Long-Term Increases in Continuous Cotton Yield and Soil Fertility following the Application of Cotton Straw and Organic Manure
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Design
2.3. Soil Samples
2.4. Cotton Yield
2.5. Data Analysis
3. Results
3.1. Cotton Yield
3.2. Soil Physical Structure
3.3. Soil Chemical Properties
3.4. Soil Organic Carbon
3.5. Association between Cotton Yield and Soil Properties
4. Discussion
4.1. Influence of Organic Amendments on Soil Quality
4.2. Influence of Organic Amendments on Soil Organic Carbon
4.3. Influence of Organic Amendments on Cotton Yield
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- National Bureau of Statistics of China. Bulletin on the National Cotton Output in 2022. Available online: http://www.stats.gov.cn/ (accessed on 26 December 2022).
- Adeli, A.; Brooks, J.P.; Miles, D.; Misna, T.; Feng, G.; Jenkins, J.N. Combined effects of organic amendments and fertilization on cotton growth and yield. Agron. J. 2022, 114, 3445–3456. [Google Scholar] [CrossRef]
- Tao, R.; Hu, B.; Chu, G. Impacts of organic fertilization with a drip irrigation system on bacterial and fungal communities in cotton field. Agric. Syst. 2020, 182, 102820. [Google Scholar] [CrossRef]
- Ullah, N.; Ditta, A.; Imtiaz, M.; Li, X.; Jan, A.U.; Mehmood, S.; Rizwan, M.S.; Rizwan, M. Appraisal for organic amendments and plant growth-promoting rhizobacteria to enhance crop productivity under drought stress: A review. J. Agron. Crop Sci. 2021, 207, 783–802. [Google Scholar] [CrossRef]
- Yang, X.M.; Drury, C.F.; Zhang, T.Q.; Ajakaiye, A.; Forsberg, C.W.; Fan, M.Z.; Philip, J.P. Inorganic N dynamics from soils amended with low-P manure from genetically modified pigs (enviropig). Nutr. Cycl. Agroecosyst. 2006, 75, 297–304. [Google Scholar] [CrossRef]
- Liu, N.; Li, Y.; Cong, P.; Wang, J.; Guo, W.; Pang, H.; Zhang, L. Depth of straw incorporation significantly alters crop yield, soil organic carbon and total nitrogen in the North China Plain. Soil Tillage Res. 2021, 205, 104772. [Google Scholar] [CrossRef]
- Siedt, M.; Schäffer, A.; Smith, K.E.C.; Nabel, M.; Roß-Nickoll, M.; Van Dongen, J.T. Comparing straw, compost, and biochar regarding their suitability as agricultural soil amendments to affect soil structure, nutrient leaching, microbial communities, and the fate of pesticides. Sci. Total Environ. 2021, 751, 141607. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Shar, A.G.; Li, S.; Chen, Y.; Shi, J.; Zhang, X.; Tian, X. Effect of straw return mode on soil aggregation and aggregate carbon content in an annual maize-wheat double cropping system. Soil Tillage Res. 2018, 175, 178–186. [Google Scholar] [CrossRef]
- Xie, J.; Shi, X.; Zhang, Y.; Wan, Y.; Hu, Q.; Zhang, Y.; Wang, J.; He, X.; Evgenia, B. Improved nitrogen use efficiency, carbon sequestration and reduced environmental contamination under a gradient of manure application. Soil Tillage Res. 2022, 220, 105386. [Google Scholar] [CrossRef]
- Zhao, W.; Deng, J.; Chi, S.; Wang, W.; Xu, L.; Huang, Q.; Zhang, Y.; Yu, X.; Xu, J.; Chen, Y. Sustainability assessment of topsoil ecology in Chongqing, China based on the application of livestock and poultry manure. J. Clean. Prod. 2022, 358, 131969. [Google Scholar] [CrossRef]
- Liang, Y.; Al-Kaisi, M.; Yuan, J.; Liu, J.; Zhang, H.; Wang, L.; Cai, H.; Ren, J. Effect of chemical fertilizer and straw-derived organic amendments on continuous maize yield, soil carbon sequestration and soil quality in a Chinese Mollisol. Agric. Ecosyst. Environ. 2021, 314, 107403. [Google Scholar] [CrossRef]
- Memon, M.S.; Guo, J.; Tagar, A.A.; Perveen, N.; Ji, C.; Memon, S.A.; Memon, N. The effects of tillage and straw incorporation on soil organic carbon status, rice crop productivity, and sustainability in the rice-wheat cropping system of eastern China. Sustainability 2018, 10, 961. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Xiong, Y.; Li, Y.; Qiu, Y.; Huang, G. Effects of organic amendment incorporation on maize (Zea mays L.) growth, yield and water-fertilizer productivity under arid conditions. Agric. Water Manag. 2022, 269, 107663. [Google Scholar] [CrossRef]
- Huang, W.; Bai, Z.; Hoefel, D.; Qing, H.U.; Xin, L.V.; Zhuang, G.; Shengjun, X.U.; Hongyan, Q.I.; Zhang, H. Effects of cotton straw amendment on soil fertility and microbial communities. Front. Environ. Sci. Eng. 2012, 6, 336–349. [Google Scholar] [CrossRef]
- Wu, Y.P.; Li, Y.F.; Zhang, Y.; Bi, Y.M.; Sun, Z.J. Responses of saline soil properties and cotton growth to different organic amendments. Pedosphere 2018, 28, 521–529. [Google Scholar] [CrossRef]
- Zhang, G.J.; Yan, J.W.; Zuo, W.Q.; Zhang, P.P.; Zhang, W.F. Effects of straw return and fertilisation on root growth and nutrient utilisation efficiency of cotton in an arid area. Crop Pasture Sci. 2021, 72, 528–540. [Google Scholar] [CrossRef]
- Tian, M.; Qin, S.; Whalley, W.R.; Zhou, H.; Ren, T.; Gao, W. Changes of soil structure under different tillage management assessed by bulk density, penetrometer resistance, water retention curve, least limiting water range and X-ray computed tomography. Soil Tillage Res. 2022, 221, 105420. [Google Scholar] [CrossRef]
- Bao, S.D. Soil and Agricultural Chemistry Analysis; Chinese Agriculture Press: Beijing, China, 2000. [Google Scholar]
- Haynes, R.J. Labile organic matter fractions as central components of the quality of agricultural soils: An overview. Adv. Agron. 2005, 85, 221–268. [Google Scholar] [CrossRef]
- Vance, E.D.; Brookes, P.C.; Jenkinson, D.S. An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem. 1987, 19, 703–707. [Google Scholar] [CrossRef]
- Li, X.F.; Wang, Z.G.; Bao, X.G. Long-term increased grain yield and soil fertility from intercropping. Nat. Sustain. 2021, 4, 943–950. [Google Scholar] [CrossRef]
- Renard, D.; Tilman, D. National food production stabilized by crop diversity. Nature 2019, 571, 257–260. [Google Scholar] [CrossRef]
- Dong, L.; Zhang, W.T.; Xiong, Y.W.; Zou, J.Y.; Huang, Q.Z.; Xu, X.; Ren, P.; Huang, G.H. Impact of short-term organic amendments incorporation on soil structure and hydrology in semiarid agricultural lands. Int. Soil Water Conserv. Res. 2022, 10, 457–469. [Google Scholar] [CrossRef]
- Rabot, E.; Wiesmeier, M.; Schlüter, S.; Vogel, H.J. Soil structure as an indicator of soil functions: A review. Geoderma 2018, 314, 122–137. [Google Scholar] [CrossRef]
- Mainuri, Z.G.; Owino, J.O. Effects of land use and management on aggregate stability and hydraulic conductivity of soils within River Njoro Watershed in Kenya. Int. Soil Water Conserv. Res. 2013, 1, 80–87. [Google Scholar] [CrossRef] [Green Version]
- Hebb, C.; Schoderbek, D.; Hernandez-Ramirez, G.; Hewins, D.; Carlyle, C.N.; Bork, E. Soil physical quality varies among contrasting land uses in Northern Prairie regions. Agric. Ecosyst. Environ. 2017, 240, 14–23. [Google Scholar] [CrossRef]
- Mustafa, A.; Xu, M.G.; Shah, S.A.A.; Abrar, M.M.; Sun, N.; Wang, B.R.; Cai, Z.J.; Saeed, Q.; Naveed, M.; Mehmood, K.; et al. Soil aggregation and soil aggregate stability regulate organic carbon and nitrogen storage in a red soil of southern China. J. Environ. Manag. 2020, 270, 110894. [Google Scholar] [CrossRef]
- Huang, T.; Yang, N.; Lu, C.; Qin, X.; Siddique, K.H.M. Soil organic carbon, total nitrogen, available nutrients, and yield under different straw returning methods. Soil Tillage Res. 2021, 214, 105171. [Google Scholar] [CrossRef]
- Khalil, M.I.; Hossain, M.B.; Schmidhalter, U. Carbon and nitrogen mineralization in different upland soils of the subtropics treated with organic materials. Soil Biol. Biochem. 2005, 37, 1507–1518. [Google Scholar] [CrossRef]
- Abujabhah, I.S.; Bound, S.A.; Doyle, R.; Bowman, J.P. Effects of biochar and compost amendments on soil physico-chemical properties and the total community within a temperate agricultural soil. Appl. Soil Ecol. 2016, 98, 243–253. [Google Scholar] [CrossRef]
- Shi, R.Y.; Hong, Z.; Li, J.; Jiang, J.; Baquy, A.A.; Xu, R.; Qian, W. Mechanisms for increasing the pH buffering capacity of an acidic ultisol by crop residue-derived biochars. J. Agric. Food Chem. 2017, 65, 8111–8119. [Google Scholar] [CrossRef]
- Powlson, D.S.; Bhogal, A.; Chambers, B.J.; Coleman, K.; Macdonald, A.J.; Goulding, K.W.T.; Whitmore, A.P. The potential to increase soil carbon stocks through reduced tillage or organic material additions in England and Wales: A case study. Agric. Ecosyst. Environ. 2012, 146, 23–33. [Google Scholar] [CrossRef]
- Ryals, R.; Kaiser, M.; Torn, M.S.; Berhe, A.A.; Silver, W.L. Impacts of organic matter amendments on carbon and nitrogen dynamics in grassland soils. Soil Biol. Biochem. 2014, 68, 52–61. [Google Scholar] [CrossRef]
- Mi, W.; Sun, Y.; Zhao, C.; Wu, L. Soil organic carbon and its labile fractions in paddy soil as influenced by water regimes and straw management. Agric. Water Manag. 2019, 224, 105752. [Google Scholar] [CrossRef]
- Yang, C.; Yang, L.; Zhu, O. Organic carbon and its fractions in paddy soil as affected by different nutrient and water regimes. Geoderma 2005, 124, 133–142. [Google Scholar] [CrossRef]
- Yang, F.K.; He, B.; Zhang, L.; Zhang, G.; Gao, Y. An approach to improve soil quality: A case study of straw incorporation with a decomposer under full film-mulched ridge-furrow tillage on the semiarid loess plateau, China. J. Soil Sci. Plant Nutr. 2020, 20, 125–138. [Google Scholar] [CrossRef]
- Chen, M.; Zhang, S.; Liu, L.; Wu, L.; Ding, X. Combined organic amendments and mineral fertilizer application increase rice yield by improving soil structure, P availability and root growth in saline-alkaline soil. Soil Tillage Res. 2021, 212, 105060. [Google Scholar] [CrossRef]
- Bai, Y.; Wang, L.; Lu, Y.; Yang, L.; Zhou, L.; Ni, L.; Cheng, M. Effects of long-term full straw return on yield and potassium response in wheat-maize rotation. J. Integr. Agric. 2015, 14, 2467–2476. [Google Scholar] [CrossRef]
- Benbi, D.K.; Brar, K.; Toor, A.S.; Sharma, S. Sensitivity of labile soil organic carbon pools to long-term fertilizer, straw and manure management in rice-wheat system. Pedosphere 2015, 25, 534–545. [Google Scholar] [CrossRef]
Soil Depth (cm) | AN (mg kg−1) | AP (mg kg−1) | AK (mg kg−1) | SOM (g kg−1) | pH |
---|---|---|---|---|---|
0–20 | 56.9 ± 3.47 | 13.1 ± 1.95 | 159.6 ± 19.19 | 10.6 ± 0.38 | 8.4 ± 0.14 |
Treatment | Average Yield (t ha−1) | CV (%) | SYI (%) |
---|---|---|---|
NP | 2.80 ± 0.46 c | 16.25 | 64.08 |
NPS | 3.12 ± 0.51 b | 16.24 | 64.81 |
NPM | 3.22 ± 0.47 b | 14.74 | 66.74 |
NPSM | 3.55 ± 0.45 a | 12.66 | 72.84 |
Soil Depth (cm) | Treatment | AN (mg kg−1) | AP (mg kg−1) | AK (mg kg−1) | SOM (g kg−1) | pH |
---|---|---|---|---|---|---|
0–20 | NP | 37.13 ± 5.06 d | 10.23 ± 3.35 c | 187.33 ± 17.61 c | 11.07 ± 0.21 c | 8.84 ± 0.12 a |
NPS | 48.30 ± 4.16 c | 14.07 ± 1.39 c | 209.67 ± 47.08 bc | 12.63 ± 0.29 b | 8.72 ± 0.06 a | |
NPM | 58.43 ± 1.16 b | 28.80 ± 8.01 b | 251 ± 25.51 b | 13.3 ± 0.7 b | 8.60 ± 0.26 ab | |
NPSM | 114.33 ± 7.51 a | 44.10 ± 3.05 a | 358.67 ± 26.58 a | 15.77 ± 0.35 a | 8.38 ± 0.14 b | |
20–40 | NP | 25.03 ± 2.33 c | 3.23 ± 0.42 c | 97.17 ± 2.94 c | 6.08 ± 0.37 c | 8.75 ± 0.08 a |
NPS | 34.97 ± 4.56 b | 4.63 ± 1.74 bc | 115.67 ± 8.50 c | 8.33 ± 0.43 b | 8.76 ± 0.01 a | |
NPM | 48.53 ± 1.26 a | 8.30 ± 3.04 ab | 158 ± 27.73 b | 10.15 ± 1.42 a | 8.72 ± 0.12 a | |
NPSM | 49.93 ± 1.12 a | 9.77 ± 3.05 a | 228 ± 19.70 a | 11.28 ± 0.63 a | 8.74 ± 0.09 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Xi, K.; Yang, Z.; Lu, J.; Zhang, Q.; Wang, B.; Wang, K.; Shi, J. Long-Term Increases in Continuous Cotton Yield and Soil Fertility following the Application of Cotton Straw and Organic Manure. Agronomy 2023, 13, 2133. https://doi.org/10.3390/agronomy13082133
Chen X, Xi K, Yang Z, Lu J, Zhang Q, Wang B, Wang K, Shi J. Long-Term Increases in Continuous Cotton Yield and Soil Fertility following the Application of Cotton Straw and Organic Manure. Agronomy. 2023; 13(8):2133. https://doi.org/10.3390/agronomy13082133
Chicago/Turabian StyleChen, Xiaojing, Kaipeng Xi, Zhiping Yang, Jinjing Lu, Qiang Zhang, Bin Wang, Ke Wang, and Jundong Shi. 2023. "Long-Term Increases in Continuous Cotton Yield and Soil Fertility following the Application of Cotton Straw and Organic Manure" Agronomy 13, no. 8: 2133. https://doi.org/10.3390/agronomy13082133
APA StyleChen, X., Xi, K., Yang, Z., Lu, J., Zhang, Q., Wang, B., Wang, K., & Shi, J. (2023). Long-Term Increases in Continuous Cotton Yield and Soil Fertility following the Application of Cotton Straw and Organic Manure. Agronomy, 13(8), 2133. https://doi.org/10.3390/agronomy13082133