The Impact of Accumulating Herbage Masses in Autumn on Perennial Ryegrass Sward Characteristics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site
2.2. Experimental Design
2.3. Herbage Mass
2.4. Light at the Base of the Sward
2.5. Leaf Stage
2.6. Free Leaf Lamina, Total Green Leaf Lamina Length and Internode Elongation
2.7. Statistical Analysis
- µ = mean value for the variable;
- e_jkl = residual error term;
- Y_jkl = target herbage mass (kg DM ha−1), light at the base of the sward (%), leaf stage (leaves), free leaf lamina (cm), total green leaf lamina length (cm), percentage of tillers with visible internode elongation (%), length of internode elongation (cm) and percentage of tillers with an apical meristem >4 cm.
3. Results
3.1. Herbage Mass
3.2. Light at the Base of the Sward
3.3. Leaf Stage
3.4. Free Leaf Lamina
3.5. Total Green Leaf Lamina
3.6. Percentage of Tillers with Internode Elongation Present
3.7. Length of Internode Elongation
3.8. Percentage of Tillers with Apical Meristems > 4 cm
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Grogan, D.; Gilliland, T.J. A review of perennial ryegrass variety evaluation in Ireland. Ir. J. Agric. Food Res. 2011, 50, 65–81. [Google Scholar]
- Finneran, E.; Crosson, P.; O’kiely, P.; Shalloo, L.; Forristal, P.D.; Wallace, M. Economic modelling of an integrated grazed and conserved perennial ryegrass forage production system. Grass Forage Sci. 2012, 67, 162–176. [Google Scholar] [CrossRef]
- Robson, M.J.; Ryle, G.J.A.; Woledge, J. The grass plant—Its form and function. In The Grass Crop; Springer: Dordrecht, The Netherlands, 1988; pp. 25–83. [Google Scholar]
- Kennedy, E.; O’Donovan, M.; Murphy, J.P.; Delaby, L.; O’Mara, F. Effects of grass pasture and concentrate-based feeding systems for spring-calving dairy cows in early spring on performance during lactation. Grass Forage Sci. 2005, 60, 310–318. [Google Scholar] [CrossRef]
- Donnellan, T.; Hanrahan, K.; Lanigan, G. Future Scenarios for Irish Agriculture: Implications for Greenhouse Gas and Ammonia Emissions; Teagasc: Athenry, Ireland, 2018. [Google Scholar]
- Hanrahan, L.; McHugh, N.; Hennessy, T.; Moran, B.; Kearney, R.; Wallace, M.; Shalloo, L. Factors associated with profitability in pasture-based systems of milk production. J. Dairy Sci. 2018, 101, 5474–5485. [Google Scholar] [CrossRef] [PubMed]
- MacDonald, K.; Glassey, C.; Rawnsley, R. The emergence, development and effectiveness of decision rules for pasture based dairy systems. In Proceedings of the 4th Australasian Dairy Science Symposium, Lincoln, New Zealand, 31 August–2 September 2010. [Google Scholar]
- O’Brien, D.; Hennessy, T.; Moran, B.; Shalloo, L. Relating the carbon footprint of milk from Irish dairy farms to economic performance. J. Dairy Sci. 2015, 98, 7394–7407. [Google Scholar] [CrossRef] [PubMed]
- Läpple, D.; Hennessy, T.; O’Donovan, M. Extended grazing: A detailed analysis of Irish dairy farms. J. Dairy Sci. 2012, 95, 188–195. [Google Scholar] [CrossRef] [PubMed]
- O’Donovan, M.; Lewis, E.; O’Kiely, P. Requirements of future grass-based ruminant production systems in Ireland. Ir. J. Agric. Food Res. 2011, 50, 1–21. [Google Scholar]
- Wingler, A.; Hennessy, D. Limitation of grassland productivity by low temperature and seasonality of growth. Front. Plant Sci. 2016, 7, 1130. [Google Scholar] [CrossRef]
- Herrmann, A.; Kelm, M.; Kornher, A.; Taube, F. Performance of grassland under different cutting regimes as affected by sward composition, nitrogen input, soil conditions and weather—A simulation study. Eur. J. Agron. 2005, 22, 141–158. [Google Scholar] [CrossRef]
- Hennessy, D.; O’Donovan, M.; French, P.; Laidlaw, A. Effects of date of autumn closing and timing of winter grazing on herbage production in winter and spring. Grass Forage Sci. 2006, 61, 363–374. [Google Scholar] [CrossRef]
- Teagasc. Grazing Guide. 2011. Available online: https://www.teagasc.ie/animals/beef/grassland/grassland-management (accessed on 22 August 2022).
- Claffey, A.; Delaby, L.; Boland, T.M.; Egan, M. Implications of adapting autumn grazing management on spring herbage production––The effect on late lactation milk production and the subsequent response in early lactation animal performance. Livest. Sci. 2022, 231, 103870. [Google Scholar] [CrossRef]
- Dillon, P.; Crosse, S.; Roche, J.R. The effect of grazing intensity in late summer/autumn on sward characteristics and milk production of spring-calving dairy cows. Ir. J. Agric. Food Res. 1998, 37, 1–15. [Google Scholar]
- Lawrence, D.C.; O’Donovan, M.; Boland, T.M.; Kennedy, E. Effects of autumn and spring defoliation management on the dry-matter yield and herbage quality of perennial ryegrass swards throughout the year. Grass Forage Sci. 2017, 72, 38–49. [Google Scholar] [CrossRef]
- Fulkerson, W.J.; Donaghy, D.J. Plant-soluble carbohydrate reserves and senescence-key criteria for developing an effective grazing management system for ryegrass-based pastures: A review. Aust. J. Exp. Agric. 2001, 41, 261–275. [Google Scholar] [CrossRef]
- Wims, C.M.; McEvoy, M.; Delaby, L.; Boland, T.M.; O’Donovan, M. Effect of perennial ryegrass (Lolium perenne L.) cultivars on the milk yield of grazing dairy cows. Animal 2013, 7, 410–421. [Google Scholar] [CrossRef] [PubMed]
- Davies, A. Structure of the grass sward. In Proceedings of the International Meeting on Animal Production from Temperate Grassland; Irish Grasslands and Animal Producers Association: Dublin, Ireland, 1977; pp. 36–44. [Google Scholar]
- Fulkerson, W.J.; Slack, K.; Moore, K.; Rolfe, C. Management of Lolium perenne/Trifolium repens pastures in the subtropics. I. Effect of defoliation interval, seeding rate and application of N and lime. Aust. J. Agric. Res. 1993, 44, 1947–1958. [Google Scholar] [CrossRef]
- Davies, A.; Simons, R. Effect of autumn cutting regime on developmental morphology and spring growth of perennial ryegrass. J. Agric. Sci. 1979, 92, 457–469. [Google Scholar] [CrossRef]
- Brereton, A.; Carton, O.; O’Keeffe, W. Tissue turnover in perennial ryegrass (Lolium perenne L.) during winter. Ir. J. Agric. Res. 1985, 24, 49–62. [Google Scholar]
- Parsons, A.; Chapman, D. The principles of pasture growth and utilization. In Grass: Its Production and Utilization; Hopkins, A., Ed.; Blackwell Science Ltd.: Oxford, UK, 2000; pp. 31–89. [Google Scholar]
- Woledge, J. The effect of shading during vegetative and reproductive growth on the photosynthetic capacity of leaves in a grass sward. Ann. Bot. 1978, 42, 1085–1089. [Google Scholar] [CrossRef]
- Hennessy, D.; O’Donovan, M.; French, P.; Laidlaw, A. Factors influencing tissue turnover during winter in perennial ryegrass dominated swards. Grass Forage Sci. 2008, 63, 202–211. [Google Scholar] [CrossRef]
- Looney, C.; Hennessy, D.; Wingler, A.; Claffey, A.; Egan, M. An examination of the effect of autumn closing date on over-winter herbage production and on spring yield. Ir. J. Agric. Food Res. 2021, 60, 65–77. [Google Scholar] [CrossRef]
- Laidlaw, A.; Mayne, C. Setting management limits for the production and utilization of herbage for out-of-season grazing. Grass Forage Sci. 2000, 55, 14–25. [Google Scholar] [CrossRef]
- Alexander, S.; Black, A.; Boland, A.; Burke, J.; Carton, O.T.; Coulter, B.S.; Humphreys, J. Major and Micro Nutrient Advice for Productive Agricultural Crops, 50th ed.; Teagasc: Carlow, Ireland, 2008. [Google Scholar]
- Looney, C.; Wingler, A.; Egan, M. The impact of herbage mass on perennial ryegrass swards in autumn on autumn and over winter production and characteristics. Agronomy 2021, 11, 1140. [Google Scholar] [CrossRef]
- Dairy NZ 2021. Dairy NZ Leaf Stage. Available online: https://www.dairynz.co.nz/feed/fundamentals/leaf-stage/ (accessed on 1 July 2018).
- Brock, J.L.; Fletcher, R.H. Morphology of perennial ryegrass (Lolium perenne) plants in pastures under intensive sheep grazing. J. Agric. Sci. 1993, 120, 301–310. [Google Scholar] [CrossRef]
- Hunt, R. Demography versus plant growth analysis. New Phytol. 1978, 80, 269–272. [Google Scholar] [CrossRef]
- Korte, C.J.; Chu, A.C.P. Some effects of drought on perennial ryegrass swards. Proceeding N. Z. Grassl. Assoc. 1983, 44, 211–216. [Google Scholar] [CrossRef]
- Thomas, H.; Norris, I.B. The influence of light and temperature during winter on growth and death in simulated swards of Lolium perenne. Grass Forage Sci. 1981, 36, 107–116. [Google Scholar] [CrossRef]
- Baker, H.K. Note on the influence of previous management on the death of perennial ryegrass during winter. Grass Forage Sci. 1956, 11, 235–237. [Google Scholar] [CrossRef]
- Minderhoud, J.W. Pseudostolons and aerial tillers: Morphological phenomena in Lolium perenne L. In Proceedings of the Seventh General Meeting of the European Grassland Federation, Gent, Belgium, 5 June 1978; Volume 10, pp. 31–39. [Google Scholar]
- Brougham, R.W. The effects of frequent hard grazings at different times of the year on the productivity and species yields of a grass-clover pasture. N. Z. J. Agric. Res. 1960, 3, 125–136. [Google Scholar] [CrossRef]
- Kays, S.; Harper, J.L. The regulation of plant and tiller density in a grass sward. J. Ecol. 1974, 62, 97–105. [Google Scholar] [CrossRef]
- Binnie, R.; Mayne, C.; Laidlaw, A. The effects of rate and timing of application of fertilizer nitrogen in late summer on herbage mass and chemical composition of perennial ryegrass swards over the winter period in Northern Ireland. Grass Forage Sci. 2001, 56, 46–56. [Google Scholar] [CrossRef]
- Beecher, M.; Hennessy, D.; Boland, T.M.; McEvoy, M.; O’Donovan, M.; Lewis, E. The variation in morphology of perennial ryegrass cultivars throughout the grazing season and effects on organic matter digestibility. Grass Forage Sci. 2015, 70, 19–29. [Google Scholar] [CrossRef]
- Byrne, N.; Gilliland, T.J.; Delaby, L.; Cummins, D.; O’Donovan, M. Understanding factors associated with the grazing efficiency of perennial ryegrass varieties. Eur. J. Agron. 2018, 101, 101–108. [Google Scholar] [CrossRef]
Target Herbage Mass 1 | ||||||
---|---|---|---|---|---|---|
Variable | Low | Medium | High | Very High | S.E.M | Significance |
Herbage mass (kg DM ha−1) | 900 a | 1735 b | 1938 b | 2917 c | 153.6 | ***2 |
Light at the base of the sward (%) | 66 a | 57 b | 58 b | 55 b | 2.8 | *** |
Leaf stage (leaves) | 2.2 a | 2.8 b | 3.3 c | 3.9 d | 0.06 | *** |
Free leaf length (cm) | 18.6 a | 24.9 b | 27.4 c | 32.8 d | 0.41 | *** |
Total green leaf lamina per plant (cm) | 36.3 a | 52.2 b | 58.7 c | 68.2 d | 1.51 | *** |
Defoliation Date 1 | |||||
---|---|---|---|---|---|
Variable | DD1 | DD2 | DD3 | S.E.M | Significance |
Herbage mass (kg DM ha−1) | 1578 a | 2100 b | 1940 b | 153.6 | ***2 |
Light at the base of the sward (%) | 56 | 61 | 60 | 2.6 | NS |
Leaf stage (number leaves) | 2.8 a | 3.1 b | 3.3 b | 0.05 | *** |
Free leaf length (cm) | 24.6 a | 26.4 b | 26.6 b | 0.35 | *** |
Total green leaf lamina per plant (cm) | 47.4 a | 58.1 b | 56.0 c | 1.33 | *** |
THM | Low | Medium | High | Very High | DD Average | S.E. | Significance | ||
---|---|---|---|---|---|---|---|---|---|
Percentage of Tillers with Visible Internode Elongation (%) | THM | DD | THM × DD | ||||||
DD1 | 18.8 | 8.9 | 21.2 | 30.9 | 20.0 | 2.5 | ***2 | *** | *** |
DD2 | 16.4 | 9.2 | 23.8 | 51.3 | 25.2 | ||||
DD3 | 17.1 | 10.2 | 40.8 | 78.0 | 36.5 | ||||
THM average | 17.3 | 9.4 | 28.6 | 53.4 |
THM | Low | Medium | High | Very High | DD Average | S.E. | Significance | ||
---|---|---|---|---|---|---|---|---|---|
Length of visible internode elongation (cm) * | THM | DD | THM × DD | ||||||
DD1 | 0.45 | 1.84 | 0.69 | 1.94 | 1.23 | 0.338 | ***2 | NS | *** |
DD2 | 0.61 | 1.63 | 0.87 | 2.19 | 1.33 | ||||
DD3 | 0.88 | 1.38 | 1.50 | 2.02 | 1.45 | ||||
THM average | 0.65 | 1.60 | 1.02 | 2.05 | |||||
Percentage of tillers with apical meristems >4 cm (%) | |||||||||
DD1 | 0.1 | 2.0 | 3.7 | 7.8 | 3.4 | 2.3 | *** | NS | *** |
DD2 | 2.6 | 2.1 | 1.2 | 9.7 | 3.9 | ||||
DD3 | 0.4 | 0.2 | 1.4 | 13.4 | 3.8 | ||||
THM average | 1.0 | 1.4 | 2.1 | 10.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Looney, C.; Wingler, A.; Donaghy, D.; Egan, M. The Impact of Accumulating Herbage Masses in Autumn on Perennial Ryegrass Sward Characteristics. Agronomy 2024, 14, 148. https://doi.org/10.3390/agronomy14010148
Looney C, Wingler A, Donaghy D, Egan M. The Impact of Accumulating Herbage Masses in Autumn on Perennial Ryegrass Sward Characteristics. Agronomy. 2024; 14(1):148. https://doi.org/10.3390/agronomy14010148
Chicago/Turabian StyleLooney, Caitlin, Astrid Wingler, Daniel Donaghy, and Michael Egan. 2024. "The Impact of Accumulating Herbage Masses in Autumn on Perennial Ryegrass Sward Characteristics" Agronomy 14, no. 1: 148. https://doi.org/10.3390/agronomy14010148
APA StyleLooney, C., Wingler, A., Donaghy, D., & Egan, M. (2024). The Impact of Accumulating Herbage Masses in Autumn on Perennial Ryegrass Sward Characteristics. Agronomy, 14(1), 148. https://doi.org/10.3390/agronomy14010148