Potassium and Sulfur Fertilizer Sources Influence Alfalfa Yield and Nutritive Value and Residual Soil Characteristics in an Arid, Moderately Low-Potassium Soil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Selection and Experimental Design
2.2. Statistical Analysis
3. Results and Discussion
3.1. Forage Yield and Nutritive Value
3.2. Residual Soil Characteristics
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hawkesford, M.; Horst, W.; Kichey, T.; Lambers, H.; Schjoerring, H.J.; Moller, I.S.; White, S. Functions of macronutrients. In Marschner’s Mineral Nutrition of Higher Plants, 3rd ed.; Marschner, P., Ed.; Academic Press: Waltham, MA, USA, 2012; pp. 135–189. [Google Scholar] [CrossRef]
- Hanson, R.G.; MacGregor, J.M. Soil and alfalfa plant characteristics as affected by a decade of fertilization. Agron. J. 1966, 58, 3–5. [Google Scholar] [CrossRef]
- Collins, M.; Lang, D.J.; Kelling, K.A. Effects of phosphorus, potassium, and sulfur on alfalfa nitrogen-fixation under field conditions. Agron. J. 1986, 78, 959–963. [Google Scholar] [CrossRef]
- Berg, W.K.; Cunningham, S.M.; Brouder, S.M.; Joern, B.C.; Johnson, K.D.; Santini, J.B.; Volenec, J.J. The long-term impact of phosphorus and potassium fertilization on alfalfa yield and yield components. Crop Sci. 2007, 47, 2198–2209. [Google Scholar] [CrossRef]
- Kitchen, N.R.; Buchholz, D.D.; Nelson, C.J. Potassium fertilizer and potato leafhopper effects on alfalfa growth. Agron. J. 1990, 82, 1069–1074. [Google Scholar] [CrossRef]
- Matches, A.G.; Mott, G.O.; Bula, R.J. Vegetative development of alfalfa seedlings under varying levels of shading and potassium fertilization. Agron. J. 1962, 54, 541–543. [Google Scholar] [CrossRef]
- Teixeira, E.I.; Moot, D.J.; Mickelbart, M.V. Seasonal patterns of root C and N reserves of lucerne crops (Medicago sativa L.) grown in a temperate climate were affected by defoliation regime. Eur. J. Agron. 2007, 26, 10–20. [Google Scholar] [CrossRef]
- Wang, M.; Zheng, Q.; Shen, Q.; Guo, S. The critical role of potassium in plant stress response. Int. J. Mol. Sci. 2013, 14, 7370–7390. [Google Scholar] [CrossRef] [PubMed]
- Berg, W.K.; Cunningham, S.M.; Brouder, S.M.; Joern, B.C.; Johnson, K.D.; Volenec, J.J. Influence of phosphorus and potassium fertilization on alfalfa yield and yield components. Crop Sci. 2005, 45, 297–304. [Google Scholar] [CrossRef]
- Lloveras, J.; Chocarro, C.; Torres, L.; Viladrich, D.; Costafreda, R.; Santiveri, F. Alfalfa yield components and soil potassium depletion as affected by potassium fertilization. Agron. J. 2012, 104, 729–734. [Google Scholar] [CrossRef]
- Wolf, D.D.; Kimbrough, E.L.; Blaser, R.E. Photosynthetic efficiency in alfalfa with increasing potassium nutrition. Crop Sci. 1976, 16, 292–294. [Google Scholar] [CrossRef]
- Kafkafi, U.; Gilat, R.; Yoles, D.; Noy, Y. Studies on fertilization of field grown irrigated alfalfa. I. Effect of potassium source and time of application. Plant Soil 1977, 46, 165–173. [Google Scholar] [CrossRef]
- Li, R.; Volenec, J.J.; Joern, B.C.; Cunningham, S.M. Potassium and nitrogen effects on carbohydrate and protein metabolism in alfalfa roots. J. Plant Nutr. 1997, 20, 511–529. [Google Scholar] [CrossRef]
- Smith, D. Effects of potassium topdressing a low fertility silt loam soil on alfalfa herbage yields and composition and on soil K values. Agron. J. 1975, 67, 60–64. [Google Scholar] [CrossRef]
- Lanyon, L.E.; Griffith, W.K. Nutrition and fertilizer use. In Alfalfa and Alfalfa Improvement; Hanson, A.A., Barnes, D.K., Hill, R.R., Jr., Eds.; ASA, CSSA, and SSSA: Madison, WI, USA, 1988; pp. 333–372. [Google Scholar]
- Flynn, R. Interpreting Soil Tests: Unlock the Secrets of Your Soil; New Mexico State University Cooperative Extension: Las Cruces, NM, USA, 2015; Volume 676, pp. 1–12. [Google Scholar]
- Macolino, S.; Lauriault, L.M.; Rimi, F.; Ziliotto, U. Phosphorus and Potassium Fertilizer Effects on Alfalfa and Soil in a Non-Limited Soil. Agron. J. 2013, 105, 1613–1618. [Google Scholar] [CrossRef]
- Collins, M.; Duke, S.H. Influence of potassium-fertilizer rate and form on photosynthesis and N2 fixation of alfalfa. Crop Sci. 1981, 21, 481–485. [Google Scholar] [CrossRef]
- Duke, S.H.; Collins, M.; Soberalske, R.M. Effects of potassium fertilization on nitrogen fixation and nodule enzymes of nitrogen metabolism in alfalfa. Crop Sci. 1980, 20, 213–219. [Google Scholar] [CrossRef]
- Bourget, S.J.; Carson, R.B. Effect of soil moisture on yield, water use efficiency and mineral composition of oats and alfalfa grown at two fertility levels. Can. J. Soil Sci. 1962, 42, 7–12. [Google Scholar] [CrossRef]
- Lathwell, D.J.; Vittum, M.T. Response of alfalfa to irrigation and fertility level. Agron. J. 1962, 54, 195–198. [Google Scholar] [CrossRef]
- Grewal, H.S.; Williams, R. Influence of potassium fertilization on leaf to stem ratio, nodulation, herbage yield, leaf drop, and common leaf spot disease of alfalfa. J. Plant Nutr. 2002, 25, 781–795. [Google Scholar] [CrossRef]
- Pant, H.K.; Mislevy, P.; Rechcigl, J.E. Effect of phosphorous and potassium on forage nutritive value and quantity. Agron. J. 2004, 96, 1299–1305. [Google Scholar] [CrossRef]
- Meyer, R.D.; Matthews, M.C. Potassium fertilization and how it effects yield and quality of alfalfa. In Proceedings of the California Alfalfa Symposium, Modesto, CA, USA, 7–8 December 1995; pp. 127–133. Available online: https://alfalfasymposium.ucdavis.edu/+symposium/proceedings/1995/95-127.Pdf (accessed on 16 August 2013).
- Jungers, J.M.; Kaiser, D.E.; Lamb, J.F.S.; Lamb, J.A.; Noland, R.L.; Samac, D.A.; Wells, M.S.; Sheaffer, C.C. Potassium fertilization affects alfalfa forage yield, nutritive value, root traits, and persistence. Agron. J. 2019, 111, 2843–2852. [Google Scholar] [CrossRef]
- Glover, C.R.; Baker, R.D. Fertilizer Guide for New Mexico; New Mexico State University, Cooperative Extension Service: Las Cruces, NM, USA, 1990. [Google Scholar]
- Najafi-Ghiri, M.; Abtahi, A. Potassium fixation in soil size fractions of arid soils. Soil Water Res. 2013, 8, 49–55. [Google Scholar] [CrossRef]
- Ghiri, M.N.; Abtahi, A.; Hashemi, S.S.; Jaberian, F. Potassium release from sand, silt and clay fractions in calcareous soils of southern Iran. Arch. Agron. Soil Sci. 2012, 58, 1439–1454. [Google Scholar] [CrossRef]
- Schneider, A.; Villemin, P. Importance of texture and CEC in K fertilization advice. In Proceedings of the 23rd Colloquium of the International Potash Institute, Prague, Czechoslovakia, 12–16 October 1992; pp. 395–398. [Google Scholar]
- Markus, D.K.; Battle, W.R. Soil and plant responses to long-term fertilization of alfalfa (Medicago sativa L.). Agron. J. 1965, 57, 613–616. [Google Scholar] [CrossRef]
- Havlin, J.L.; Westfall, D.G.; Golus, H.M. Six years of phosphorus and potassium fertilization of irrigated alfalfa on calcareous soils. Soil Sci. Soc. Am. J. 1984, 48, 331–336. [Google Scholar] [CrossRef]
- Favre, J.R.; Castiblanco, T.M.; Combs, D.K.; Wattiaux, M.; Picasso, V.D. Forage nutritive value and predicted fiber digestibility of Kernza intermediate wheatgrass in monoculture and in mixture with red clover during the first production year. Anim. Feed. Sci. Technol. 2019, 258, 114298. [Google Scholar] [CrossRef]
- SAS Institute. The SAS 9.4 for Windows; SAS Institute, Inc.: Cary, NC, USA, 2013. [Google Scholar]
- Saxton, A. A macro for converting mean separation output to letter groupings in Proc Mixed. In Proceedings of the 23rd SAS Users Group International, Nashville, TN, USA, 22–25 March 1998; SAS Institute: Cary, NC, USA, 1998; pp. 1243–1246. [Google Scholar]
- Sorensen, R.C.; Penas, E.J.; Alexander, U.U. Sulfur content and yield of alfalfa in I’elation to plant nitrogen and sulfur fertilization. Agron. J. 1968, 60, 20–23. [Google Scholar] [CrossRef]
- Caldwell, A.C.; Seim, E.C.; Rehm, G.W. Sulfur effects on the elemental composition of alfalfa (Medicago sativa L.) and corn (Zea mays L.). Agron. J. 1969, 61, 632–634. [Google Scholar] [CrossRef]
- Hopkins, B.; Ellsworth, J. Phosphorus availability with alkaline/calcareous soil. In Proceedings of the Western Nutrient Management Conference, Salt Lake City, UT, USA, 2 March 2005; Volume 6. [Google Scholar]
- Mortvedt, J.J.; Giordano, P.M.; Lindsay, W.L. Climatic and soil conditions promoting micronutrient deficiency in plants. In Micronutrients in Agriculture; Soil Science Society of America: Madison, WI, USA, 1972. [Google Scholar]
- Tisdale, L.S.; Nelson, L.N.; Beaton, D.J.; Havlin, L.H. Soil Fertility and Fertilizer, 5th ed.; Prentice Hall: Hoboken, NJ, USA, 1993. [Google Scholar]
- Zielewicz, W.; Grzebisz, W.; Biber, M. Mutual Effect of Gypsum and Potassium on Nutrient Productivity in the Alfalfa–Grass Sward—A Case Study. Plants 2023, 12, 2250. [Google Scholar] [CrossRef]
Treatment | Abbreviation |
---|---|
Control | Control |
Muriate of potash | MOP |
Sulfate of potash | SOP |
Potassium nitrate | KNO3 |
MOP + ammonium sulfate | MOP + AS |
SOP + ammonium sulfate | SOP + AS |
KNO3 + ammonium sulfate | KNO3 + AS |
MOP + gypsum | MOP + gypsum |
SOP + gypsum | SOP + gypsum |
KNO3 + gypsum | KNO3 + gypsum |
Soil pH, 1:1 | 8.05 |
Excess Lime | HIGH |
Organic Matter, % | 1.97 |
Nitrate-N, ppm N | 23.4 |
Olsen P, ppm P | 4.3 |
Potassium, ppm K | 84.1 |
Sulfate, ppm S | 35.1 |
Zinc, ppm Zn | 1.76 |
Iron, ppm Fe | 3.2 |
Manganese, ppm Mn | 4.7 |
Copper, ppm Cu | 0.26 |
Calcium, ppm Ca | 19,070 |
Magnesium, ppm Mg | 477 |
Sodium, ppm Na | 271 |
CEC/Sum of Cations me/100 g | 120.8 |
2019 | 2020 | |||||||
---|---|---|---|---|---|---|---|---|
Month | Monthly Precip. (cm) | Monthly Max. Temp. (°C) | Monthly Min. Temp. (°C) | Monthly Avg. Temp. (°C) | Monthly Precip. (cm) | Monthly Max. Temp. (°C) | Monthly Min. Temp. (°C) | Monthly Avg. Temp. (°C) |
April | 0.64 | 26.0 | 7.7 | 17.8 | 0.00 | 26.1 | 7.8 | 17.8 |
May | 0.15 | 28.3 | 10.6 | 20.0 | 0.03 | 31.7 | 13.9 | 23.9 |
June | 4.85 | 33.9 | 17.8 | 26.1 | 0.46 | 35.6 | 18.3 | 27.2 |
July | 2.77 | 36.1 | 20.6 | 28.3 | 2.74 | 37.2 | 20.0 | 28.9 |
August | 3.02 | 35.6 | 20.0 | 27.8 | 2.06 | 36.7 | 20.6 | 28.9 |
September | 2.92 | 31.1 | 17.2 | 23.9 | 1.85 | 30.6 | 14.4 | 22.2 |
October | 0.74 | 23.9 | 8.3 | 16.1 | 0.28 | 27.2 | 8.3 | 17.8 |
November | 4.17 | 17.8 | 2.8 | 10.0 | 0.00 | 21.1 | 12.2 | 3.9 |
Seasonal Total | 19.25 | - | - | - | 7.42 | - | - | - |
Seasonal Avg. | - | 29.1 | 13.1 | 21.3 | - | 30.8 | 14.4 | 21.3 |
Treatment (TRT) | Total Yield | CP | ADF | NDF | RFV | TDN | NDFD | IVTDMD | RFQ | P | K | Ca | Mg | S | Zn | Fe |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
kg ha−1 | % | % | % | ppm | ||||||||||||
Control | 19,864 | 28.4 | 22.1 | 26.7 | 267 | 65.8 | 49.5 | 85.6 | 273 | 0.35 | 2.3 | 1.86 | 0.49 | 0.54 | 33.9 | 311 |
MOP | 19,771 | 28.9 | 20.3 | 24.7 | 287 | 67.1 | 49.6 | 86.6 | 293 | 0.35 | 2.2 | 1.88 | 0.46 | 0.60 | 34.3 | 429 |
SOP | 20,923 | 28.4 | 21.9 | 26.1 | 270 | 65.9 | 51.6 | 85.9 | 284 | 0.36 | 2.5 | 1.73 | 0.47 | 0.68 | 33.2 | 214 |
KNO3 | 19,858 | 29.0 | 20.7 | 25.1 | 280 | 66.9 | 51.5 | 86.6 | 292 | 0.35 | 2.4 | 1.85 | 0.48 | 0.61 | 35.6 | 274 |
MOP + AS | 20,784 | 28.2 | 21.9 | 26.5 | 263 | 65.9 | 49.9 | 85.7 | 273 | 0.35 | 2.4 | 1.79 | 0.48 | 0.62 | 35.0 | 248 |
SOP + AS | 22,046 | 31.2 | 22.7 | 28.8 | 252 | 65.3 | 44.9 | 84.8 | 247 | 0.34 | 2.3 | 1.91 | 0.42 | 0.78 | 36.0 | 518 |
KNO3 + AS | 20,855 | 29.0 | 20.7 | 24.9 | 292 | 66.8 | 53.8 | 86.9 | 310 | 0.36 | 2.4 | 1.78 | 0.48 | 0.60 | 34.1 | 203 |
MOP + Gypsum | 18,286 | 29.7 | 20.8 | 25.6 | 280 | 66.7 | 52.4 | 86.7 | 293 | 0.36 | 2.4 | 2.07 | 0.49 | 0.57 | 37.5 | 249 |
SOP + Gypsum | 19,904 | 27.8 | 22.4 | 27.0 | 254 | 65.5 | 49.3 | 85.3 | 263 | 0.34 | 2.4 | 1.99 | 0.46 | 0.71 | 34.1 | 205 |
KNO3 + Gypsum | 18,732 | 27.8 | 22.5 | 26.9 | 255 | 65.5 | 49.1 | 85.2 | 264 | 0.34 | 2.4 | 2.04 | 0.47 | 0.58 | 34.2 | 215 |
LSD (0.05) | 801 | 1.4 | NS | 1.8 | NS | NS | 5.4 | NS | 42 | NS | NS | 0.12 | NS | 0.07 | NS | 244 |
p-Values | ||||||||||||||||
TRT | <0.001 | 0.023 | 0.672 | 0.042 | 0.934 | 0.328 | 0.021 | 0.485 | 0.018 | 0.558 | 0.811 | 0.032 | 0.414 | 0.037 | 0.741 | 0.017 |
Year | 0.002 | 0.563 | 0.956 | 0.347 | 0.735 | 0.251 | 0.453 | 0.890 | 0.114 | 0.214 | 0.575 | 0.286 | 0.351 | 0.682 | 0.532 | 0.489 |
TRT × Year | 0.816 | 0.472 | 0.648 | 0.156 | 0.954 | 0.743 | 0.491 | 0.738 | 0.143 | 0.540 | 0.278 | 0.618 | 0.753 | 0.372 | 0.562 | 0.945 |
TRT | pH | S.Salts (mmho/cm) | OM, % | NO3-N | P | K | SO4-S | Zn | Fe | Mn | Cu | Ca | Mg | Na | CEC | Water Sol K, ppm |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0–30 cm depth | ||||||||||||||||
ppm | ||||||||||||||||
Control | 7.7 | 2.10 | 1.65 | 1.50 | 7.93 | 67 | 5410 | 2.32 | 1.80 | 2.00 | 0.24 | 21,385 | 414 | 121 | 112 | 19 |
MOP | 7.7 | 3.84 | 1.73 | 1.30 | 7.33 | 95 | 5531 | 2.20 | 1.50 | 1.98 | 0.26 | 22,165 | 408 | 124 | 115 | 34 |
SOP | 7.8 | 1.56 | 1.88 | 3.25 | 7.70 | 100 | 5982 | 2.29 | 1.83 | 1.73 | 0.28 | 21,955 | 375 | 115 | 114 | 43 |
KNO3 | 7.7 | 1.61 | 1.70 | 1.48 | 6.55 | 80 | 5584 | 1.66 | 1.65 | 2.00 | 0.19 | 21,973 | 409 | 129 | 114 | 27 |
MOP + AS | 7.7 | 1.51 | 1.65 | 2.25 | 8.33 | 92 | 5795 | 2.09 | 1.90 | 2.25 | 0.23 | 22,028 | 414 | 138 | 114 | 31 |
SOP + AS | 7.8 | 3.68 | 1.80 | 3.72 | 6.83 | 93 | 6168 | 1.67 | 1.85 | 2.63 | 0.25 | 22,683 | 373 | 137 | 117 | 36 |
KNO3 + AS | 7.7 | 2.79 | 1.80 | 2.10 | 7.93 | 98 | 5791 | 1.65 | 1.78 | 2.15 | 0.21 | 22,118 | 396 | 128 | 115 | 39 |
MOP + Gypsum | 7.9 | 1.59 | 1.63 | 1.99 | 6.63 | 77 | 5711 | 2.00 | 2.05 | 2.20 | 0.24 | 21,810 | 404 | 131 | 113 | 37 |
SOP + Gypsum | 7.9 | 1.83 | 1.70 | 3.15 | 7.73 | 94 | 5875 | 1.45 | 1.53 | 2.40 | 0.21 | 22,743 | 428 | 130 | 118 | 39 |
KNO3 + Gypsum | 7.9 | 1.69 | 1.82 | 1.93 | 6.25 | 81 | 5769 | 2.04 | 1.83 | 1.98 | 0.23 | 21,858 | 439 | 146 | 114 | 29 |
LSD (0.05) | NS | NS | NS | 1.29 | NS | 30 | 358 | NS | NS | NS | NS | NS | NS | NS | NS | 17 |
30–60 cm depth | ||||||||||||||||
Control | 7.7 | 1.49 | 0.80 | 1.20 | 6.15 | 45 | 5087 | 0.52 | 2.20 | 3.68 | 0.36 | 19,815 | 437 | 177 | 105 | 26 |
MOP | 7.7 | 1.16 | 0.80 | 0.70 | 5.28 | 68 | 5700 | 0.51 | 2.95 | 2.70 | 0.26 | 20,020 | 492 | 182 | 105 | 26 |
SOP | 7.8 | 3.15 | 0.83 | 2.43 | 4.90 | 69 | 5987 | 0.50 | 2.58 | 2.85 | 0.28 | 21,310 | 424 | 125 | 111 | 22 |
KNO3 | 7.7 | 2.45 | 0.83 | 1.08 | 5.38 | 67 | 5494 | 0.61 | 4.80 | 3.93 | 0.37 | 19,050 | 413 | 126 | 99 | 25 |
MOP + AS | 7.8 | 1.46 | 0.70 | 1.28 | 4.60 | 62 | 6127 | 0.58 | 3.43 | 3.08 | 0.22 | 19,870 | 429 | 162 | 104 | 25 |
SOP + AS | 7.8 | 1.36 | 0.75 | 2.30 | 7.15 | 67 | 6437 | 0.48 | 2.70 | 2.53 | 0.30 | 20,358 | 474 | 166 | 107 | 23 |
KNO3 + AS | 7.7 | 1.60 | 0.75 | 1.08 | 5.05 | 72 | 6281 | 0.40 | 2.53 | 2.68 | 0.24 | 20,105 | 402 | 117 | 105 | 28 |
MOP + Gypsum | 7.9 | 1.62 | 0.73 | 1.03 | 3.83 | 74 | 5620 | 0.45 | 2.63 | 2.48 | 0.30 | 19,730 | 452 | 157 | 103 | 20 |
SOP + Gypsum | 7.9 | 1.46 | 0.77 | 1.23 | 4.20 | 59 | 5798 | 0.32 | 3.00 | 2.43 | 0.22 | 20,183 | 450 | 156 | 105 | 23 |
KNO3 + Gypsum | 7.8 | 1.22 | 0.80 | 2.23 | 3.65 | 77 | 5621 | 0.39 | 2.35 | 2.18 | 0.28 | 20,918 | 425 | 177 | 110 | 22 |
LSD (0.05) | NS | 1.65 | NS | 1.04 | 3.10 | 19 | 431 | NS | NS | 1.41 | NS | NS | NS | 59 | NS | NS |
TRT | pH | S.Salts (mmho/cm) | OM, % | NO3-N | P | K | SO4-S | Zn | Fe | Mn | Cu | Ca | Mg | Na | CEC | Water Sol K, ppm |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0–30 cm depth | ||||||||||||||||
ppm | ||||||||||||||||
Control | 7.9 | 1.33 | 1.60 | 2.45 | 6.75 | 62 | 6540 | 1.68 | 2.75 | 3.83 | 0.25 | 22,205 | 321 | 63 | 114 | 11 |
MOP | 7.9 | 1.45 | 1.63 | 2.83 | 6.43 | 72 | 6653 | 1.54 | 2.38 | 3.63 | 0.27 | 22,320 | 359 | 63 | 115 | 36 |
SOP | 7.9 | 1.61 | 1.65 | 3.98 | 6.98 | 90 | 6899 | 1.19 | 2.95 | 4.03 | 0.32 | 22,325 | 395 | 68 | 116 | 30 |
KNO3 | 7.9 | 1.48 | 1.65 | 3.28 | 4.68 | 76 | 6691 | 1.07 | 2.60 | 3.43 | 0.24 | 22,415 | 397 | 74 | 116 | 29 |
MOP + AS | 7.9 | 1.48 | 1.63 | 3.13 | 6.08 | 74 | 6798 | 1.34 | 2.78 | 3.83 | 0.25 | 22,025 | 318 | 81 | 114 | 22 |
SOP + AS | 8.0 | 1.48 | 1.90 | 3.96 | 7.35 | 82 | 7059 | 1.73 | 2.68 | 3.90 | 0.29 | 22,255 | 378 | 84 | 115 | 27 |
KNO3 + AS | 7.9 | 1.48 | 1.78 | 3.65 | 8.20 | 80 | 6574 | 1.52 | 2.88 | 4.40 | 0.33 | 22,008 | 474 | 94 | 115 | 27 |
MOP + Gypsum | 8.0 | 1.48 | 1.25 | 2.53 | 6.20 | 81 | 6777 | 1.24 | 2.75 | 3.30 | 0.28 | 22,638 | 431 | 81 | 118 | 45 |
SOP + Gypsum | 7.9 | 1.48 | 1.45 | 2.55 | 5.73 | 84 | 6835 | 1.20 | 2.95 | 3.58 | 0.31 | 21,855 | 401 | 69 | 113 | 46 |
KNO3 + Gypsum | 8.0 | 1.48 | 1.28 | 2.45 | 6.70 | 85 | 6646 | 1.23 | 2.65 | 3.03 | 0.28 | 22,533 | 420 | 75 | 117 | 30 |
LSD (0.05) | NS | 1.48 | NS | NS | 2.12 | 18 | 234 | NS | NS | NS | NS | NS | NS | 42 | NS | 14 |
30–60 cm depth | ||||||||||||||||
Control | 8.0 | 0.78 | 1.37 | 3.13 | 6.60 | 65 | 6957 | 1.55 | 2.43 | 3.13 | 0.21 | 22,617 | 335 | 61 | 117 | 24 |
MOP | 7.9 | 1.51 | 1.48 | 4.45 | 5.35 | 70 | 6748 | 1.29 | 2.55 | 3.43 | 0.25 | 22,488 | 419 | 88 | 117 | 24 |
SOP | 7.9 | 1.57 | 1.73 | 3.23 | 7.03 | 84 | 6513 | 1.71 | 2.63 | 3.65 | 0.29 | 22,248 | 412 | 74 | 115 | 27 |
KNO3 | 7.9 | 1.54 | 1.58 | 3.78 | 12.85 | 74 | 6755 | 2.22 | 2.68 | 3.70 | 0.30 | 22,285 | 418 | 105 | 116 | 79 |
MOP + AS | 7.9 | 1.47 | 1.53 | 3.75 | 5.28 | 67 | 6678 | 1.33 | 2.65 | 3.45 | 0.26 | 22,358 | 380 | 84 | 116 | 22 |
SOP + AS | 8.0 | 1.62 | 1.30 | 3.95 | 4.70 | 75 | 6453 | 1.05 | 2.60 | 3.03 | 0.29 | 22,713 | 422 | 89 | 118 | 31 |
KNO3 + AS | 7.8 | 1.63 | 2.00 | 4.58 | 9.38 | 91 | 6754 | 2.42 | 2.75 | 3.63 | 0.29 | 21,868 | 351 | 77 | 113 | 33 |
MOP + Gypsum | 7.9 | 1.66 | 1.78 | 4.33 | 6.58 | 76 | 6969 | 1.38 | 2.68 | 3.70 | 0.26 | 22,483 | 386 | 95 | 117 | 33 |
SOP + Gypsum | 7.9 | 3.37 | 1.73 | 3.38 | 14.85 | 78 | 6848 | 1.07 | 2.90 | 4.05 | 0.31 | 21,243 | 325 | 75 | 110 | 33 |
KNO3 + Gypsum | 7.9 | 2.27 | 1.28 | 2.78 | 5.75 | 57 | 6792 | 1.14 | 2.68 | 3.28 | 0.22 | 22,233 | 298 | 62 | 114 | 22 |
LSD (0.05) | NS | 0.64 | NS | NS | 4.60 | 30 | NS | NS | NS | NS | NS | NS | 89 | NS | NS | 12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Darapuneni, M.K.; Lauriault, L.M.; Martinez, G.K.; Djaman, K.; Lombard, K.A.; Dodla, S.K. Potassium and Sulfur Fertilizer Sources Influence Alfalfa Yield and Nutritive Value and Residual Soil Characteristics in an Arid, Moderately Low-Potassium Soil. Agronomy 2024, 14, 117. https://doi.org/10.3390/agronomy14010117
Darapuneni MK, Lauriault LM, Martinez GK, Djaman K, Lombard KA, Dodla SK. Potassium and Sulfur Fertilizer Sources Influence Alfalfa Yield and Nutritive Value and Residual Soil Characteristics in an Arid, Moderately Low-Potassium Soil. Agronomy. 2024; 14(1):117. https://doi.org/10.3390/agronomy14010117
Chicago/Turabian StyleDarapuneni, Murali K., Leonard M. Lauriault, Gasper K. Martinez, Koffi Djaman, Kevin A. Lombard, and Syam K. Dodla. 2024. "Potassium and Sulfur Fertilizer Sources Influence Alfalfa Yield and Nutritive Value and Residual Soil Characteristics in an Arid, Moderately Low-Potassium Soil" Agronomy 14, no. 1: 117. https://doi.org/10.3390/agronomy14010117
APA StyleDarapuneni, M. K., Lauriault, L. M., Martinez, G. K., Djaman, K., Lombard, K. A., & Dodla, S. K. (2024). Potassium and Sulfur Fertilizer Sources Influence Alfalfa Yield and Nutritive Value and Residual Soil Characteristics in an Arid, Moderately Low-Potassium Soil. Agronomy, 14(1), 117. https://doi.org/10.3390/agronomy14010117