Classification of Monofloral Honeys by Measuring a Low-Cost Electronic Nose Prototype Based on Resistive Metal Oxide Sensors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Used Honeys
2.2. Devide Used: E-Nose Prototype
2.3. Data Analysis
3. Results
3.1. Results of the First Experiment
3.2. Results of the Sesond Experiment
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De la Cruz, D.R.; Reyes, E.S.; Durán, S.S.; Sánchez, J.S. Análisis palinológico de mieles comerciales monoflorales. Bot. Complut. 2013, 37, 171–180. [Google Scholar] [CrossRef]
- Importancia del Análisis de Polen en Miel. Available online: https://infomiel.com/importancia-del-analisis-polen-miel/ (accessed on 5 August 2023).
- Jacinto-Pimienta, S.Y.; Mendoza-Hernández, J.H.R.; Zaldivar-Cruz, J.M.; Sol-Sánchez, Á.; Vargas-Villamil, L.M.; Reyes-Sánchez, C.A.; Jacinto-Pimienta, S.Y.; Mendoza-Hernández, J.H.R.; Zaldivar-Cruz, J.M.; Sol-Sánchez, Á.; et al. El uso de componentes principales en la clasificación melisopalinológica de la miel de Apis mellifera L. Rev. Mex. Cienc. Agríc. 2016, 7, 2831–2840. [Google Scholar]
- Ballesteros, E.P.; Riveros, A.C.; Acuña, F.R.T. Determinantes Físicoquímicos de La Calidad de La Miel: Una Revisión Bibliográfica. Cuad. Desarro. Rural 2019, 16, 1–15. [Google Scholar] [CrossRef]
- Pinto, P.; María, A. Identificación de Marcadores Químicos en Mieles Monoflorales Españolas; Project/Final Work/Degree; Universitat Politècnica de València: Valencia, Spain, 2021. [Google Scholar]
- Schanzmann, H.; Augustini, A.L.R.M.; Sanders, D.; Dahlheimer, M.; Wigger, M.; Zech, P.-M.; Sielemann, S. Differentiation of Monofloral Honey Using Volatile Organic Compounds by HS-GCxIMS. Molecules 2022, 27, 7554. [Google Scholar] [CrossRef]
- Tedesco, R.; Scalabrin, E.; Malagnini, V.; Strojnik, L.; Ogrinc, N.; Capodaglio, G. Characterization of Botanical Origin of Italian Honey by Carbohydrate Composition and Volatile Organic Compounds (VOCs). Foods 2022, 11, 2441. [Google Scholar] [CrossRef]
- Bonini, A.; Guidici, V.; Leffer, V.; Muchiutti, N.; Fagúndez, G.; Tamaño, G.; Daners, G.; Guarinoni, G.; Almirón, F.; Fielder, S.; et al. Combinación Quimiométrica de Espectroscopia NIR y de Composición Volátil Como Herramienta Para Caracterizar Mieles Cítricas Monoflorales; Laboratorio Tecnológico del Uruguay (LATU): Montevideo, Uruguay, 2015. [Google Scholar]
- Elbanna, K.; Attalla, K.; Elbadry, M.; Abdeltawab, A.; Gamal-Eldin, H.; Fawzy Ramadan, M. Impact of Floral Sources and Processing on the Antimicrobial Activities of Different Unifloral Honeys. Asian Pac. J. Trop. Dis. 2014, 4, 194–200. [Google Scholar] [CrossRef]
- Montenegro, G.; Gómez, M.; Díaz-Forestier, J.; Pizarro, R. Aplicación de la Norma Chilena Oficial de Denominación de Origen Botánico de la Miel Para la Caracterización de la Producción Apícola. Cienc. Investig. Agrar. 2008, 35, 181–190. [Google Scholar] [CrossRef]
- Escriche, I.; Sobrino-Gregorio, L.; Conchado, A.; Juan-Borrás, M. Volatile Profile in the Accurate Labelling of Monofloral Honey. The Case of Lavender and Thyme Honey. Food Chem. 2017, 226, 61–68. [Google Scholar] [CrossRef]
- Sesta, G.; Piana, M.L.; Persano Oddo, L.; Lusco, L.; Belligoli, P. Methyl Anthranilate in Citrus Honey. Analytical Method and Suitability as a Chemical Marker. Apidologie 2008, 39, 334–342. [Google Scholar] [CrossRef]
- Zapater, S.; María, L. Caracterización de la Fracción Volátil de Mieles de Espliego y de Tomillo Comercializadas en la Comunidad Valenciana; Universitat Politècnica de València: Valencia, Spain, 2015. [Google Scholar]
- Borowik, P.; Adamowicz, L.; Tarakowski, R.; Wacławik, P.; Oszako, T.; Ślusarski, S.; Tkaczyk, M. Development of a Low-Cost Electronic Nose for Detection of Pathogenic Fungi and Applying It to Fusarium oxysporum and Rhizoctonia solani. Sensors 2021, 21, 5868. [Google Scholar] [CrossRef]
- Tarapatskyy, M.; Sowa, P.; Zaguła, G.; Dżugan, M.; Puchalski, C. Assessment of the Botanical Origin of Polish Honeys Based on Physicochemical Properties and Bioactive Components with Chemometric Analysis. Molecules 2021, 26, 4801. [Google Scholar] [CrossRef] [PubMed]
- Mateo, F.; Tarazona, A.; Mateo, E.M. Comparative Study of Several Machine Learning Algorithms for Classification of Unifloral Honeys. Foods 2021, 10, 1543. [Google Scholar] [CrossRef] [PubMed]
- Roubik, D.W. (Ed.) Ecology and Natural History of Tropical Bees; Cambridge Tropical Biology Series; Cambridge University Press: Cambridge, UK, 1989; ISBN 978-0-521-42909-2. [Google Scholar]
- Puerto, N.; Prieto, G.; Castro, R. Chemical Composition and Antioxidant Activity of Pollen. Review. Chil. J. Agric. Anim. Sci. 2015, 31, 115–126. [Google Scholar]
- Rajs, B.B.; Primorac, L.; Gal, K.; Bubalo, D.; Prđun, S.; Flanjak, I. Influence of botanical origin on phenolic content and antioxidant capacity of monofloral bee pollen. Acta Sci. Pol. Technol. Aliment. 2022, 21, 213–222. [Google Scholar] [CrossRef]
- Rodríguez-Flores, M.S.; Escuredo, O.; Seijo, M.C.; Rojo, S.; Vilas-Boas, M.; Falcão, S.I. Phenolic Profile of Castanea Bee Pollen from the Northwest of the Iberian Peninsula. Separations 2023, 10, 270. [Google Scholar] [CrossRef]
- Qiao, J.; Feng, Z.; Zhang, Y.; Xiao, X.; Dong, J.; Haubruge, E.; Zhang, H. Phenolamide and Flavonoid Glycoside Profiles of 20 Types of Monofloral Bee Pollen. Food Chem. 2023, 405, 134800. [Google Scholar] [CrossRef]
- Benedetti, S.; Mannino, S.; Sabatini, A.; Marcazzan, G. Electronic nose and neural network use for the classification of honey. Apidologie 2004, 35, 397–402. [Google Scholar] [CrossRef]
- Faal, S.; Loghavi, M.; Kamgar, S. Physicochemical properties of Iranian ziziphus honey and emerging approach for predicting them using electronic nose. Measurement 2019, 148, 106936. [Google Scholar] [CrossRef]
- Ministerio de la Presidencia, Relaciones con las Cortes y Memoria Democrática. Real Decreto 523/2020, de 19 de Mayo, Por el Que Se Modifica el Real Decreto 1049/2003, de 1 de Agosto, Por el Que Se Aprueba la Norma de Calidad Relativa a la Miel; Ministerio de la Presidencia, Relaciones con las Cortes y Memoria Democrática: Madrid, Spain, 2020; Volume BOE-A-2020-6513, pp. 43006–43008. [Google Scholar]
- Resultados Mieles ABRIL 2023. Available online: https://www.dropbox.com/scl/fo/1o9d3fcq8lppa9jw370i9/h?dl=0&rlkey=f6fzhj7tu2gguln7p59ewk5nj (accessed on 5 August 2023).
- Barra, M.P.G.; Ponce-Díaz, M.C.; Venegas-Gallegos, C. Volatile compounds in honey produced in the central valley of Ñuble province, Chile. Chil. J. Agric. Res. 2010, 70, 75–84. [Google Scholar]
- Spano, N.; Casula, L.; Panzanelli, A.; Pilo, M.I.; Piu, P.C.; Scanu, R.; Tapparo, A.; Sanna, G. An RP-HPLC determination of 5-hydroxymethylfurfural in honey: The case of strawberry tree honey. Talanta 2006, 68, 1390–1395. [Google Scholar] [CrossRef]
- Da Silva, P.M.; Gauche, C.; Gonzaga, L.V.; Costa, A.C.O.; Fett, R. Honey: Chemical composition, stability and authenticity. Food Chem. 2016, 196, 309–323. [Google Scholar] [CrossRef] [PubMed]
- Celdrán, A.C.; Oates, M.J.; Molina Cabrera, C.; Pangua, C.; Tardaguila, J.; Ruiz-Canales, A. Low-Cost Electronic Nose for Wine Variety Identification through Machine Learning Algorithms. Agronomy 2022, 12, 2627. [Google Scholar] [CrossRef]
- Oates, M.; Fox, P.; Sánchez-Rodríguez, L.; Carbonell-Barrachina, A.; Ruiz-Canales, A. DFT Based Classification of Olive Oil Type Using a Sinusoidally Heated, Low Cost Electronic Nose. Comput. Electron. Agric. 2018, 155, 348–358. [Google Scholar] [CrossRef]
- Oates, M.J.; Abu-Khalaf, N.; Molina-Cabrera, C.; Ruiz-Canales, A.; Ramos, J.; Bahder, B.W. Detection of Lethal Bronzing Disease in Cabbage Palms (Sabal Palmetto) Using a Low-Cost Electronic Nose. Biosensors 2020, 10, 188. [Google Scholar] [CrossRef] [PubMed]
- Machuca, G.; Staforelli, J.; Rondanelli-Reyes, M.; Garces, R.; Contreras-Trigo, B.; Tapia, J.; Sanhueza, I.; Jara, A.; Lamas, I.; Troncoso, J.M.; et al. Hyperspectral Microscopy Technology to Detect Syrups Adulteration of Endemic Guindo Santo and Quillay Honey Using Machine-Learning Tools. Foods 2022, 11, 3868. [Google Scholar] [CrossRef] [PubMed]
- Hategan, A.R.; Magdas, D.A.; Puscas, R.; Dehelean, A.; Cristea, G.; Simionescu, B. Machine Learning Algorithms in Corroboration with Isotope and Elemental Profile—An Efficient Tool for Honey Geographical Origin Assessment. Appl. Sci. 2022, 12, 10894. [Google Scholar] [CrossRef]
- David, M.; Hategan, A.R.; Magdas, D.A.; Berghian-Grosan, C.; Simionescu, B. Botanical Origin Assessment of Honey Based on ATR-IR Spectroscopy: A Comparison between the Efficiency of Supervised Statistical Methods and Artificial Intelligence. Appl. Sci. 2022, 12, 9645. [Google Scholar] [CrossRef]
- Viciano-Tudela, S.; Sendra, S.; Parra, L.; Jimenez, J.M.; Lloret, J. Proposal of a Gas Sensor-Based Device for Detecting Adulteration in Essential Oil of Cistus Ladanifer. Sustainability 2023, 15, 3357. [Google Scholar] [CrossRef]
- Escuredo, O.; Rodríguez-Flores, M.S.; Míguez, M.; Seijo, M.C. Multivariate Statistical Approach for the Discrimination of Honey Samples from Galicia (NW Spain) Using Physicochemical and Pollen Parameters. Foods 2023, 12, 1493. [Google Scholar] [CrossRef]
- Seijo, M.C.; Escuredo, O.; Rodríguez-Flores, M.S. Physicochemical Properties and Pollen Profile of Oak Honeydew and Evergreen Oak Honeydew Honeys from Spain: A Comparative Study. Foods 2019, 8, 126. [Google Scholar] [CrossRef]
- Lawag, I.L.; Lim, L.-Y.; Joshi, R.; Hammer, K.A.; Locher, C. A Comprehensive Survey of Phenolic Constituents Reported in Monofloral Honeys around the Globe. Foods 2022, 11, 1152. [Google Scholar] [CrossRef] [PubMed]
Honey | Reference | BRIX Degrees (%) | Humidity (%) | pH | Mm Pfund | Conductivity (mS/cm) | Pollen from Nectariferious (%) | Color |
---|---|---|---|---|---|---|---|---|
Blueweed | m1 | 82.3 | 14.8 | 4.05 | 37 | 0.27 | 50 | Extra light amber |
Blueweed | m2 | 80.5 | 17 | 3.8 | 37.3 | 0.26 | 62 | Extra light amber |
Blueweed | m3 | 80.5 | 17.4 | 4.47 | 43 | 0.3 | 74 | Extra light amber |
Rape | m4 | 81.1 | 18 | 4.2 | 28 | 0.32 | 57 | White |
Lavender | m5 | 82 | 15.1 | 3.6 | 40.3 | 0.16 | 50 | Extra light amber |
Forest | m6 | 18 | 90 | 0.9 |
Type | Sample Number | % BRIX | % Humidity | pH | Conductivity | Pfound Value (mm) | Color | Yeasts Content (10 g) | Description | Grains | Grains Nectariferous | Grains Pollineferous | Polien Type | Nectariferious (%) | Pollen (%) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Lavender | 2065 | 82 | 16 | 4.18 | 0.36 | 47 | 0 | 7783.88 | Very low | 687 | 400 | 287 | 119 | 29.70 | 17.30 |
Lavender | 3002 | 83 | 15 | 4 | 0.41 | 59 | 1 | 12,838.12 | Low | 500 | 400 | 100 | 37 | 9.25 | 7.4 |
Lavender | 3007 | 85 | 17 | 4.01 | 0.48 | 57 | 1 | 18,231.1 | Low | 540 | 446 | 94 | 16 | 3.59 | 2.96 |
Lavender | 3011 | 82 | 16 | 3.98 | 0.45 | 63 | 1 | 12,838.12 | Low | 500 | 400 | 100 | 44 | 11 | 8.8 |
Chestnut | 2026 | 79 | 16.5 | 4.82 | 1.16 | 145 | 2 | 51,625.46 | Low | 500 | 425 | 75 | 166 | 39.06 | 33.2 |
Chestnut | 2075 | 81 | 16.5 | 4.66 | 0.97 | 115 | 2 | 11,707.04 | Low | 803 | 712 | 91 | 399 | 56.03 | 49.68 |
Chestnut | 2094 | 82 | 16.5 | 4.74 | 1 | 116 | 2 | 85,465.32 | Low | 1313 | 1073 | 240 | 454 | 42.3 | 34.5 |
Chestnut | 22,109 | 81.5 | 16 | 4.85 | 1.16 | 131 | 2 | 85,465.32 | Low | 1313 | 1073 | 240 | 620 | 57.78 | 47.22 |
Rosemary | 2001 | 83 | 14 | 4.26 | 0.1 | 14 | 4 | 5558.96 | Very low | 570 | 400 | 170 | 78 | 19.5 | 13.68 |
Rosemary | 2007 | 80 | 17 | 4.12 | 0.09 | 19 | 3 | 2963.47 | Very low | 1004 | 401 | 603 | 125 | 31.17 | 12.45 |
Rosemary | 2030 | 81 | 16 | 3.98 | 0.2 | 33 | 3 | 34,118.37 | Low | 508 | 463 | 45 | 15 | 3.23 | 2.95 |
Rosemary | 2152 | 81 | 16 | 4.03 | 0.23 | 52 | 1 | 4533.88 | Very low | 736 | 400 | 336 | 87 | 21.7 | 11.8 |
Oak | 2027 | 83.5 | 14 | 5.07 | 1.23 | 119 | 2 | - | - | - | - | - | - | - | - |
Oak | 2042 | 83 | 15 | 4.87 | 1.16 | 104 | 5 | - | - | - | - | - | - | - | - |
Oak | 2071 | 79 | 18.5 | 5.02 | 1.17 | 102 | 5 | - | - | - | - | - | - | - | - |
Oak | 2078 | 83 | 14 | 4.26 | 1.21 | 107 | 5 | - | - | - | - | - | - | - | - |
Nº | Sensor | Sensible to |
---|---|---|
1 | MQ2 | LPG (Liquefied Petroleum Gases), Hydrogen and Propane |
2 | MQ3 | Alcohol |
3 | MQ4 | Methane |
4 | MQ5 | Hydrogen and LPG |
5 | MQ7 | Hydrogen and carbon monoxide |
6 | MQ8 | Hydrogen |
7 | MQ9 | Carbon monoxide and liquefied petroleum gases (LPG) |
8 | MQ135 | NH3 (ammonia), NOx, alcohol, benzene, smoke, CO2, etc. |
Precision 1 | Recall 2 | F1-Score 3 | Support 4 | |
---|---|---|---|---|
Rosemary | 0.80 | 0.67 | 0.73 | 6 |
Chestnut | 1.00 | 0.90 | 0.95 | 10 |
Oak | 0.75 | 0.86 | 0.80 | 7 |
Lavender | 0.90 | 1.00 | 0.95 | 9 |
Accuracy | 0.87 | - | 0.88 | 32 |
Macro avg 5 | 0.86 | 0.86 | 0.86 | 32 |
Micro avg 5 | 0.88 | 0.88 | 0.87 | 32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
María, E.G.; Luna, A.M.; Celdrán, A.C.; Muñoz, G.M.; Oates, M.J.; Ruiz-Canales, A. Classification of Monofloral Honeys by Measuring a Low-Cost Electronic Nose Prototype Based on Resistive Metal Oxide Sensors. Agronomy 2023, 13, 2183. https://doi.org/10.3390/agronomy13082183
María EG, Luna AM, Celdrán AC, Muñoz GM, Oates MJ, Ruiz-Canales A. Classification of Monofloral Honeys by Measuring a Low-Cost Electronic Nose Prototype Based on Resistive Metal Oxide Sensors. Agronomy. 2023; 13(8):2183. https://doi.org/10.3390/agronomy13082183
Chicago/Turabian StyleMaría, Eduardo González, Antonio Madueño Luna, Agustín Conesa Celdrán, Gemma Martínez Muñoz, Martin John Oates, and Antonio Ruiz-Canales. 2023. "Classification of Monofloral Honeys by Measuring a Low-Cost Electronic Nose Prototype Based on Resistive Metal Oxide Sensors" Agronomy 13, no. 8: 2183. https://doi.org/10.3390/agronomy13082183
APA StyleMaría, E. G., Luna, A. M., Celdrán, A. C., Muñoz, G. M., Oates, M. J., & Ruiz-Canales, A. (2023). Classification of Monofloral Honeys by Measuring a Low-Cost Electronic Nose Prototype Based on Resistive Metal Oxide Sensors. Agronomy, 13(8), 2183. https://doi.org/10.3390/agronomy13082183