Simulation of Winter Wheat Growth Dynamics and Optimization of Water and Nitrogen Application Systems Based on the Aquacrop Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the Experimental Area
2.2. Experimental Design
2.3. Assessment Indicators and Methods
2.3.1. Aboveground Biomass and Yield
- (1)
- Aboveground biomass
- (2)
- Yield
2.3.2. Canopy Cover
2.3.3. Soil Water Content
2.3.4. WUE and Fertilizer PFP
3. Results
3.1. Model Fundamentals
3.2. Creation of the AquaCrop Modeling Database
3.2.1. Meteorological Data
3.2.2. Crop Data
3.2.3. Field Management Data and Soil Parameter Data
3.3. Testing Methods for Evaluating AquaCrop Model Accuracy
3.4. Calibration and Validation of the Model and Crop Data Calibration
3.4.1. Calibration and Validation of Canopy Cover and Aboveground Biomass
3.4.2. Calibration of Yield, WUE, and PFP
4. Discussion
4.1. Simulation Scenarios
4.2. Scenario Analysis Results and Determination of Optimal Water and Fertilizer Management System
4.2.1. Scenario Analysis Results
4.2.2. Impact of Water–Fertilizer Coupling on Yield, WUE, and PFP
4.2.3. Determination of Optimal Water and Fertilizer Management System Based on Yield and WUE
5. Discussion
5.1. Model Calibration and Validation
5.2. Scenario Simulation and Treatment Analysis
5.3. Water–Fertilizer Coupling Effects and Optimal Regimes
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhao, Y.; Song, H.; Mao, Y. Study on Food Security and Water Resource Security Countermeasures in the Yellow River Basin. People’s Yellow River 2011, 33, 47–49. [Google Scholar]
- Meng, Z.; Liu, A.; Wang, H. Research on the mathematical model of coupled water and fertiliser for water conservation and high yield of winter wheat and summer maize in a two-crop system. China Rural Water Conserv. Hydropower 1999, 11, 13–15+46. [Google Scholar]
- Zhou, J.; Ma, Y.; Wu, M.; Peng, Z.; Wang, Y.; Li, H.; Sheng, L. Water and Nitrogen Utilization and Biological Effects of Winter Wheat under Different Water and Fertilizer Measures. J. Irrig. Drain. 2019, 38, 36–41. [Google Scholar]
- Shang, W.; Zhang, Z.; Zheng, E.; Liu, M. Nitrogen-water coupling affects nitrogen utilization and yield of film-mulched maize under drip irrigation. J. Irrig. Drain. 2019, 38, 49–55. [Google Scholar]
- Liu, J.; Qiu, H.; Zhang, W.; Cai, J.; Wang, X.; Lv, M. The Effects of Irrigation and Biochar Amendment on Yield and Water and Nitrogen Use Efficiency of Winter Wheat. J. Irrig. Drain. 2021, 40, 59–65. [Google Scholar]
- Dai, J.; Li, R.; Li, C.; Lu, Y.; Zou, C. Simlation of Effects of Different Water and Fertilizer Treatments on Maize Growth with Aquacrop in Hetao Irrigated Area. J. Soil Water Conserv. 2021, 35, 312–319. [Google Scholar]
- Hui, L.L.Y.; CaiJia-bing, M.X.M. The Applicability and Application of AquaCrop Model. J. Irrig. Drain. 2011, 30, 28–33. [Google Scholar]
- Lianxi, W.; Jiansheng, W.; Qi, L.; Jiayi, G.; Hongxi, X. A Review on the Research and Application of AquaCrop Model. Adv. Earth Sci. 2015, 30, 1100–1106. [Google Scholar]
- Farahani, H.J.; Izzi, G.; Oweis, T.Y. Parameterization and Evaluation of the Aqua Crop Model for Full and Deficit Irrigated Cotton. Agron. J. 2009, 101, 469–476. [Google Scholar] [CrossRef]
- Araya, A.; Habtu, S.; Hadgu, K.M.; Kebede, A.; Dejene, T. Test of AquaCrop model in simulating biomass and yield of water deficient and irrigated barley (Hordeum vulgare). Agric. Water Manag. 2010, 97, 1838–1846. [Google Scholar] [CrossRef]
- Toumi, J.; Er-Raki, S.; Ezzahar, J.; Khabba, S.; Jarlan, L.; Chehbouni, A. Performance assessment of AquaCrop model for estimating evapotranspiration, soil water content and grain yield of winter wheat in Tensift Al Haouz (Morocco): Application to irrigation management. Agric. Water Manag. 2016, 163, 219–235. [Google Scholar] [CrossRef]
- Andarzian, B.; Bannayan, M.; Steduto, P.; Mazraeh, H.; Barati, M.E.; Barati, M.A.; Rahnama, A. Validation and testing of the AquaCrop model under full and deficit irrigated wheat production in Iran. Agric. Water Manag. 2011, 100, 1–8. [Google Scholar] [CrossRef]
- He, J. Study of the Effect of Different Climatic Years on Tobacco Yield Based on AquaCrop Modeling. Master’s Thesis, Nanjing University of Information Science and Technology, Nanjing, China, 2022. [Google Scholar]
- Ni, L.; Feng, H.; Ren, X. Applicable evaluation of crop model AquaCrop for summer maizeproduction in Loess Plateau Region. Agric. Res. Arid Areas 2015, 33, 40–45. [Google Scholar]
- Pan, H.; Dai, F.; Sui, R. Soil Moisture Modeling of Corn Full-Film Double Ridge Ditch Sowing Based on AquaCrop Model. Trans. Chin. Soc. Agric. Mach. 2022, 53, 78–86. [Google Scholar]
- Meng, Y. Simulation of Winter Wheat Growth in Hebei Piedmont Plain Based on AquaCrop Model. Master’s Thesis, Hebei Agricultural University, Baoding, China, 2021. [Google Scholar]
- Du, W.; He, X.; Shamaila, Z. Yield and Biomass Prediction Testing of AquaCrop Model for Winter Wheat. Trans. Chin. Soc. Agric. Mach. 2011, 42, 174–178+183. [Google Scholar]
- Zhu, C.; Xu, Y.; Huang, M. Simulation and Evaluation of Cycle Irrigation with Brackish and Fresh Water for Winter Wheat Based on AquaCrop Model. Trans. Chin. Soc. Agric. Mach. 2022, 53, 330–342. [Google Scholar]
- Cui, Y.; Lin, H.-H.; Xie, Y. Application study of crop yield prediction based on AquaCrop model in black soil region of Northeast China. Acta Agron. Sin. 2021, 47, 159–168. [Google Scholar] [CrossRef]
- Hsiao, T.C.; Heng, L.; Steduto, P.; Rojas-Lara, B.; Raes, D.; Fereres, E. AquaCrop—The FAO crop model to simulate yield response to water: III. Parameterization and testing for maize. Agron. J. 2009, 101, 448–459. [Google Scholar] [CrossRef]
- Heng, L.K.; Hsiao, T.; Evett, S.; Howell, T.; Steduto, P. Validating the FAO AquaCrop model for irrigated and water deficient field maize. Agron. J. 2009, 101, 488–498. [Google Scholar] [CrossRef]
- Khoshravesh, M.; Mostafazadeh-Fard, B.; Heidarpour, M.; Kiani, A. AquaCrop model simulation under different irrigation water and nitrogen strategies. Water Sci. Technol. 2012, 67, 232–238. [Google Scholar] [CrossRef]
- Karunaratne, A.S.; Azam-Ali, S.N.; Izzi, G.; Steduto, P. Calibration and validation of FAO-AquaCrop model for irrigated and water deficient bambara groundnut. Exp. Agric. 2011, 47, 509–527. [Google Scholar] [CrossRef]
- Zeleke, K.T.; Luckett, D.; Cowley, R. Calibration and testing of the FAO AquaCrop model for canola. Agron. J. 2011, 103, 1610–1618. [Google Scholar] [CrossRef]
- Margarita, G.V.; Elías, F. Combining the simulation crop model AquaCrop with an economic model for the optimization of irrigation management at farm level. Eur. J. Agron. 2012, 36, 21–31. [Google Scholar]
- Nirman, S.; Dirk, R.; Shrawan, K.S. Strategies to improve coreal production in the Terai region (Nepal) during dry season: Simulations with Aquacrop. Procedia Environ. Sci. 2013, 19, 767–775. [Google Scholar]
- Shao, D.G.; Le, Z.H.; Xu, B.L.; Hu, N.J.; Tian, Y.N. Optimization of irrigation scheduling for organic rice based on AquaCrop. Trans. Chin. Soc. Agric. Eng. 2018, 34, 114–122. [Google Scholar]
- Wang, Q.J.; He, H.; Li, L. Research on Soybean Irrigation Schedule Based on AquaCrop Model. Sci. Agric. Sin. 2022, 55, 3365–3379. [Google Scholar]
- Song, J.; Li, J.; Yang, Q.H.; Mao, X.; Yang, J.; Wang, K. Multi-objective optimization and its applicationon irrigation scheduling based on AquaCrop and NSGA-II. J. Hydraul. Eng. 2018, 49, 1284–1295. [Google Scholar]
- Chen, C. Irrigation and Nitrogen Management for Winter Wheat-Summer Maize in Guanzhong Region Based on AquaCrop Model. Master’s Thesis, College of Water Resources and Architectural Engineering, Northwest A&F University, Xianyang, China, 2019. [Google Scholar]
- Ding, C. Water and Nitrogen Interaction and Optimization of Irrigation System under Degradable Film Mulching in Dripped Sandy Farmland. Master’s Thesis, Inner Mongolia Agricultural University, Hohhot, China, 2018. [Google Scholar]
- Zhang, F.C.; Yan, F.L.; Fan, X.K.; Li, G.; Liu, X.; Lu, J.S.; Wang, Y.; Ma, M. Effects of irrigation and fertilization levels on grain yield and water-fertilizer use efficiency of drip-fertigation spring maize in Ningxia. Trans. Chin. Soc. Agric. Eng. 2018, 34, 111–120. [Google Scholar]
- Zhang, J.; Lv, L.; Zhang, L. Application of a quantitative method for crop water-fertiliser coupling type in water and nitrogen allocation for winter wheat in North China. China Agric. Sci. 2019, 52, 2997–3007. [Google Scholar]
- Li, Q.; Shen, J.; Zhao, D. Effect of irrigation frequency on yield and leaf water use efficiency of winter wheat. Trans. CSAE 2011, 27, 33–36. [Google Scholar]
- Raes, D.; Steduto, P.; Hsiao, T.C.; Fereres, E. AquaCrop the FAO crop model to simulate yield response to water: II. Main Algorithms and Software Description. Agron. J. 2009, 101, 438–447. [Google Scholar] [CrossRef]
- Steduto, P.; Hsiao, T.C.; Raes, D.; Fereres, E. AquaCrop—The FAO crop model to simulate yield response to water: I. Concepts and underlying principles. Agron. J. 2009, 101, 426–437. [Google Scholar] [CrossRef]
- Xing, H.; Xiang, S.; Xu, X.; Feng, H.; Yang, G.; Chen, Z. Global Sensitivity Analysis of AquaCrop Crop Model Parameters Based on EFAST Method. Sci. Agric. Sin. 2017, 50, 64–76. [Google Scholar]
- Vanuytrecht, E.; Raes, D.; Steduto, P.; Hsiao, T.C.; Fereres, E.; Heng, L.K.; Vila, M.G.; Moreno, P.M. AquaCrop: FAO’s crop water productivity and yield response model. Environ. Model. Softw. 2014, 62, 351–360. [Google Scholar] [CrossRef]
- Teng, X.W.; Dong, Y.S.; Shen, J.X.; Meng, L.M.; Feng, H.K. Winter Wheat Irrigation Simulation in Arid Area Based on AquaCrop Model. Sci. Agric. Sin. 2015, 48, 4100–4110. [Google Scholar]
- Guo, D. Growth Simulation and Regional Irrigation Schedule Optimization for Winter Wheat and Summer Maize Based on AquaCrop Model in the Fenwei Plain. Ph.D. Thesis, College of Water Resources and Architectural Engineering, Northwest A&F University, Xianyang, China, 2021. [Google Scholar]
- Han, H.F.; Li, Q.Q.; Dong, B.D.; Liu, M.Y. Effects of irrigation frequency and stages on grain yield and quality characteristics of winter wheat. Acta Ecol. Sin. 2010, 30, 1548–1555. [Google Scholar]
- Jia, Z.-L.; Bai, Y.-G.; Xiao, J. Coupling Effect of Water and Fertilizer on Winter Wheat under Drip Irrigation in Northern Xinjiang. J. Irrig. Drain. 2014, 33, 12–15. [Google Scholar]
- Albrizio, R.; Todorovic, M.; Matic, T.; Stellacci, A.M. Comparing the interactive effects of water and nitrogen on durum wheat and barley grown in a Mediterranean environment. Field Crops Res. 2010, 115, 179–190. [Google Scholar] [CrossRef]
- Chen, K.; Zhao, J.; Huang, H. Effect of Different Irrigation Quota on Water Consumption Characteristics and Yeld of Wheat. J. Irrig. Drain. 2017, 36, 65–68, 84. [Google Scholar]
Treatment | Water Control Level | Number of Irrigations | Total Irrigation (mm) | Irrigation Quota (mm) | Nitrogen Application (kg/ha) | Base Fertilizer (kg/ha) | Top-Dressing Fertilizer (kg/ha) |
---|---|---|---|---|---|---|---|
W1N1 | 60%θf | 4 | 45 | 4 × 45 | 67.5 + 52.5 | 67.5 | 52.5 |
W1N2 | 60%θf | 67.5 + 152.5 | 152.5 | ||||
W1N3 | 60%θf | 67.5 + 252.5 | 252.5 | ||||
W2N1 | 70%θf | 6 | 6 × 45 | 67.5 + 52.5 | 52.5 | ||
W2N2 | 70%θf | 67.5 + 152.5 | 152.5 | ||||
W2N3 | 70%θf | 67.5 + 252.5 | 252.5 | ||||
W3N1 | 80%θf | 9 | 9 × 45 | 67.5 + 52.5 | 52.5 | ||
W3N2 | 80%θf | 67.5 + 152.5 | 152.5 | ||||
W3N3 | 80%θf | 67.5 + 252.5 | 252.5 |
Nitrogen Treatment | Parameter Calibration Values | Parameter Calibration Results | |||||
---|---|---|---|---|---|---|---|
Relative Biomass Brel (%) | Maximum Canopy Cover under Fertilizer Stress (%) | Degree of Canopy Decay | Reduced Maximum Canopy Cover (%) | Decrease in Canopy Growth Coefficient (%) | Average Canopy Reduction (%) | Standardized Crop Water Productivity Reduction (%) | |
N1 (120 kg/ha) | 71 | 81.7 | Small | 14 | 4 | 0.40 | 34 |
N2 (220 kg/ha) | 82 | 90.2 | Small | 5 | 3 | 0.28 | 28 |
N3 (320 kg/ha) | 75 | 84.5 | Small | 11 | 3 | 0.30 | 34 |
Model Parameter | Notation | Calibrated Value | Default Parameter Values | Unit |
---|---|---|---|---|
Reference harvest index | HI0 | 48 | 45–50 | % |
Base temperature | Tbase | 0 | 0 | °C |
Upper temperature | Tupper | 26 | 26 | °C |
Canopy growth coefficient | CGC | 3.60 | 1–5 | %/d |
Canopy attenuation coefficient | CDC | 0.313 | 0.1–0.5 | %/d |
Maximum effective root depth | ZX | 1 | 0.8–1.5 | m |
Standardized water productivity | WP* | 17 | 11–22 | g/m3 |
Sowing to seedling emergence time | / | 277 | 150–280 | GDD |
Seeding to maximum canopy cover time | / | 1734 | Time to emergence +1000–2000 | GDD |
Sowing to senescence time | / | 1815 | Time to emergence +1000–2000 | GDD |
Sowing to ripening time | / | 2425 | Time to emergence +1500–2900 | GDD |
Upper threshold for the effect of water stress on canopy growth | Pexp,upper | 0.20 | 0.14–0.26 | / |
Lower threshold for the effect of water stress on canopy growth | Pexp,lower | 0.55 | 0.45–0.84 | / |
Upper threshold for the effect of water stress on stomatal closure | Psto,upper | 0.65 | 0.60–0.67 | / |
Upper threshold for the effect of water stress on canopy senescence | Psen,upper | 0.70 | 1.75–3.25 | / |
Soil Depth (mm) | Soil Particle Size Mass Fraction (%) | Physical Parameter | ||||
---|---|---|---|---|---|---|
Sand | Silt | Clay | Permanent Wilting Point (%) | Field Water Holding Capacity (%) | Saturated Water Content (%) | |
0–20 | 0.17 | 0.64 | 0.19 | 20.4 | 33.3 | 36.5 |
20–40 | 0.11 | 0.65 | 0.24 | 20.9 | 35.5 | 38 |
40–60 | 0.09 | 0.65 | 0.26 | 19.7 | 35.4 | 40 |
60–80 | 0.08 | 0.65 | 0.27 | 21.1 | 35.6 | 38 |
80–100 | 0.05 | 0.61 | 0.34 | 21.4 | 35.7 | 38 |
Model Calibration and Validation | Water and Fertilizer Treatment | Canopy Cover (%) | Aboveground Biomass (t/ha) | Soil Moisture Content (%) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
R2 | NRMSE | d | R2 | NRMSE | d | R2 | NRMSE | d | ||
Calibration | W1N1 | 0.92 | 15.5 | 0.91 | 0.96 | 8.6 | 0.96 | 0.92 | 2.4 | 0.96 |
W1N2 | 0.98 | 7.9 | 0.97 | 0.96 | 7.7 | 0.96 | 0.96 | 4.9 | 0.90 | |
W1N3 | 0.92 | 15.3 | 0.91 | 0.98 | 3.4 | 0.97 | 0.88 | 2.9 | 0.94 | |
W2N1 | 0.96 | 9.4 | 0.96 | 0.96 | 4.6 | 0.98 | 0.72 | 3.7 | 0.90 | |
W2N2 | 0.98 | 7.2 | 0.96 | 0.98 | 6 | 0.96 | 0.94 | 3.9 | 0.92 | |
W2N3 | 0.98 | 10.7 | 0.96 | 0.98 | 4.4 | 0.98 | 0.97 | 3.6 | 0.90 | |
W3N1 | 0.97 | 11.7 | 0.94 | 0.96 | 3.7 | 0.99 | 0.96 | 2.9 | 0.95 | |
W3N2 | 0.98 | 11.4 | 0.95 | 0.98 | 4.2 | 0.97 | 0.96 | 3.9 | 0.91 | |
W3N3 | 0.98 | 11.9 | 0.94 | 0.97 | 3.2 | 0.98 | 0.94 | 3.4 | 0.94 | |
Validation | W1N1 | 0.92 | 11.7 | 0.90 | 0.99 | 3.9 | 0.98 | 0.98 | 6.6 | 0.92 |
W1N2 | 0.94 | 10.4 | 0.92 | 0.99 | 3.4 | 0.98 | 0.95 | 5.7 | 0.93 | |
W1N3 | 0.94 | 8.5 | 0.93 | 0.99 | 4.6 | 0.97 | 0.97 | 5.1 | 0.96 | |
W2N1 | 0.96 | 8.7 | 0.93 | 0.98 | 4.1 | 0.98 | 0.97 | 3 | 0.94 | |
W2N2 | 0.98 | 6.3 | 0.96 | 0.98 | 5.1 | 0.97 | 0.98 | 2.7 | 0.91 | |
W2N3 | 0.98 | 6.1 | 0.96 | 0.98 | 4.6 | 0.91 | 0.99 | 2 | 0.95 | |
W3N1 | 0.98 | 7.5 | 0.94 | 0.99 | 2.8 | 0.99 | 0.98 | 3.2 | 0.94 | |
W3N2 | 0.98 | 5.1 | 0.97 | 0.98 | 6.5 | 0.95 | 0.98 | 4.1 | 0.91 | |
W3N3 | 0.98 | 7 | 0.95 | 0.99 | 3.7 | 0.98 | 0.99 | 3.1 | 0.95 |
Year | Treatment | Yield (kg/ha) | R2 | NRMSE | d | WUE (kg/m3) | R2 | NRMSE | d | PFP (kg/kg) | R2 | NRMSE | d | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Measured | Analog | Measured | Analog | Measured | Analog | |||||||||||
2021–2022 | W1N1 | 6168 | 6012 | 0.99 | 1.78 | 0.98 | 13.27 | 12.99 | 0.95 | 1.78 | 0.98 | 25.70 | 25.05 | 0.99 | 1.61 | 0.99 |
W1N2 | 6586 | 6566 | 13.90 | 13.97 | 27.44 | 27.36 | ||||||||||
W1N3 | 6371 | 6343 | 13.16 | 13.37 | 26.55 | 26.43 | ||||||||||
W2N1 | 7699 | 7605 | 14.03 | 14.43 | 17.50 | 17.28 | ||||||||||
W2N2 | 8138 | 8053 | 14.93 | 15.35 | 18.50 | 18.30 | ||||||||||
W2N3 | 7900 | 7680 | 14.27 | 14.36 | 17.96 | 17.45 | ||||||||||
W3N1 | 7538 | 7477 | 12.14 | 12.11 | 11.78 | 11.68 | ||||||||||
W3N2 | 7842 | 7730 | 12.34 | 12.16 | 12.25 | 12.08 | ||||||||||
W3N3 | 7670 | 7633 | 12.51 | 12.61 | 11.98 | 11.93 | ||||||||||
2022–2023 | W1N1 | 5002 | 5030 | 0.99 | 0.64 | 0.99 | 9.54 | 9.52 | 0.99 | 0.75 | 0.99 | 41.92 | 41.69 | 0.99 | 0.61 | 0.99 |
W1N2 | 5912 | 5902 | 10.69 | 10.66 | 49.18 | 49.27 | ||||||||||
W1N3 | 5573 | 5543 | 10.06 | 10.03 | 46.19 | 46.45 | ||||||||||
W2N1 | 6330 | 6303 | 10.37 | 10.28 | 28.65 | 28.78 | ||||||||||
W2N2 | 7094 | 7003 | 11.46 | 11.39 | 31.83 | 32.25 | ||||||||||
W2N3 | 6650 | 6624 | 10.88 | 10.78 | 30.11 | 30.23 | ||||||||||
W3N1 | 5981 | 5999 | 9.21 | 9.33 | 18.75 | 18.69 | ||||||||||
W3N2 | 6545 | 6591 | 10.11 | 10.06 | 20.60 | 20.46 | ||||||||||
W3N3 | 6232 | 6224. | 9.81 | 9.69 | 19.45 | 19.48 |
Program Number | Water and Fertilizer Treatment | Flooding Time | Irrigation Quota (mm) | Nitrogen Application (kg/hm2) | Program Number | Water and Fertilizer Treatment | Flooding Time | Irrigation Quota (mm) | Nitrogen Application (kg/hm2) |
---|---|---|---|---|---|---|---|---|---|
T1 | W1N1 | W | 180 | 120 | T19 | W2N2 | J | 270 | 220 |
T2 | W1N1 | G | 180 | 120 | T20 | W2N2 | F | 270 | 220 |
T3 | W1N1 | J | 180 | 120 | T21 | W2N3 | W | 270 | 320 |
T4 | W1N1 | F | 180 | 120 | T22 | W2N3 | G | 270 | 320 |
T5 | W1N2 | W | 180 | 220 | T23 | W2N3 | J | 270 | 320 |
T6 | W1N2 | G | 180 | 220 | T24 | W2N3 | F | 270 | 320 |
T7 | W1N2 | J | 180 | 220 | T25 | W3N1 | W | 405 | 120 |
T8 | W1N2 | F | 180 | 220 | T26 | W3N1 | G | 405 | 120 |
T9 | W1N3 | W | 180 | 320 | T27 | W3N1 | J | 405 | 120 |
T10 | W1N3 | G | 180 | 320 | T28 | W3N1 | F | 405 | 120 |
T11 | W1N3 | J | 180 | 320 | T29 | W3N2 | W | 405 | 220 |
T12 | W1N3 | F | 180 | 320 | T30 | W3N2 | G | 405 | 220 |
T13 | W2N1 | W | 270 | 120 | T31 | W3N2 | J | 405 | 220 |
T14 | W2N1 | G | 270 | 120 | T32 | W3N2 | F | 405 | 220 |
T15 | W2N1 | J | 270 | 120 | T33 | W3N3 | W | 405 | 320 |
T16 | W2N1 | F | 270 | 120 | T34 | W3N3 | G | 405 | 320 |
T17 | W2N2 | W | 270 | 220 | T35 | W3N3 | J | 405 | 320 |
T18 | W2N2 | G | 270 | 220 | T36 | W3N3 | F | 405 | 320 |
Program Number | Yield (kg/hm2) | WUE (kg/m3) | PFP (kg/kg) | Program Number | Yield (kg/hm2) | WUE (kg/m3) | PFP (kg/kg) |
---|---|---|---|---|---|---|---|
T1 | 5025 | 10.77 | 41.88 | T19 | 6996 | 14.13 | 31.80 |
T2 | 5045 | 10.89 | 42.04 | T20 | 6991 | 14.11 | 31.78 |
T3 | 5043 | 10.87 | 42.03 | T21 | 6528 | 13.17 | 20.40 |
T4 | 5028 | 10.80 | 41.90 | T22 | 6614 | 13.38 | 20.67 |
T5 | 5838 | 11.92 | 26.54 | T23 | 6611 | 13.37 | 20.66 |
T6 | 5906 | 12.08 | 26.85 | T24 | 6582 | 13.30 | 20.57 |
T7 | 5901 | 12.07 | 26.82 | T25 | 5796 | 10.15 | 48.31 |
T8 | 5868 | 12.00 | 26.67 | T26 | 5804 | 10.21 | 48.37 |
T9 | 5514 | 11.29 | 17.23 | T27 | 5799 | 10.20 | 48.33 |
T10 | 5542 | 11.36 | 17.32 | T28 | 5798 | 10.17 | 48.32 |
T11 | 5539 | 11.36 | 17.31 | T29 | 6584 | 11.33 | 29.93 |
T12 | 5528 | 11.33 | 17.28 | T30 | 6590 | 11.36 | 29.96 |
T13 | 6034 | 12.09 | 50.28 | T31 | 6589 | 11.36 | 29.95 |
T14 | 6067 | 12.30 | 50.56 | T32 | 6588 | 11.35 | 29.95 |
T15 | 6066 | 12.26 | 50.55 | T33 | 6221 | 10.94 | 19.44 |
T16 | 6054 | 12.19 | 50.45 | T34 | 6223 | 10.97 | 19.45 |
T17 | 6985 | 14.07 | 31.75 | T35 | 6223 | 10.97 | 19.45 |
T18 | 6998 | 14.15 | 31.81 | T36 | 6222 | 10.95 | 19.44 |
Program Number | Flooding Treatment | Fertilizer Treatment | Yield (kg/hm2) | WUE (kg/m3) | PFP (kg/kg) |
---|---|---|---|---|---|
T2 | W1 | N1 | 5035 ± 10 cC | 10.83 ± 0.057 cB | 41.96 ± 0.086 aC |
T6 | W1 | N2 | 5878 ± 31 aC | 12.02 ± 0.074 aB | 26.72 ± 0.144 bC |
T10 | W1 | N3 | 5530 ± 12 bC | 11.34 ± 0.033 bB | 17.28 ± 0.04 cC |
T14 | W2 | N1 | 6055 ± 15 cA | 12.21 ± 0.092 cA | 50.46 ± 0.128 aA |
T18 | W2 | N2 | 6992 ± 5 aA | 14.12 ± 0.034 aA | 31.79 ± 0.027 bA |
T22 | W2 | N3 | 6584 ± 39 bA | 13.31 ± 0.097 bA | 20.58 ± 0.125 cA |
T26 | W3 | N1 | 5799 ± 3 cB | 10.18 ± 0.028 cC | 48.33 ± 0.027 aB |
T30 | W3 | N2 | 6588 ± 2 aB | 11.35 ± 0.014 aC | 29.95 ± 0.012 bB |
T34 | W3 | N3 | 6222 ± 1 bB | 10.96 ± 0.015 bC | 19.44 ± 0.005 cB |
Flooding treatment | ** | ** | * | ||
Fertilizer treatment | ** | ** | ** | ||
Flooding treatment × Fertilizer treatment | ** | ** | * |
Dependent Variable z | Regression Equation | R2 | Combination When Z Is the Maximum Value | ||
---|---|---|---|---|---|
X (mm) | Y (kg/hm2) | Zmax | |||
Yield (kg/ha) | Z = −2917.942 + 41.090x + 30.087y − 0.00196xy − 0.06412x2 − 0.06156y2 | 0.9959 | 317.900 | 242.580 | 7189.340 |
WUE (kg/m3) | Z = −5.267 + 0.096x + 0.047y + 5.100 × 10−6xy − 1.705 × 10−4x2 − 1.012 × 10−4y2 | 0.9858 | 281.610 | 236.120 | 14.022 |
PFP (kg/kg) | Z = 41.392 + 0.213x − 0.271y − 8.303× 10−5xy − 3.349 × 10−4x2 + 3.530 × 10−4y2 | 0.9904 | 332.000 | 120.000 | 50.547 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Wang, D.; Liu, T.; Liu, Y.; Luo, M.; Li, Y.; Zhou, W.; Yang, M.; Liang, S.; Li, K. Simulation of Winter Wheat Growth Dynamics and Optimization of Water and Nitrogen Application Systems Based on the Aquacrop Model. Agronomy 2024, 14, 110. https://doi.org/10.3390/agronomy14010110
Wang S, Wang D, Liu T, Liu Y, Luo M, Li Y, Zhou W, Yang M, Liang S, Li K. Simulation of Winter Wheat Growth Dynamics and Optimization of Water and Nitrogen Application Systems Based on the Aquacrop Model. Agronomy. 2024; 14(1):110. https://doi.org/10.3390/agronomy14010110
Chicago/Turabian StyleWang, Shunsheng, Diru Wang, Tengfei Liu, Yulong Liu, Minpeng Luo, Yuan Li, Wang Zhou, Mingwei Yang, Shuaitao Liang, and Kaixuan Li. 2024. "Simulation of Winter Wheat Growth Dynamics and Optimization of Water and Nitrogen Application Systems Based on the Aquacrop Model" Agronomy 14, no. 1: 110. https://doi.org/10.3390/agronomy14010110
APA StyleWang, S., Wang, D., Liu, T., Liu, Y., Luo, M., Li, Y., Zhou, W., Yang, M., Liang, S., & Li, K. (2024). Simulation of Winter Wheat Growth Dynamics and Optimization of Water and Nitrogen Application Systems Based on the Aquacrop Model. Agronomy, 14(1), 110. https://doi.org/10.3390/agronomy14010110