The Use of Faba Bean Cover Crop to Enhance the Sustainability and Resiliency of No-Till Corn Silage Production and Soil Characteristics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiment Site
2.2. Field Establishment and Treatment Application
2.3. Sampling and Measurements
2.4. Statistical Analysis
3. Results
3.1. Weather Conditions
3.2. Influence of Faba Bean Cover Crop Density on Soil Characteristics
3.3. Influence of Faba Bean Density on Cover Crop Biomass and N Yield
3.4. N Release from Decomposing Faba Bean Roots and Shoot Residues
3.5. Effect of Faba Bean Density and N Application Rate on Yield and Quality of Forage Corn
4. Discussion
4.1. Influence of Faba Bean Cover Crop on Soil Properties
4.2. Influence of Faba Bean Density on Biological N Fixation
4.3. Decomposition Trend of Faba Bean Root and Shoot Residues
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Additional Information
References
- Sadeghi, S.M.; Noorhosseini, S.A.; Damalas, C.A. Environmental sustainability of corn (Zea mays L.) production on the basis of nitrogen fertilizer application: The case of Lahijan, Iran. Renew. Sust. Energy Rev. 2018, 95, 48–55. [Google Scholar] [CrossRef]
- Halvorson, A.D.; Mosier, A.R.; Reule, C.A.; Bausch, W.C. Nitrogen and tillage effects on irrigated continuous corn yields. Agron. J. 2006, 98, 63–71. [Google Scholar] [CrossRef] [Green Version]
- Morris, T.F.; Murrell, T.S.; Beegle, D.B.; Camberato, J.J.; Ferguson, R.B.; Grove, J.; Ketterings, Q.; Kyveryga, P.M.; Laboski, C.A.M.; McGrath, J.M.; et al. Strengths and limitations of nitrogen rate recommendations for corn and opportunities for improvement. Agron. J. 2018, 110, 1–37. [Google Scholar] [CrossRef] [Green Version]
- Rocha, K.F.; de Souza, M.; Almeida, D.S.; Chadwick, D.R.; Jones, D.L.; Mooney, S.J.; Rosolem, C.A. Cover crops affect the partial nitrogen balance in a maize-forage cropping system. Geoderma 2020, 360, 114000. [Google Scholar] [CrossRef]
- Maciel de Oliveira, S.; Almeida, R.E.M.D.; Ciampitti, I.A.; Pierozan Junior, C.; Lago, B.C.; Trivelin, P.C.O.; Favarin, J.L. Understanding N timing in corn yield and fertilizer N recovery: An insight from an isotopic labeled-N determination. PLoS ONE 2018, 13, e0192776. [Google Scholar] [CrossRef] [Green Version]
- Schoninger, E.L.; Villalba, H.A.G.; Bendassolli, J.A.; Trivelin, P.C.O. Corn grain yield and 15 N-fertilizer recovery as a function of urea sidedress timing. An. Acad. Bras. Cienc. 2018, 90, 3299–3312. [Google Scholar] [CrossRef]
- Etemadi, F.; Hashemi, M.; Zandvakili, O.; Dolatabadian, A.; Sadeghpour, A. Nitrogen contribution from winter-killed faba bean cover crop to spring-sown sweet corn in conventional and no-till systems. Agron. J. 2018, 110, 455–462. [Google Scholar] [CrossRef]
- Ghahremani, S.; Ebadi, A.; Tobeh, A.; Hashemi, M.; Sedghi, M.; Gholipoouri, A.; Barker, A.V. Short-term impact of monocultured and mixed cover crops on soil properties, weed suppression, and lettuce yield. Commun. Soil Sci. Plant Anal. 2021, 52, 406–415. [Google Scholar] [CrossRef]
- Alhameid, A.; Singh, J.; Sekaran, U.; Kumar, S.; Singh, S. Soil biological health: Influence of crop rotational diversity and tillage on soil microbial properties. Soil Sci. Soc Am. J. 2019, 83, 1431–1442. [Google Scholar] [CrossRef]
- Liu, K.; Bandara, M.; Hamel, C.; Knight, J.D.; Gan, Y. Intensifying crop rotations with pulse crops enhances system productivity and soil organic carbon in semi-arid environments. Field Crops Res. 2020, 248, 107657. [Google Scholar] [CrossRef]
- Nunes, M.R.; Karlen, D.L.; Veum, K.S.; Moorman, T.B.; Cambardella, C.A. Biological soil health indicators respond to tillage intensity: A US meta-analysis. Geoderma 2020, 369, 114335. [Google Scholar] [CrossRef]
- Saikia, R.; Sharma, S.; Thind, H.S.; Singh, Y. Tillage and residue management practices affect soil biological indicators in a rice–wheat cropping system in north-western India. Soil Use Manag. 2020, 36, 157–172. [Google Scholar] [CrossRef]
- Ogle, S.M.; Alsaker, C.; Baldock, J.; Bernoux, M.; Breidt, F.J.; McConkey, B.; Regina, K.; Vazquez-Amabile, G.G. Climate and soil characteristics determine where no-till management can store carbon in soils and mitigate greenhouse gas emissions. Sci. Rep. 2019, 9, 11665. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baghdadi, A.; Golzardi, F.; Hashemi, M. The use of alternative irrigation and cropping systems in forage production may alleviate the water scarcity in semiarid regions. J. Sci. Food Agric 2023, 103, 5050–5060. [Google Scholar] [CrossRef]
- Kader, M.A.; Singha, A.; Begum, M.A.; Jewel, A.; Khan, F.H.; Khan, N.I. Mulching as water-saving technique in dryland agriculture. Bull. Natl. Res. Cent. 2019, 43, 147. [Google Scholar] [CrossRef] [Green Version]
- Boots-Haupt, L.; Brasier, K.; Saldivar-Menchaca, R.; Estrada, S.; Prieto-Garcia, J.; Jiang, J.; Riar, R.; Hu, J.; Zakeri, H. Exploration of global faba bean germplasm for agronomic and nitrogen fixation traits. Crop. Sci. 2022, 62, 1891–1902. [Google Scholar] [CrossRef]
- Brasier, K.; Zaragoza, I.; Knecht, J.; Munster, R.; Coulter, H.; Potter, A.; Enke, E.; Fox, A.; Mosqueda, E.; Zakeri, H. Potential of Faba Bean (Vicia faba L.) for Dual-purpose Vegetable Production and Cover Cropping. HortScience 2023, 58, 23–31. [Google Scholar] [CrossRef]
- Brasier, K.; Fox, A.; Zakeri, H. Faba Bean Vegetable Production. In Proceedings of the ASA, CSSA, SSSA International Annual Meeting, Baltimore, MD, USA, 6–9 November 2022; ASA-CSSA-SSSA. Available online: https://scisoc.confex.com/scisoc/2022am/meetingapp.cgi/Paper/141572 (accessed on 5 August 2023).
- Etemadi, F.; Hashemi, M.; Barker, A.V.; Zandvakili, O.R.; Liu, X. Agronomy, nutritional value, and medicinal application of faba bean (Vicia faba L.). Hortic. Plant J. 2019, 5, 170–182. [Google Scholar] [CrossRef]
- Jahanzad, E.; Barker, A.V.; Hashemi, M.; Eaton, T.; Sadeghpour, A.; Weis, S.A. Nitrogen release dynamics and decomposition of buried and surface cover crop residues. Agron. J. 2016, 108, 1735–1741. [Google Scholar] [CrossRef]
- Šarauskis, E.; Romaneckas, K.; Jasinskas, A.; Kimbirauskienė, R.; Naujokienė, V. Improving energy efficiency and environmental mitigation through tillage management in faba bean production. Energy 2020, 209, 118453. [Google Scholar] [CrossRef]
- Muñoz-Romero, V.; Lopez-Bellido, L.; Lopez-Bellido, R.J. Faba bean root growth in a Vertisol: Tillage effects. Field Crops Res. 2011, 120, 338–344. [Google Scholar] [CrossRef]
- Romaneckas, K.; Kimbirauskienė, R.; Adamavičienė, A.; Buragiene, S.; Sinkevičienė, A.; Sarauskis, E.; Jasinskas, A.; Minajeva, A. Impact of sustainable tillage on biophysical properties of Planosol and on faba bean yield. Agric. Food Sci. 2019, 28, 101–111. [Google Scholar] [CrossRef] [Green Version]
- Miller, R.O.; Kissel, D.E. Comparison of soil pH methods on soils of North America. Soil Sci. Soc. Am. J. 2010, 74, 310–316. [Google Scholar] [CrossRef]
- Heanes, D.L. Determination of total organic-C in soils by an improved chromic acid digestion and spectrophotometric procedure. Commun. Soil Sci. Plant Anal. 1984, 15, 1191–1213. [Google Scholar] [CrossRef]
- Page, A.L.; Miller, R.H.; Keeney, D.R.; Baker, D.E.; Ellis, R.; Rhoades, J.D. Methods of Soil Analysis; No. 631.41 MET 9–2; CIMMYT: Mexico City, Mexico, 1982. [Google Scholar]
- Bunzl, K.; Wolf, A.; Sansoni, B. Kinetics of ion exchange in soil organic matter V. Differential ion exchange reactions of Cu2+-, Cd2+-, Zn2+- and Ca2+-ons in humic acid. Z. Pflanz. Bodenkd. 1976, 139, 475–485. [Google Scholar] [CrossRef]
- Xie, X.; Weng, B.; Cai, B.; Dong, Y.; Yan, C. Effects of arbuscular mycorrhizal inoculation and phosphorus supply on the growth and nutrient uptake of Kandelia obovata (Sheue, Liu & Yong) seedlings in autoclaved soil. Appl. Soil Ecol. 2014, 75, 162–171. [Google Scholar] [CrossRef]
- Hillel, D. Introduction to Soil Physics; Academic Press: New York, NY, USA, 1982. [Google Scholar]
- Walkley, A.; Black, I.A. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, S.; Fu, M.; Cai, J.; Zhang, Y.; Wang, R.; Xu, Z.W.; Bai, Y.F.; Jiang, Y. Sheep manure application increases soil exchangeable base cations in a semi-arid steppe of Inner Mongolia. J. Arid Land 2015, 7, 361–369. [Google Scholar] [CrossRef] [Green Version]
- Blake, G.R.; Hartge, K.H. Bulk density. In Methods of Soil Analysis: Part 1. Physical and Mineralogical Methods; American Society of Agronomy: Madison, WI, USA, 1986; Volume 5, pp. 363–375. 1188p. [Google Scholar] [CrossRef]
- Jalota, S.K.; Khera, R.; Ghuman, B.S. Methods in Soil Physics; Narosa Publishing House: New Delhi, NCT, India, 1996. [Google Scholar]
- Çerçioğlu, M.; Anderson, S.H.; Udawatta, R.P.; Alagele, S. Effect of cover crop management on soil hydraulic properties. Geoderma 2019, 343, 247–253. [Google Scholar] [CrossRef]
- Ghahremani, S.; Ebadi, A.; Tobeh, A.; Hashemi, M.; Sedghi, M.; Gholipuri, A. The effect of cover crops on yield and weeds control of patato (Solanum tuberosum L.). J. Crop Ecophysiol. 2020, 14, 119–134. [Google Scholar] [CrossRef]
- Ahmad, I.; Wajid, S.A.; Ahmad, A.; Cheema, M.J.M.; Judge, J. Optimizing irrigation and nitrogen requirements for maize through empirical modeling in semi-arid environment. Enviro.n Sci. Pollut. Res. 2019, 26, 1227–1237. [Google Scholar] [CrossRef] [PubMed]
- Rosolem, C.A.; Ritz, K.; Cantarella, H.; Galdos, M.V.; Hawkesford, M.J.; Whalley, W.R.; Mooney, S.J. Enhanced plant rooting and crop system management for improved N use efficiency. Adv. Agron. 2017, 146, 205–239. [Google Scholar] [CrossRef] [Green Version]
- Ren, K.; Xu, M.; Li, R.; Zheng, L.; Liu, S.; Reis, S.; Wang, H.; Lu, C.; Zhang, W.; Gao, H.; et al. Optimizing nitrogen fertilizer use for more grain and less pollution. J. Clean. Prod. 2022, 360, 132180. [Google Scholar] [CrossRef]
- Jensen, E.S.; Hauggaard-Nielsen, H. How can increased use of biological N2 fixation in agriculture benefit the environment? Plant Soil 2003, 252, 177–186. [Google Scholar] [CrossRef]
- Allito, B.B.; Ewusi-Mensah, N.; Logah, V. Legume-rhizobium strain specificity enhances nutrition and nitrogen fixation in faba bean (Vicia faba L.). Agronomy 2020, 10, 826. [Google Scholar] [CrossRef]
- Denton, M.D.; Phillips, L.A.; Peoples, M.B.; Pearce, D.J.; Swan, A.D.; Mele, P.M.; Brockwell, J. Legume inoculant application methods: Effects on nodulation patterns, nitrogen fixation, crop growth and yield in narrow-leaf lupin and faba bean. Plant Soil 2017, 419, 25–39. [Google Scholar] [CrossRef] [Green Version]
- Siczek, A.; Frąc, M.; Kalembasa, S.; Kalembasa, D. Soil microbial activity of faba bean (Vicia faba L.) and wheat (Triticum aestivum L.) rhizosphere during growing season. Appl. Soil Ecol. 2018, 130, 34–39. [Google Scholar] [CrossRef]
- Brasier, K.; Smither-Kopperl, M.; Bullard, V.; Young-Matthews, A.; Bartow, A.; Friddle, M.; Bernau, C.; Humphrey, M.; Dial, H.; Wolf, M.; et al. A multi-environment analysis of winter faba bean germplasm for cover crop traits. Agron. J. 2021, 113, 3051–3064. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Shaver, T.M.; Lindquist, J.L.; Shapiro, C.A.; Elmore, R.W.; Francis, C.A.; Hergert, G.W. Cover crops and ecosystem services: Insights from studies in temperate soils. Agron. J. 2015, 107, 2449–2474. [Google Scholar] [CrossRef] [Green Version]
- Finney, D.M.; White, C.M.; Kaye, J.P. Biomass production and carbon/nitrogen ratio influence ecosystem services from cover crop mixtures. Agron. J. 2016, 108, 39–52. [Google Scholar] [CrossRef] [Green Version]
- Akbari, P.; Herbert, S.J.; Hashemi, M.; Barker, A.V.; Zandvakili, O.R. Role of cover crops and planting dates for improved weed suppression and nitrogen recovery in no till systems. Commun. Soil Sci. Plant Anal. 2019, 50, 1722–1731. [Google Scholar] [CrossRef]
- Mirsky, S.B.; Ryan, M.R.; Teasdale, J.R.; Curran, W.S.; Reberg-Horton, C.S.; Spargo, J.T.; Wells, M.S.; Keene, C.L.; Moyer, J.W. Overcoming weed management challenges in cover crop–based organic rotational no-till soybean production in the eastern United States. Weed Technol. 2013, 27, 193–203. [Google Scholar] [CrossRef]
- Hashemi, M.; Farsad, A.; Sadeghpour, A.; Weis, S.A.; Herbert, S.J. Cover-crop seeding-date influence on fall nitrogen recovery. J. Plant Nutr. Soil Sci. 2013, 176, 69–75. [Google Scholar] [CrossRef]
- Brennan, E.B.; Boyd, N.S. Winter cover crop seeding rate and variety affects during eight years of organic vegetables: I. Cover crop biomass production. Agron. J. 2012, 104, 684–698. [Google Scholar] [CrossRef] [Green Version]
- Etemadi, F.; Hashemi, M.; Shureshjani, R.A.; Autio, W.R. Application of data envelopment analysis to assess performance efficiency of eight faba bean varieties. Agron. J. 2017, 109, 1225–1231. [Google Scholar] [CrossRef]
- López-Bellido, F.J.; López-Bellido, L.; López-Bellido, R.J. Competition, growth and yield of faba bean (Vicia faba L.). Eur. J. Agron 2017, 23, 359–378. [Google Scholar] [CrossRef]
- Bakry, B.A.; Elewa, T.A.; El karamany, M.F.; Zeidan, M.S.; Tawfik, M.M. Effect of row spacing on yield and its components of some faba bean varieties under newly reclaimed sandy soil condition. World J. Agric. Sci. 2011, 7, 68–72. [Google Scholar]
- López-Bellido, L.; López-Bellido, R.; Fernández-García, P.; Muñoz-Romero, V.; Lopez-Bellido, F.J. Carbon storage in a rainfed Mediterranean vertisol: Effects of tillage and crop rotation in a long-term experiment. Eur. J. Soil Sci. 2020, 71, 472–483. [Google Scholar] [CrossRef]
- Averill, C.; Waring, B. Nitrogen limitation of decomposition and decay: How can it occur? Glob. Chang. Biol. 2018, 24, 1417–1427. [Google Scholar] [CrossRef] [Green Version]
- Sall, S.N.; Masse, D.; Bernhard-Reversat, F.; Guisse, A.; Chotte, J.L. Microbial activities during the early stage of laboratory decomposition of tropical leaf litters: The effect of interactions between litter quality and exogenous inorganic nitrogen. Biol. Fertil. Soils 2003, 39, 103–111. [Google Scholar] [CrossRef]
- Franke, A.C.; Van den Brand, G.J.; Vanlauwe, B.; Giller, K.E. Sustainable intensification through rotations with grain legumes in Sub-Saharan Africa: A review. Agric. Ecosyst. Environ. 2018, 261, 172–185. [Google Scholar] [CrossRef] [PubMed]
- Ntonta, S.; Mathew, I.; Zengeni, R.; Muchaonyerwa, P.; Chaplot, V. Crop residues differ in their decomposition dynamics: Review of available data from world literature. Geoderma 2022, 419, 115855. [Google Scholar] [CrossRef]
- Paré, T.; Chalifour, F.P.; Bourassa, J.; Antoun, H. Forage-corn production and N-fertilizer replacement values following 1 or 2 years of legumes. Can. J. Plant Sci. 1993, 73, 477–493. [Google Scholar] [CrossRef]
- Ackroyd, V.J.; Cavigelli, M.A.; Spargo, J.T.; Davis, B.; Garst, G.; Mirsky, S.B. Legume cover crops reduce poultry litter application requirements in organic systems. Agron. J. 2019, 111, 2361–2369. [Google Scholar] [CrossRef] [Green Version]
- Spargo, J.T.; Cavigelli, M.A.; Mirsky, S.B.; Meisinger, J.J.; Ackroyd, V.J. Organic supplemental nitrogen sources for field corn production after a hairy vetch cover crop. Agron. J. 2016, 108, 1992–2002. [Google Scholar] [CrossRef] [Green Version]
- Tiemann, L.K.; Grandy, A.S.; Atkinson, E.E.; Marin-Spiotta, E.; McDaniel, M.D. Crop rotational diversity enhances belowground communities and functions in an agroecosystem. Ecol. Lett. 2015, 18, 761–771. [Google Scholar] [CrossRef]
- Agyare, W.A.; Clottey, V.A.; Mercer-Quarshie, H.; Kombiok, J.M. Maize yield response in a long-term rotation and intercropping systems in the Guinea Savannah zone of Northern Ghana. J. Agron. 2006, 5, 232–238. [Google Scholar] [CrossRef] [Green Version]
Year | Seedbed Preparation | Starter N (kg ha−1) | Planting Time | Termination Time | The Inter-Row Space (cm) |
---|---|---|---|---|---|
2018 | Light disk/Spring | 20 | 3 March | 10 June | 20 |
2019 | No till | 20 | 3 March | 7 June | 20 |
Years | Depth (cm) | pH | SOM (g dm−3) | K+ (mg kg−1) | P (mg kg−1) | Total N (%) |
---|---|---|---|---|---|---|
2018 | 0–15 | 7.8 | 10.3 | 212 | 8.29 | 0.06 |
15–30 | 7.6 | 6.88 | 143 | 6.5 | - | |
2019 | 0–15 | 7.9 | 10.3 | 220 | 8.9 | 0.06 |
15–30 | 7.7 | 6.88 | 152 | 6 | - |
Treatments | Levels | Water Infiltration Rate (cm s−1) | Soil Moisture Content (%) | Organic Carbon (%) | Organic Matter (%) | Electrical Conductivity (ds m−1) | Total Porosity (%) | Bulk Density (g cm−3) |
---|---|---|---|---|---|---|---|---|
Years | 2018 | 34.4 ± 3.8 a | 20.8 ± 0.79 a | 0.52 ± 0.02 a | 0.89 ± 0.04 a | 377.1 ± 13.6 a | 50.7 ± 2.0 a | 1.31 ± 0.04 a |
2019 | 31.8 ± 3.7 b | 22.1 ± 1.09 a | 0.51 ± 0.02 a | 0.88 ± 0.04 a | 333.2 ± 17.2 a | 53.1 ± 1.8 a | 1.24 ± 0.05 a | |
LSD 0.05 | 2.4 | 2.6 | 0.06 | 0.11 | 80.5 | 5.9 | 0.16 | |
Density (plant m−2) | 0 | 51.5 ± 1.8 a | 18.1 ± 0.7 c | 0.53 ± 0.06 a | 0.83 ± 0.05 a | 367.3 ± 26.2 a | 50.7 ± 2.6 a | 1.31 ± 0.07 a |
25 | 41.3 ± 1.4 b | 19.6 ± 1.1 c | 0.52 ± 0.04 a | 0.89 ± 0.05 a | 342.2 ± 10.8 a | 50.5 ± 2.7 a | 1.31 ± 0.07 a | |
35 | 37.3 ± 2.1 c | 20.9 ± 0.7 bc | 0.52 ± 0.02 a | 0.92 ± 0.04 a | 333.1 ± 26.5 a | 52.0 ± 2.9 a | 1.27 ± 0.08 a | |
40 | 22.8 ± 1.3 d | 23.6 ± 0.9 ab | 0.52 ± 0.03 a | 0.89 ± 0.07 a | 346.9 ± 42.5 a | 52.6 ± 1.1 a | 1.26 ± 0.03 a | |
80 | 12.7 ± 1.3 e | 25.1 ± 1.9 a | 0.48 ± 0.03 a | 0.92 ± 0.09 a | 356.4 ± 15.8 a | 52.6 ± 3.3 a | 1.23 ± 0.11 a | |
LSD 0.05 | 2.4 | 3.5 | 0.09 | 0.16 | 79.6 | 11.2 | 0.26 | |
Regression | †† Trend | L | S | none | none | none | none | none |
Ymax | 39.9 ns | 25.2 ns | - | - | - | - | - | |
Slope | −4.10 ns | 4.30 ns | - | - | - | - | - | |
D50 | 36.2 * | 36.2 ** | - | - | - | - | - | |
Ymin | 10.8 * | 18.5 ** | - | - | - | - | - | |
R2 | 0.949 | 0.975 | - | - | - | - | - | |
F value | ||||||||
Year (Y) | * | ns | ns | ns | ns | ns | ns | |
Density (D) | ** | * | ns | ns | ns | ns | ns | |
Y × D | ns | ns | ns | ns | ns | ns | ns | |
Coefficient of variation (%) | 13.4 | 13.4 | 15.5 | 14.7 | 18.3 | 17.7 | 17.1 |
Treatments | Levels | Biomass (g m−2) | N Content (g kg−1) | N Yield (g m−2) | |||
---|---|---|---|---|---|---|---|
Root | Shoot | Root | Shoot | Root | Shoot | ||
Year | 2018 | 243.2 ± 21.3 a | 496.7 ± 46.8 a | 7.7 ± 0.29 a | 19.7 ± 0.35 a | 1.8 ± 0.14 a | 9.6 ± 0.78 a |
2019 | 243.6 ± 18.1 a | 472.2 ± 36.7 a | 7.9 ± 0.30 a | 20.1 ± 0.36 a | 1.9 ± 0.12 a | 9.3 ± 0.60 a | |
LSD 0.05 | 37.7 | 38.7 | 1.60 | 1.7 | 1.01 | 1.47 | |
Density (plant m−2) | 0 | - | - | - | - | - | - |
25 | 157.3 ± 6.1 d | 298.6 ± 19.3 c | 8.4 ± 0.40 a | 21.3 ± 0.36 a | 1.3 ± 0.10 b | 6.4 ± 0.44 c | |
35 | 216.0 ± 14.2 c | 424.0 ± 10.0 c | 8.2 ± 0.26 b | 20.2 ± 0.25 b | 1.8 ± 0.15 a | 8.6 ± 0.23 b | |
40 | 278.3 ± 7.9 b | 568.4 ± 15.0 a | 7.8 ± 0.25 c | 19.4 ± 0.25 c | 2.3 ± 0.12 a | 11.0 ± 0.28 a | |
80 | 322.0 ± 5.6 a | 646.8 ± 25.2 a | 6.7 ± 0.33 d | 18.7 ± 0.30 d | 2.2 ± 0.10 a | 12.0 ± 0.36 a | |
LSD 0.05 | 49.5 | 102.7 | 0.11 | 0.12 | 0.45 | 1.79 | |
Regression | †† Trend | S | S | Ed | Ed | S | S |
Ymax | 321.9 * | 646.7 * | 8.54 * | 22.27 * | 3.03 * | 12.0 * | |
Slope | 3.17 ns | 2.79 ns | 0.025 ns | 0.067 ns | 0.22 ns | 2.57 ns | |
cY | 168.8 * | 353.9 * | –1.72 * | –3.67 * | 0.90 * | 5.67 * | |
D50 | 36.6 ns | 36.4 ns | - | - | 34.9 ns | 36.0 ns | |
Ymin | 153.1 * | 292.8 * | 6.82 * | 18.6 * | 2.20 * | 6.3 * | |
R2 | 0.966 | 0.956 | 0.994 | 0.978 | 0.943 | 0.949 | |
F value | |||||||
Year (Y) | ns | ns | ns | ns | ns | ns | |
Density (D) | ** | ** | ** | ** | * | ** | |
Y × D | ns | ns | ns | ns | ns | ns | |
Coefficient of variation (%) | 9.9 | 10.1 | 1.4 | 1.2 | 10.4 | 9.2 |
Treatments | Level | Corn Silage (kg m−2) | N Shoot Content (mg g−1) | Crude Protein (%) | Protein Yield (kg m−2) |
---|---|---|---|---|---|
Years | 2018 | 5.23 ± 0.11 a | 18.35 ± 0.57 a | 11.4 ± 0.4 a | 13.3 ± 0.7 a |
2019 | 5.26 ± 0.10 a | 18.65 ± 0.57 a | 11.6 ± 0.3 a | 14.5 ± 0.8 a | |
LSD 0.05 | 0.2 | 1.94 | 1.3 | 1.06 | |
Density (plant m−2) | 0 | 4.64 ± 0.17 e | 11.84 ± 0.64 d | 7.3 ± 0.4 d | 7.9 ± 0.6 d |
25 | 5.03 ± 0.16 d | 18.05 ± 0.40 c | 11.2 ± 0.2 c | 11.9 ± 0.5 c | |
35 | 5.23 ± 0.13 c | 20.26 ± 0.43 b | 12.6 ± 0.3 b | 15.4 ± 0.6 b | |
40 | 5.95 ± 0.16 a | 22.05 ± 0.68 a | 13.7 ± 0.4 a | 20.3 ± 1.7 a | |
80 | 5.36 ± 0.12 b | 20.30 ± 0.44 b | 12.6 ± 0.3 b | 13.9 ± 0.5 bc | |
Regression | LSD 0.05 | 0.09 | 0. 52 | 0.32 | 2.2 |
†† Trend | G | G | G | G | |
Ymax | 6.95 ns | 23.6 ns | 14.73 ns | 26.56 ns | |
Slope | 11.86 ns | 32.13 ns | 32.05 ns | 16.10 ns | |
Dmax | 57.69 * | 56.97 * | 56.84 * | 55.55 * | |
Ymin | 4.76 * | 8.60 ns | 5.38 ns | 8.13 ns | |
R2 | 0.934 | 0.996 | 0.996 | 0.978 | |
N (kg ha−1) | 0 | 4.33 ± 0.12 d | 15.97 ± 0.82 d | 9.9 ± 0.5 d | 10.4 ± 0.7 c |
100 | 5.27 ± 0.13 c | 17.83 ± 0.66 c | 11.1 ± 0.4 c | 13.5 ± 0.7 b | |
200 | 5.65 ± 0.12 b | 19.50 ± 0.75 b | 12.1 ± 0.5 b | 18.2 ± 1.6 a | |
300 | 5.73 ± 0.08 a | 20.70 ± 0.73 a | 12.8 ± 0.5 a | 13.5 ± 0.5 b | |
LSD 0.05 | 0.04 | 0. 51 | 0.32 | 0.9 | |
Regression | †† Trend | Eg | Eg | Eg | Lo |
Ymax | 5.80 ** | 21.9 * | 13.4 * | 17.5 ns | |
Slope | 0.010 ns | 0.002 ns | 0.002 ns | 211.3 ns | |
cY | 1.48 * | 6.2 ns | 3.49 ns | - | |
Nmax | - | - | - | 193.8 ns | |
Ymin | 4.32 ** | 15.7 * | 9.91 * | - | |
R2 | 0.999 | 0.999 | 0.999 | 0.911 | |
F value | |||||
Year (Y) | ns | ns | ns | ns | |
Density (D) | ** | ** | ** | ** | |
N (N) | ** | ** | ** | ** | |
Y × D | ns | ns | ns | ns | |
Y × N | ns | ns | ns | ns | |
D × N | ** | ** | ** | ** | |
Y × D × N | ns | ns | ns | ns | |
Coefficient of variation (%) | 9.1 | 10.2 | 10.6 | 14.0 |
Traits | Density (Plant m−2) | †† Trend | Ymax | Slope | cY | Nmax (kg ha−1) | Ymin | R2 |
---|---|---|---|---|---|---|---|---|
Corn Silage (kg m−2) | 0 | Eg | 5.41 * | 0.011 ns | 2.03 ns | - | 3.37 * | 0.994 |
25 | Eg | 5.88 ** | 0.007 ** | 1.80 ** | - | 4.08 ** | 0.999 | |
35 | Eg | 6.06 * | 0.006 * | 1.63 * | - | 4.43 ** | 0.999 | |
40 | Eg | 6.35 * | 0.003 ns | 1.34 ns | - | 5.01 * | 0.991 | |
80 | Eg | 8.39 * | 0.001 ns | 3.98 ns | - | 4.71 * | 0.997 | |
N shoot Content (mg g−1) | 0 | Eg | 17.89 ns | 0.003 ns | 10.08 ns | - | 7.81 ns | 0.979 |
25 | Eg | 21.30 * | 0.004 ns | 5.27 ns | - | 16.03 * | 0.993 | |
35 | Eg | 22.56 * | 0.005 ns | 4.53 ns | - | 18.03 ** | 0.993 | |
40 | Eg | 22.46 * | 0.003 ns | 3.56 ns | - | 18.90 * | 0.937 | |
80 | Eg | 26.71 * | 0.002 ns | 8.61 ns | - | 18.10 * | 0.965 | |
Crude Protein (%) | 0 | Eg | 11.17 ns | 0.003 ns | 6.31 ns | - | 4.86 ns | 0.978 |
25 | Eg | 13.48 * | 0.004 ns | 3.46 ns | - | 10.02 ** | 0.994 | |
35 | Eg | 14.07 * | 0.006 ns | 2.75 ns | - | 11.26 ** | 0.995 | |
40 | Eg | 13.07 * | 0.002 ns | 1.25 ns | - | 11.82 * | 0.936 | |
80 | Eg | 12.47 * | 0.002 ns | 1.18 ns | - | 11.29 * | 0.968 | |
Protein Yield (kg m−2) | 0 | Eg | 11.83 ns | 0.006 ns | 7.63 ns | - | 4.20 * | 0.998 |
25 | G | 14.1 * | 198.4 * | - | 191.4 * | - | 0.987 | |
35 | G | 17.7 * | 218.9 ns | - | 194.7 ns | - | 0.950 | |
40 | G | 20.6 ns | 189.2 ns | - | 164.2 ns | - | 0.701 | |
80 | G | 15.3 * | 172.3 * | - | 145.1 * | - | 0.975 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghorbi, S.; Ebadi, A.; Parmoon, G.; Siller, A.; Hashemi, M. The Use of Faba Bean Cover Crop to Enhance the Sustainability and Resiliency of No-Till Corn Silage Production and Soil Characteristics. Agronomy 2023, 13, 2082. https://doi.org/10.3390/agronomy13082082
Ghorbi S, Ebadi A, Parmoon G, Siller A, Hashemi M. The Use of Faba Bean Cover Crop to Enhance the Sustainability and Resiliency of No-Till Corn Silage Production and Soil Characteristics. Agronomy. 2023; 13(8):2082. https://doi.org/10.3390/agronomy13082082
Chicago/Turabian StyleGhorbi, Samaneh, Ali Ebadi, Ghasem Parmoon, Arthur Siller, and Masoud Hashemi. 2023. "The Use of Faba Bean Cover Crop to Enhance the Sustainability and Resiliency of No-Till Corn Silage Production and Soil Characteristics" Agronomy 13, no. 8: 2082. https://doi.org/10.3390/agronomy13082082