.67 | 0.18 | 0.77 | 0.88 | 0.63 | |
Grand mean | 1.05 | 75.44 | 0.45 | 1.23 | 77.16 | 0.75 | 1.14 | 76.31 | 0.6 | |
LSD (0.05) | 0.74 | 3.72 | 2.41 | 0.77 | 4.11 | 3.39 | 0.77 | 3.92 | 2.99 | |
CV (%) | 35.65 | 2.52 | 274.36 | 31.79 | 2.72 | 230.67 | 34.27 | 2.62 | 255.33 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mukaro, R.; Kamutando, C.N.; Magorokosho, C.; Mutari, B.; Zaidi, P.H.; Kutywayo, D.; Sibiya, J. Genetic Potential of Tropically Adapted Exotic Maize (Zea mays L.) Heat-Tolerant Donor Lines in Sub-Tropical Breeding Programs. Agronomy 2023, 13, 2050. https://doi.org/10.3390/agronomy13082050
Mukaro R, Kamutando CN, Magorokosho C, Mutari B, Zaidi PH, Kutywayo D, Sibiya J. Genetic Potential of Tropically Adapted Exotic Maize (Zea mays L.) Heat-Tolerant Donor Lines in Sub-Tropical Breeding Programs. Agronomy. 2023; 13(8):2050. https://doi.org/10.3390/agronomy13082050
Chicago/Turabian StyleMukaro, Ronica, Casper Nyaradzai Kamutando, Cosmos Magorokosho, Bruce Mutari, Pervez Haider Zaidi, Dumisani Kutywayo, and Julia Sibiya. 2023. "Genetic Potential of Tropically Adapted Exotic Maize (Zea mays L.) Heat-Tolerant Donor Lines in Sub-Tropical Breeding Programs" Agronomy 13, no. 8: 2050. https://doi.org/10.3390/agronomy13082050
APA StyleMukaro, R., Kamutando, C. N., Magorokosho, C., Mutari, B., Zaidi, P. H., Kutywayo, D., & Sibiya, J. (2023). Genetic Potential of Tropically Adapted Exotic Maize (Zea mays L.) Heat-Tolerant Donor Lines in Sub-Tropical Breeding Programs. Agronomy, 13(8), 2050. https://doi.org/10.3390/agronomy13082050