Recent Advances and Developments in the Nematicidal Activity of Essential Oils and Their Components against Root-Knot Nematodes
Abstract
:1. Introduction
2. Categorization of Studies
3. Essential Oils, Chemical Groups of Their Components, and Their Mode of Action
3.1. Geraniol
3.2. Carvacrol
3.3. Eugenol
3.4. Linalool
3.5. Limonene
3.6. Thymol
3.7. Pinene
3.8. Other Compounds
4. Synergistic and Antagonistic Interactions among Essential Oil Components
5. Concluding Remarks and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bernard, G.C.; Egnin, M.; Bonsi, C. the Impact of Plant-Parasitic Nematodes on Agriculture and Methods of Control. In Nematology-Concepts, Diagnosis and Control; IntechOpen: London, UK, 2017. [Google Scholar] [CrossRef]
- Sikandar, A.; Jia, L.; Wu, H.; Yang, S. Meloidogyne enterolobii Risk to Agriculture, Its Present Status and Future Prospective for Management. Front. Plant Sci. 2023, 13, 1093657. [Google Scholar] [CrossRef] [PubMed]
- Rusinque, L.; Camacho, M.J.; Serra, C.; Nóbrega, F.; Inácio, M.L. Root-Knot Nematode Assessment: Species Identification, Distribution, and New Host Records in Portugal. Front. Plant Sci. 2023, 14, 1230968. [Google Scholar] [CrossRef] [PubMed]
- Przybylska, A.; Obrępalska-Stęplowska, A. Plant Defense Responses in Monocotyledonous and Dicotyledonous Host Plants During Root-Knot Nematode Infection. Plant Soil 2020, 451, 239–260. [Google Scholar] [CrossRef]
- Bridge, J.; Starr, J.L. Plant Nematodes of Agricultural Importance: A Color Handbook; CRC Press: London, UK; Elsevier/Academic Press: Boston, IL, USA, 2010. [Google Scholar] [CrossRef]
- Lamelas, A.; Desgarennes, D.; López-Lima, D.; Villain, L.; Alonso-Sánchez, A.; Artacho, A.; Latorre, A.; Moya, A.; Carrión, G. The Bacterial Microbiome of Meloidogyne-Based Disease Complex in Coffee and Tomato. Front. Plant Sci. 2020, 11, 136. [Google Scholar] [CrossRef] [PubMed]
- Cohen, S.P.; Leach, J.E. High Temperature-Induced Plant Disease Susceptibility: More than the Sum of Its Parts. Curr. Opin. Plant Biol. 2020, 56, 235–241. [Google Scholar] [CrossRef]
- Perrault, C. The Challenge for Administrators in 1980. Dimens. Health Serv. 1976, 53, 44–46. [Google Scholar] [PubMed]
- Karpouzas, D.G.; Karanasios, E.; Giannakou, I.O.; Georgiadou, A.; Menkissoglu-Spiroudi, U. The Effect of Soil Fumigants Methyl Bromide and Metham Sodium on the Microbial Degradation of the Nematicide Cadusafos. Soil Biol. Biochem. 2005, 37, 541–550. [Google Scholar] [CrossRef]
- Damalas, C.A.; Eleftherohorinos, I.G. Pesticide Exposure, Safety Issues, and Risk Assessment Indicators. Int. J. Environ. Res. Public Health 2011, 8, 1402–1419. [Google Scholar] [CrossRef]
- Sparks, T.C. Insecticide Discovery: An Evaluation and Analysis. Pestic. Biochem. Physiol. 2013, 107, 8–17. [Google Scholar] [CrossRef]
- Desaeger, J.; Wram, C.; Zasada, I. New Reduced-Risk Agricultural Nematicides—Rationale and Review. J. Nematol. 2020, 52, e2020-91. [Google Scholar] [CrossRef]
- Phani, V.; Khan, M.R.; Dutta, T.K. Plant-Parasitic Nematodes as A Potential Threat to Protected Agriculture: Current Status and Management Options. Crop. Prot. 2021, 144, 105573. [Google Scholar] [CrossRef]
- Abd-Elgawad, M. Optimizing Safe Approaches to Manage Plant-Parasitic Nematodes. Plants 2021, 10, 1911. [Google Scholar] [CrossRef] [PubMed]
- Subedi, S.; Thapa, B.; Shrestha, J. Root-Knot Nematode (Meloidogyne incognita) and Its Management: A Review. J. Agric. Nat. Resour. 2020, 3, 21–31. [Google Scholar] [CrossRef]
- Goyal, L.; Kaushal, S.; Dhillon, N.K.; Heena. Nematicidal Potential of Citrus reticulata Peel Essential Oil, Isolated Major Compound and Its Derivatives against Meloidogyne incognita. Arch. Phytopathol. Plant Prot. 2021, 54, 449–467. [Google Scholar] [CrossRef]
- Dutta, A.; Mandal, A.; Kundu, A.; Malik, M.; Chaudhary, A.; Khan, M.R.; Shanmugam, V.; Rao, U.; Saha, S.; Patanjali, N.; et al. Deciphering the Behavioral Response of Meloidogyne incognita and Fusarium oxysporum toward Mustard Essential Oil. Front. Plant Sci. 2021, 12, 714730. [Google Scholar] [CrossRef] [PubMed]
- Kalaiselvi, D.; Mohankumar, A.; Shanmugam, G.; Thiruppathi, G.; Nivitha, S.; Sundararaj, P. Altitude-Related Changes in the Phytochemical Profile of Essential Oils Extracted from Artemisia nilagirica and their Nematicidal Activity against Meloidogyne incognita. Ind. Crop. Prod. 2019, 139, 111472. [Google Scholar] [CrossRef]
- Ntalli, N.G.; Caboni, P. Botanical Nematicides: A Review. J. Agric. Food Chem. 2012, 60, 9929–9940. [Google Scholar] [CrossRef] [PubMed]
- Catani, L.; Manachini, B.; Grassi, E.; Guidi, L.; Semprucci, F. Essential Oils as Nematicides in Plant Protection—A Review. Plants 2023, 12, 1418. [Google Scholar] [CrossRef]
- Andrés, M.F.; González-Coloma, A.; Sanz, J.; Burillo, J.; Sainz, P. Nematicidal Activity of Essential Oils: A Review. Phytochem. Rev. 2012, 11, 371–390. [Google Scholar] [CrossRef]
- Pandey, R.; Kalra, A.; Tandon, S.; Mehrotra, N.; Singh, H.N.; Kumar, S. Essential Oils as Potent Source of Nematicidal Compounds. J. Phytopathol. 2000, 148, 501–502. [Google Scholar] [CrossRef]
- Guerriero, G.; Berni, R.; Muñoz-Sanchez, J.A.; Apone, F.; Abdel-Salam, E.M.; Qahtan, A.A.; Alatar, A.A.; Cantini, C.; Cai, G.; Hausman, J.-F.; et al. Production of Plant Secondary Metabolites: Examples, Tips and Suggestions for Biotechnologists. Genes 2018, 9, 309. [Google Scholar] [CrossRef] [PubMed]
- Ehlers, B.K.; Berg, M.P.; Staudt, M.; Holmstrup, M.; Glasius, M.; Ellers, J.; Tomiolo, S.; Madsen, R.B.; Slotsbo, S.; Penuelas, J. Plant Secondary Compounds in Soil and their Role in Belowground Species Interactions. Trends Ecol. Evol. 2020, 35, 716–730. [Google Scholar] [CrossRef] [PubMed]
- Greff, B.; Sáhó, A.; Lakatos, E.; Varga, L. Biocontrol Activity of Aromatic and Medicinal Plants and their Bioactive Components against Soil-Borne Pathogens. Plants 2023, 12, 706. [Google Scholar] [CrossRef] [PubMed]
- Ayub, M.A.; Goksen, G.; Fatima, A.; Zubair, M.; Abid, M.A.; Starowicz, M. Comparison of Conventional Extraction Techniques with Superheated Steam Distillation on Chemical Characterization and Biological Activities of Syzygium aromaticum L. Essential Oil. Separations 2023, 10, 27. [Google Scholar] [CrossRef]
- Noriega, P. Terpenes in Essential Oils: Bioactivity and Applications. In Terpenes Terpenoids—Recent Advances; IntechOpen: London, UK, 2020. [Google Scholar] [CrossRef]
- Murti, Y.; Jain, D.; Semwal, B.; Singh, S.; Janmeda, P.; Bhaskar, P. Innovative Methods for Extraction of Essential Oils from Medicinal Plants. Int. J. Second. Metab. 2023, 10, 190–230. [Google Scholar] [CrossRef]
- Echeverrigaray, S.; Zacaria, J.; Beltrão, R. Nematicidal Activity of Monoterpenoids against the Root-Knot Nematode Meloidogyne incognita. Phytopathology 2010, 100, 199–203. [Google Scholar] [CrossRef] [PubMed]
- Padilla-Montaño, N.; de León Guerra, L.; Moujir, L. Antimicrobial Activity and Mode of Action of Celastrol, A Nortriterpen Quinone Isolated from Natural Sources. Foods 2021, 10, 591. [Google Scholar] [CrossRef]
- Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological Effects of Essential Oils—A Review. Food Chem. Toxicol. 2008, 46, 446–475. [Google Scholar] [CrossRef]
- Rasoul, M. Evaluation of Nematicidal Effects of Monoterpenes against Root-Knot Nematode, Meloidogyne incognita. J. Plant Prot. Pathol. 2013, 4, 445–456. [Google Scholar] [CrossRef]
- Ohri, P.; Kaur, S. Effect of Phenolic Compounds on Nematodes. A Review. J. Appl. Nat. Sci. 2010, 2, 344–350. [Google Scholar] [CrossRef]
- Jardim, I.N.; Oliveira, D.F.; Silva, G.H.; Campos, V.P.; De Souza, P.E. (E)-Cinnamaldehyde from the Essential Oil of Cinnamomum cassia Controls Meloidogyne incognita in Soybean Plants. J. Pest Sci. 2018, 91, 479–487. [Google Scholar] [CrossRef]
- Heywood, V.H.; Brummitt, R.K.; Culham, A.; Seberg, O. Flowering Plants Families of the World; Royal Botanic Gardens Kew: Richmond, UK, 2007. [Google Scholar]
- Fragkouli, R.; Antonopoulou, M.; Asimakis, E.; Spyrou, A.; Kosma, C.; Zotos, A.; Tsiamis, G.; Patakas, A.; Triantafyllidis, V. Mediterranean Plants as Potential Source of Biopesticides: An Overview of Current Research and Future Trends. Metabolites 2023, 13, 967. [Google Scholar] [CrossRef]
- Bekut, M.; Brki’c, S.; Kladar, N.; Dragovi´c, G.; Gavari´c, N.; Božin, B. Potential of Selected Lamiaceae Plants in Anti (Retro) Viral therapy. Pharmacol. Res. 2018, 133, 301–314. [Google Scholar] [CrossRef]
- D’Addabbo, T.; Laquale, S.; Argentieri, M.P.; Bellardi, M.G.; Avato, P. Nematicidal Activity of Essential Oil from Lavandin (Lavandula × intermedia Emeric Ex Loisel.) as Related to Chemical Profile. Molecules 2021, 26, 6448. [Google Scholar] [CrossRef] [PubMed]
- Ozdemir, E.; Gozel, U. Nematicidal Activities of Essential Oils against Meloidogyne incognita on Tomato Plant. Fresenius Environ. Bull. 2018, 27, 4511–4517. [Google Scholar]
- Laquale, S.; Avato, P.; Argentieri, M.P.; Bellardi, M.G.; D’Addabbo, T. Nematotoxic Activity of Essential Oils from Monarda Species. J. Pest Sci. 2018, 91, 1115–1125. [Google Scholar] [CrossRef]
- Abhishek Gowda, A.P.; Pankaj; Shakil, N.A.; Rana, V.S.; Singh, A.K.; Bhatt, K.C.; Devaraja, K.P. Chemical Composition and Nematicidal Activity of Essential Oil and Piperitone Oxide of Mentha longifolia L. against Meloidogyne incognita. Allelopath. J. 2023, 58, 165–181. [Google Scholar] [CrossRef]
- Felek, A.F.; Ozcan, M.M.; Akyazi, F. Effects of Essential Oils Distilled from Some Medicinal and Aromatic Plants against Root Knot Nematode (Meloidogyne hapla). J. Appl. Sci. Environ. Manag. 2019, 23, 1425. [Google Scholar] [CrossRef]
- Hammad, E.A.; Hasanin, M.M.H. Antagonistic Effect of Nanoemulsions of Some Essential Oils against Fusarium oxysporum and Root-Knot Nematode Meloidogyne javanica on Coleus Plants. Pak. J. Nematol. 2022, 40. [Google Scholar] [CrossRef]
- Hammad, E.A.; El-Sagheer, A.M. Comparative Efficacy of Essential Oil Nanoemulsions and Bioproducts as Alternative Strategies against Root-Knot Nematode, and Its Impact on the Growth and Yield of Capsicum annuum L. J. Saudi Soc. Agric. Sci. 2023, 22, 47–53. [Google Scholar] [CrossRef]
- Tamoor, K.; Hafsa, H.; Maryam, H. Evaluation of some medicinal plants for the management of root-knot diseases of banana. Pak. J. Nematol. 2021, 39, 52–58. [Google Scholar] [CrossRef]
- Eloh, K.; Kpegba, K.; Sasanelli, N.; Koumaglo, H.K.; Caboni, P. Nematicidal Activity of Some Essential Plant Oils from Tropical West Africa. Int. J. Pest Manag. 2020, 66, 131–141. [Google Scholar] [CrossRef]
- Keerthiraj, M.; Mandal, A.; Dutta, T.K.; Saha, S.; Dutta, A.; Singh, A.; Kundu, A. Nematicidal and Molecular Docking Investigation of Essential Oils from Pogostemon cablin Ecotypes against Meloidogyne incognita. Chem. Biodivers. 2021, 18, e2100320. [Google Scholar] [CrossRef] [PubMed]
- Kundu, A.; Dutta, A.; Mandal, A.; Negi, L.; Malik, M.; Puramchatwad, R.; Antil, J.; Singh, A.; Rao, U.; Saha, S.; et al. A Comprehensive In Vitro and In Silico Analysis of Nematicidal Action of Essential Oils. Front. Plant Sci. 2021, 11, 614143. [Google Scholar] [CrossRef]
- Ntalli, N.; Bratidou Parlapani, A.; Tzani, K.; Samara, M.; Boutsis, G.; Dimou, M.; Menkissoglu-Spiroudi, U.; Monokrousos, N. Thymus citriodorus (Schreb) Botanical Products as Ecofriendly Nematicides with Bio-Fertilizing Properties. Plants 2020, 9, 202. [Google Scholar] [CrossRef] [PubMed]
- Ardakani, A.S.; Hosseininejad, S.A. Identification of Chemical Components from Essential Oils and Aqueous Extracts of Some Medicinal Plants and their Nematicidal Effects on Meloidogyne incognita. J. Basic Appl. Zool. 2022, 83, 14. [Google Scholar] [CrossRef]
- Kabdal, T.; Himani; Kumar, R.; Prakash, O.; Nagarkoti, K.; Rawat, D.S.; Srivastava, R.M.; Kumar, S.; Dubey, S.K. Seasonal Variation in the Essential Oil Composition and Biological Activities of Thymus linearis Benth. Collected from the Kumaun region of Uttarakhand, India. Biochem. Syst. Ecol. 2022, 103, 104449. [Google Scholar] [CrossRef]
- Barros, A.; Paulo Campos, V.; Lopes De Paula, L.; Alaís Pedroso, L.; Jesus Silva, F.; Carlos Pereira Da Silva, J.; Ferreira De Oliveira, D.; Humberto Silva, G. The Role of Cinnamomum Zeylanicum Essential Oil, (E)-Cinnamaldehyde and (E)-Cinnamaldehyde Oxime in the Control of Meloidogyne incognita. J. Phytopathol. 2021, 169, 229–238. [Google Scholar] [CrossRef]
- Galisteo, A.; González-Coloma, A.; Castillo, P.; Andrés, M.F. Valorization of the Hydrolate Byproduct from the Industrial Extraction of Purple Alium sativum Essential Oil as A Source of Nematicidal Products. Life 2022, 12, 905. [Google Scholar] [CrossRef]
- Borges, D.F.; Lopes, E.A.; Côrtes, F.R.; Visôtto, L.E.; Valente, V.M.M.; Souza, M.F. Nematicidal Potential of Essential Oils of Ageratum fastigiatum, Callistemon viminalis and Schinus terebinthifolius. Biosci. J. 2018, 34, 90–96. [Google Scholar] [CrossRef]
- Pardavella, I.; Daferera, D.; Tselios, T.; Skiada, P.; Giannakou, I. The Use of Essential Oil and Hydrosol Extracted from Cuminum cyminum Seeds for the Control of Meloidogyne incognita and Meloidogyne javanica. Plants 2020, 10, 46. [Google Scholar] [CrossRef] [PubMed]
- Kaur, A.; Chahal, K.K.; Kataria, D.; Urvashi. Assessment of Carrot Seed Essential Oil and Its Chemical Constituents against Meloidogyne incognita. J. Pharmacogn. Phytochem. 2018, 7, 896–903. [Google Scholar]
- Basaid, K.; Chebli, B.; Bouharroud, R.; Elaini, R.; Alaoui, I.F.; Kaoui, S.; De Oliveira, A.L.; Furze, J.N.; Mayad, E.H. Biocontrol Potential of Essential Oil from Moroccan Ridolfia segetum (L.) Moris. J. Plant Dis. Prot. 2021, 128, 1157–1166. [Google Scholar] [CrossRef]
- Ismail, M.; Kowsar, A.; Javed, S.; Choudhary, M.I.; Khan, S.W.; Abbas, Q.; Tang, Y.; Wang, W. The Antibacterial, Insecticidal and Nematocidal Activities and Toxicity Studies of Tanacetum Falconeri Hook. f. Turk. J. Pharm. Sci. 2021, 18, 744–751. [Google Scholar] [CrossRef] [PubMed]
- Barros, A.F.; Campos, V.P.; De Oliveira, D.F.; Silva, F.D.J.; Jardim, I.N.; Costa, V.A.; Matrangolo, C.A.R.; Ribeiro, R.C.F.; Silva, G.H. Activities of Essential Oils from Three Brazilian Plants and Benzaldehyde Analogues against Meloidogyne incognita. Nematology 2019, 21, 1081–1089. [Google Scholar] [CrossRef]
- Moreira, F.; de Abreu Araújo, B.; Lopes, F.; Sousa, A.A.L.; Sousa, A.; Andrade, L.; Uchôa, A. Assessment of the Tephrosia toxicaria Essential Oil on Hatching and Mortality of Eggs and Second-Stage Juvenile (J2) Root-Knot Nematode (Meloidogyne enterolobii and M. javanica). Aust. J. Crop Sci. 2018, 12, 1829–1836. [Google Scholar] [CrossRef]
- Ajith, M.; Pankaj; Shakil, N.A.; Kaushik, P.; Rana, V.S. Chemical Composition and Nematicidal Activity of Essential Oils and their Major Compounds against Meloidogyne Graminicola (Rice Root-Knot Nematode). J. Essent. Oil Res. 2020, 32, 526–535. [Google Scholar] [CrossRef]
- Mamoci, E.; Andrés, M.F.; Olmeda, S.; González-Coloma, A. Chemical Composition and Activity of Essential Oils of Albanian Coniferous Plants on Plant Pests. Chem. Proc. 2022, 10, 15. [Google Scholar] [CrossRef]
- Jindapunnapat, K.; Reetz, N.D.; MacDonald, M.H.; Bhagavathy, G.; Chinnasri, B.; Soonthornchareonnon, N.; Sasnarukkit, A.; Chauhan, K.R.; Chitwood, D.J.; Meyer, S.L.F. Activity of Vetiver Extracts and Essential Oil against Meloidogyne incognita. J. Nematol. 2018, 50, 147–162. [Google Scholar] [CrossRef]
- Arya, S.; Kumar, R.; Prakash, O.; Kumar, S.; Mahawer, S.K.; Chamoli, S.; Kumar, P.; Srivastava, R.M.; De Oliveira, M.S. Chemical Composition and Biological Activities of Hedychium coccineum Buch.-Ham. Ex Sm. Essential Oils from Kumaun Hills of Uttarakhand. Molecules 2022, 27, 4833. [Google Scholar] [CrossRef]
- Araújo, A.M.N.; de Oliveira, J.V.; de França, S.M.; Navarro, D.M.d.A.F.; Barbosa, D.R.e.S.; Dutra, K.d.A. Toxicity and Repellency of Essential Oils in the Management of Sitophilus zeamais. Rev. Bras. Eng. Agríc. E Ambient. 2019, 23, 372–377. [Google Scholar] [CrossRef]
- Nasiou, E.; Giannakou, I.O. Effect of Geraniol, A Plant-Based Alcohol Monoterpene Oil, against Meloidogyne javanica. Eur. J. Plant Pathol. 2018, 152, 701–710. [Google Scholar] [CrossRef]
- Ahmad, A.; Van Vuuren, S.; Viljoen, A. Unravelling the Complex Antimicrobial Interactions of Essential Oils—The Case of Thymus vulgaris (Thyme). Molecules 2014, 19, 2896–2910. [Google Scholar] [CrossRef]
- Faria, J.M.S.; Rusinque, L.; Vicente, C.S.L.; Inácio, M.L. Bioactivity of Monoterpene Alcohols as An Indicator of Biopesticidal Essential Oils against the Root Knot Nematode Meloidogyne ethiopica. Biol. Life Sci. Forum 2022, 16, 15. [Google Scholar] [CrossRef]
- Marjanović, D.S.; Zdravković, N.; Milovanović, M.; Trailović, J.N.; Robertson, A.P.; Todorović, Z.; Trailović, S.M. Carvacrol Acts as A Potent Selective Antagonist of Different Types of Nicotinic Acetylcholine Receptors and Enhances the Effect of Monepantel in the Parasitic Nematode Ascaris suum. Vet. Parasitol. 2020, 278, 109031. [Google Scholar] [CrossRef]
- Bala, S.K.; Sukul, N.C. Systemic Nematicidal Effect of Eugenol. Nematropica 1987, 17, 219–222. [Google Scholar]
- Kamatou, G.P.; Viljoen, A. Linalool—A Review of A Biologically Active Compound of Commercial Importance. Nat. Prod. Commun. 2008, 3, 1183–1192. [Google Scholar] [CrossRef]
- Rodríguez-López, M.I.; Mercader-Ros, M.T.; Lucas-Abellán, C.; Pellicer, J.A.; Pérez-Garrido, A.; Pérez-Sánchez, H.; Yáñez-Gascón, M.J.; Gabaldón, J.A.; Núñez-Delicado, E. Comprehensive Characterization of Linalool-Hp-Β-Cyclodextrin Inclusion Complexes. Molecules 2020, 25, 5069. [Google Scholar] [CrossRef] [PubMed]
- Malacrinò, A.; Campolo, O.; Laudani, F.; Palmeri, V. Fumigant and Repellent Activity of Limonene Enantiomers against Tribolium confusum Du Val. Neotrop. Entomol. 2016, 45, 597–603. [Google Scholar] [CrossRef]
- Shu, C.; Sun, L.; Zhang, W. Thymol Has Antifungal Activity against Candida Albicans during Infection and Maintains the Innate Immune Response Required for Function of the P38 MAPK Signaling Pathway in Caenorhabditis elegans. Immunol. Res. 2016, 64, 1013–1024. [Google Scholar] [CrossRef]
- Mercier, B.; Prost, J.; Prost, M. The Essential Oil of Turpentine and Its Major Volatile Fraction (Alpha- and Beta-Pinenes): A Review. Int. J. Occup. Med. Environ. Health 2009, 22, 331–342. [Google Scholar] [CrossRef] [PubMed]
- Al-Tel, T.H.; Tarazi, H.; Aloum, L.O.; Lorke, D.E.; Petroianu, G.A. Possible Metabolic Conversion of Pinene to Ionone. Pharmazie 2020, 75, 360–363. [Google Scholar]
- Erman, M.B.; Kane, B.J. Chemistry around Pinene and Pinane: A Facile Synthesis of Cyclobutanes and Oxatricyclo-Derivative of Pinane from Cis- and Trans-Pinanols. Chem. Biodivers. 2008, 5, 910–919. [Google Scholar] [CrossRef] [PubMed]
- Vespermann, K.A.; Paulino, B.N.; Barcelos, M.C.; Pessôa, M.G.; Pastore, G.M.; Molina, G. Biotransformation of A and Β-Pinene into Flavor Compounds. Appl. Microbiol. Biotechnol. 2017, 101, 1805–1817. [Google Scholar] [CrossRef] [PubMed]
- Park, B.B.; An, J.Y.; Park, S.U. Recent Studies on Pinene and Its Biological and Pharmacological Activities. EXCLI J. 2021, 20, 812–818. [Google Scholar] [CrossRef] [PubMed]
- Bunse, M.; Daniels, R.; Gründemann, C.; Heilmann, J.; Kammerer, D.R.; Keusgen, M.; Lindequist, U.; Melzig, M.F.; Morlock, G.E.; Schulz, H.; et al. Essential Oils as Multicomponent Mixtures and their Potential for Human Health and Well-Being. Front. Pharmacol. 2022, 13, 956541. [Google Scholar] [CrossRef] [PubMed]
- Savelev, S.; Okello, E.; Perry, N.S.L.; Wilkins, R.M.; Perry, E.K. Synergistic and Antagonistic Interactions of Anticholinesterase Terpenoids in Salvia lavandulaefolia Essential Oil. Pharmacol. Biochem. Behav. 2003, 75, 661–668. [Google Scholar] [CrossRef]
- Połeć, K.; Wyżga, B.; Olechowska, K.; Hąc-Wydro, K. On the Synergy/Antagonism of Selected Terpenes in the Effect on Lipid Membranes Studied in Model Systems. J. Mol. Liq. 2022, 349, 118473. [Google Scholar] [CrossRef]
- Jardim, I.N.; Oliveira, D.F.; Campos, V.P.; Silva, G.H.; Souza, P.E. Garlic Essential Oil Reduces the Population of Meloidogyne incognita in Tomato Plants. Eur. J. Plant Pathol. 2020, 157, 197–209. [Google Scholar] [CrossRef]
- Kotsinis, V.; Dritsoulas, A.; Ntinokas, D.; Giannakou, I.O. Nematicidal Effects of Four Terpenes Differ among Entomopathogenic Nematode Species. Agriculture 2023, 13, 1143. [Google Scholar] [CrossRef]
- Assadpour, E.; Can Karaça, A.; Fasamanesh, M.; Mahdavi, S.A.; Shariat-Alavi, M.; Feng, J.; Kharazmi, M.S.; Rehman, A.; Jafari, S.M. Application of Essential Oils as Natural Biopesticides; Recent Advances. Crit. Rev. Food Sci. Nutr. 2023, 1–21. [Google Scholar] [CrossRef]
- Werrie, P.Y.; Durenne, B.; Delaplace, P.; Fauconnier, M.L. Phytotoxicity of Essential Oils: Opportunities and Constraints for the Development of Biopesticides. A Review. Foods 2020, 9, 291. [Google Scholar] [CrossRef] [PubMed]
- Faria, J.M.S.; Rodrigues, A.M.; Sena, I.; Moiteiro, C.; Bennett, R.N.; Mota, M.; Figueiredo, A.C. Bioactivity of Ruta Graveolens and Satureja montana Essential Oils on Solanum tuberosum Hairy Roots and Solanum tuberosum Hairy Roots with Meloidogyne chitwoodi Co-Cultures. J. Agric. Food Chem. 2016, 64, 7452–7458. [Google Scholar] [CrossRef] [PubMed]
- Julio, L.F.; Barrero, A.F.; Herrador del Pino, M.M.; Arteaga, J.F.; Burillo, J.; Andres, M.F.; Díaz, C.E.; González-Coloma, A. Phytotoxic and Nematicidal Components of Lavandula luisieri. J. Nat. Prod. 2016, 79, 261–266. [Google Scholar] [CrossRef] [PubMed]
- Walker, J.T.; Melin, J.B. Mentha × piperita, Mentha spicata and Effects of their Essential Oils on Meloidogyne in Soil. J. Nematol. 1996, 28, 629–635. [Google Scholar] [PubMed]
- Barua, A.; McDonald-Howard, K.L.; Mc Donnell, R.J.; Rae, R.; Williams, C.D. Toxicity of Essential Oils to Slug Parasitic and Entomopathogenic Nematodes. J. Pest Sci. 2020, 93, 1411–1419. [Google Scholar] [CrossRef]
Plant Source of the Essential Oil | Active Components | Target Life Stage | Mode of Action | Crop | Experiment | Meloidogyne spp. | Experiment Details | Author |
---|---|---|---|---|---|---|---|---|
Lamiaceae | ||||||||
Lavandula Intermedia (3 species: Abrialis, Cerioni and Sumiens) | linalool | J2, eggs | J2 mortality, egg-hatching inhibition, reduction of galls, eggs | tomato | in vitro, pot, greenhouse, soil | M. incognita | EO: 24.9 μg/mL−1, 1.2 μg/mL−1, 17.4 μg/mL−1. | [38] |
Lavandula officinalis, Mentha arvensis, Thymus serpyllum, Ocimum basilicum | Galls, eggs | Reduction of galls and eggs | tomato | in vitro, pots | M. incognita | EO: 3% and 5% (v/v) | [39] | |
Monarda didyma, Monarda fistulosa | γ-terpinene, o-cymene, carvacrol | Eggs, J2 | J2 mortality, egg-hatching inhibition, reduction of galls and eggs in soil | tomato | in vitro, soil | M. incognita | EO: 1.0 μL mL−1, 12.5 μL mL−1 for 24 h (J2 mortality) 500 and 1000 μg mL−1 for 24, 48 h (egg hatching) | [40] |
Mentha longifolia | piperitone oxide | J2, eggs | J2 mortality, Egg hatch inhibition | M. graminicola | EO: 15.62 to 1000 ppm for 96 h | [41] | ||
Mentha longifolia | i-menthone | Egg | Egg hatch inhibition | in vitro | M. hapla | [42] | ||
Mentha spicata L. | carvone, limonene | J2, eggs | J2 mortality, reduction of galls and eggs | Coleus | in vitro, greenhouse | M. javanica | EO: 1000, 2000, 3000, 4000, and 5000 ppm (v/v) for 24 h, 48 h, 72 h | [43] |
Mentha spicata L. | J2 | J2 mortality, reduction of galls | pepper | in vitro, greenhouse, plastic house | M. incognita | EO: 5% (v/v) for 72 h | [44] | |
Mentha spicata | carvone | Egg | Egg hatch inhibition | in vitro | M. hapla | [42] | ||
Menta piperita | carvone | J2 | J2 mortality | in vitro | M. hapla | [42] | ||
Nepeta cateria | J2 | J2 mortality | banana | orchard | M. incognita | EO: 1.2 mL/L | [45] | |
Basilicum L. | sabinene, myrcene, trans-caryophyllene | J2 | J2 mortality, reduction of galls | pepper | in vitro, greenhouse, plastic house | M. incognita | EO: 5% (v/v) for 72 h | [44] |
Ocimum sanctum L. | eugenol methyl ether | J2 | J2 mortality | in vitro | M. incognita | EO: 1230 mg/L for 24 h | [46] | |
Ocimum basilicum | i-linalool | J2 | J2 mortality | in vitro | M. hapla | [42] | ||
Origanum onites | carvacrol | egg | Egg hatch inhibition | in vitro | M. hapla | [42] | ||
Origanum onites | carvacrol | egg | Egg hatch inhibition | in vitro | M. hapla | [42] | ||
Pogostemon cablin Benth | α-guaiene, patchoulol, α-bulnesene | J2 | J2 mortality, J2 immobility | in vitro | M. incognita | EO: 250 μg/mL−1, 31.25 μg/mL−1 for 24 h | [47] | |
Pogostemon cablin | α-guaiene | J2 | J2 mortality, paralysis | pepper | in vitro, greenhouse, plastic house | M. incognita | EO: 387.77 μg mL−1 for 48 h | [48] |
Salvia officinalis | thujone | egg | Egg hatch inhibition | in vitro | M. hapla | [42] | ||
Thymus citriodorus | geraniol | J2, eggs | Biological cycle arrest, J2 paralysis, J2 mortality | tomato | in vitro, pot | M. incognita | EO: 50 µL kg−1 soil | [49] |
Teucrium polium | limonene, α-pinene, β-pinene | J2 | J2 mortality | in vitro | M. incognita | EO: 4000 and 8000 ppm (v/v) for 24 h | [50] | |
Thymus linearis Benth | thymol, carvacrol | J2, eggs | J2 mortality, Egg hatch inhibition | in vitro | M. incognita | Rainy season: 5 μL/mL for 72 h (J2 mortality), 2 μL/mL for 72 h (egg hatching) Winter season: 8 μL/m for 72 h (J2 mortality),2 μL/mL for 72 h (egg hatching) | [51] | |
Thymus vulgaris L. | thymol, ρ-cymene | J2, eggs | J2 mortality, reduction of galls and eggs | Coleus | in vitro, greenhouse | M. javanica | EO: 1000, 2000, 3000, 4000, and 5000 ppm (v/v) for 24 h, 48 h, 72 h | [43] |
Zataria multiflora | J2 | J2 mortality | banana | orchard | M. incognita | EO: 1.2 mL/L | [45] |
Plant Source of the Essential Oil | Active Components | Target Life Stage | Mode of Action | Crop | Experiment | Meloidogyne spp. | Experiment Details | Author |
---|---|---|---|---|---|---|---|---|
Acoraceae | ||||||||
Acorus calamus | β-asarone | J2 | J2 mortality, J2 paralysis | in vitro | M. incognita | EO: 524.45 μg mL−1 for 24 h | [48] | |
Amaranthaceae | ||||||||
Dysphania ambrosioides | (z)-ascaridole, e-ascaridole, p-cymene | Eggs, J2 | J2 mortality, egg-hatching inhibition, reduction of galls and eggs | tomato | in vitro, pots | M. incognita | EO: 500 μg mL−1 for 48 h | [52] |
Amaryllidaceae | ||||||||
Allium sativum | diallyl disulfide (DADS), diallyl trisulfide (DATS), methyl allyl trisulfide | Eggs, J2 | J2 mortality, egg-hatching inhibition | Tomato | in vitro, pots | M. javanica | EO: 0.025 μg mL−1 for 72 h Hydrolat: 0.125 μg mL−1 for 72 h | [53] |
Allium sativum | diallyl disulfide (DADS), diallyl trisulfide (DATS) | Eggs, J2 | J2 mortality, egg-hatching inhibition, reduction of galls and eggs | Tomato | in vitro, greenhouse, pots | M. incognita | EO: 500 μg mL−1 Components: 62 μg mL−1 | [53] |
Anacardiaceae | ||||||||
Schinus terebinthifolius | terpinen-4-ol, γ-terpinene, α-terpineol | Eggs, J2 | J2 mortality, egg-hatching inhibition | lettuce | in vitro, field | M. javanica | [54] | |
Apiaceae | ||||||||
Coriandrum sativum | linalool | J2 | J2 mortality | in vitro, lab | M. hapla | [42] | ||
Cuminum cyminum | γ-terpinen-7-al, α-terpinen-7-al, cumin aldehydes | J2, Eggs | J2 mortality, egg-hatching inhibition, J2 paralysis, egg differentiation, reduction of nematode population in soil | Tomato | in vitro, pots | M. javanica | EO: 62.5 μL/L, 2000 μL/L for 48 and 96 h of immersion | [55] |
Daucus carota | carotol, daucol, daucene | J2, Eggs | J2 mortality, egg-hatching inhibition | in vitro | M. incognita | EO: 2500 ppm for 96 h | [56] | |
Ferula oopoda | J2 | J2 mortality | Banana | Orchard | M. incognita | EO: 1.2 mL/L | [45] | |
Foeniculum vulgare | anethole | J2 | J2 mortality | in vitro, lab | M. hapla | [42] | ||
Ridolfia segetum | (z)-β-ocimene, β-pinene | J2, Eggs | J2 mortality, J2 mobility, and egg-hatching inhibition | in vitro, lab | M. javanica | EO: 16 μL/mL for 72 h | [57] | |
Asteraceae | ||||||||
Artemisia absinthium | borneol acetate, β-terpineol | J2 | J2 mortality, J2 paralysis | in vitro | M. incognita | EO: 937.52 μg mL−1 for 48 h | [48] | |
Artemisia absinthium | - | Galls, eggs | Reduction of galls and eggs | Tomato | in vitro, pots | M. incognita | EO: 3% and 5% (v/v) | [39] |
Artemisia nilagirica | α-thujone, α-myrcene, linalyl isovalerate, camphor, caryophyllene oxide, eucalyptol | J2, Eggs | J2 mortality, egg-hatching inhibition, reduction of galls, eggs, and nematodes in soil | Tomato | in vitro, greenhouse | M. incognita | EO: 20 μg/mL for 48 h | [18] |
Achillea santolina | J2 | J2 mortality | Banana | Orchard | M. incognita | EO: 1.2 mL/L | [45] | |
Achillea wilhelmsii | 1,8-cineole, limonene, α-pinene, β-pinene | J2 | J2 mortality | in vitro | M. incognita | EO: 4000 and 8000 ppm (v/v) for 24 h | [50] | |
Tanacetum falconeri Hook. f. | cis-dehydromatricaria ester-1 | J2 | J2 mortality | in vitro | M. incognita | EO: 1% (w/v) for 24 h | [58] | |
Tanacetum polium | (e)-caryophyllene, limonene, α-pinene, β-pinene | J2 | J2 mortality | in vitro | M. incognita | EO: 4000 and 8000 ppm (v/v) for 24 h | [50] | |
Brassicaceae | ||||||||
Brassica nigra | allyl isothiocyanate (AITC) | J2 | J2 mortality, J2 paralysis | in vitro | M. incognita | EO: 47.7 μg mL−1 for 72 h | [17] | |
Burseraceae | ||||||||
Commiphora myrrha | furanoeudesm-1,3-diene, curcerene | J2 | J2 mortality, J2 paralysis | in vitro | M. incognita | EO: 1000 μg mL−1 for 24 h | [48] | |
Fabaceae | ||||||||
Piptadenia viridiflora | benzaldehyde | J2 | J2 mortality | in vitro | M. incognita | EO: 1000 μg mL−1, Component: 100 and 200 μg mL−1 for 48 h | [59] | |
Tephrosia toxicaria | β-caryophyllene, germacrene D, a-humulene, bicyclogermacrene | Eggs, J2 | J2 mortality, egg-hatching inhibition | in vitro | M. javanica/M. enterolobii | EO: 50, 100, 200, 400, 600, 800 μg mL−1 for 48 h | [60] | |
Trifolium incarnatum | (z)-3-hexenyl acetates, (Z)-3-hexane-1-ol, (E) -ocimene, furanoeudesm-1,3-diene | J2 | J2 mortality, reduction of galls | chili pepper (Capsicum annuum L.) | in vitro, greenhouse, plastic house | M. incognita | EO: 3% and 5% (v/v) for 48 h | [44] |
Hypericaceae | ||||||||
Hypericum perforatum | Galls, eggs | Reduction of galls and eggs | tomato | in vitro, pots | M. incognita | EO: 3% and 5% (v/v) | [39] | |
Lauraceae | ||||||||
Cinnamomum cassia | (e)-cinnamaldehyde | Eggs, J2 | J2 mortality, J2 paralysis, reduction of galls and eggs | Soybean | in vitro, in greenhouse pots | M. incognita | EO: 62 μg/mL−1 Component: 208 μg/mL−1 for 48 h | [34] |
Cinnamomum zeylanicum Blume | eugenol | J2 | J2 mortality, J2 paralysis | in vitro | M. incognita | EO: 391 mg/L for 24 h | [46] | |
Cinnamomum zeylanicum | (e)-cinnamaldehyde, eugenol | Eggs, J2 | J2 mortality, egg-hatching inhibition, reduction of galls and eggs | in vitro, pots | M. incognita | EO: 49 μg/mL−1, Components: 529 and 768 μg/mL−1 for 48 h | [59] | |
Laurus nobilis L. | linalool, 1, 8-cineole, α-pinene, β-pinene, α-terpinyl acetate | Eggs, J2 | J2 mortality, egg-hatching inhibition | in vitro | M. incognita | EO: 0.80 μg/mL−1 for 96 h | [56] | |
Myrtaceae | ||||||||
Eucalyptus citriodora | citronellal | J2 | J2 mortality, J2 paralysis | in vitro | M. incognita | EO: 746.48 μg mL−1 for 24 h | [48] | |
Eucalyptus citriodora | Galls, eggs | Reduction of galls and eggs | tomato | in vitro, pots | M. incognita | EO: 3% and 5% (v/v) | [39] | |
Melaleuca alternifolia | β-terpineol, γ-terpinene | J2 | J2 mortality, J2 paralysis | in vitro | M. incognita | EO: 404.13 μg mL−1 for 24 h | [48] | |
Myrtus communis | α-pinene, 1,8-cineol | J2 | J2 mortality, J2 paralysis | in vitro | M. incognita | EO: 932.65 μg mL−1 for 48 h | [48] | |
Syzygium aromaticum | eugenol | J2 | J2 mortality | in vitro | M. graminicola | Component: 500 ppm for 48 h | [61] | |
Pinaceae | ||||||||
Pinus nigra | a-pinene, c-verbenol | J2 | J2 mortality | in vitro | M. javanica | EO: 1 μg mL−1 Compounds: 0.5 μg mL−1 | [62] | |
Piperaceae | ||||||||
Piper nigrum | Galls, eggs | Reduction of galls and eggs | tomato | in vitro, pots | M. incognita | EO: 3% and 5% (v/v) | [39] | |
Poaceae | ||||||||
Cymbopogon flexuosus | citral | J2 | J2 mortality | in vitro | M. graminicola | Component: 500 ppm for 48 h | [61] | |
Cymbopogon martinii | geraniol | J2 | J2 mortality | in vitro | M. graminicola | Component: 500 ppm for 48 h | [61] | |
Cymbopogon nardus | citronellal, geraniol | J2 | J2 mortality, J2 paralysis | in vitro | M. incognita | EO: 325.41 μg mL−1 for 24 h | [48] | |
Cymbopogon schoenanthus (L.) Spreng | piperitone | J2 | J2 mortality, J2 paralysis | in vitro | M. incognita | EO: 524 mg/L for 24 h | [46] | |
Vetiveria zizanioides (L.) (extract) | sesquiterpene acid 3,3,8,8-tetramethyltricyclo[5.1.0.0(2,4)]oct-5-ene-5-propanoic acid, 6-isopropenyl-4,8a-dimeth yl-1,2,3,5,6,7,8,8a-octahydronaphthalen-2-ol | J2 mortality | in vitro | M. graminicola | EO: 0.95 mg/mL for 72 h | [63] | ||
Rutaceae | ||||||||
Citrus bergamia | Galls, eggs | Reduction of galls and eggs | tomato | in vitro, pots | M. incognita | EO: 3% and 5% (v/v) | [39] | |
Citrus reticulata | limonene | Eggs, J2 | J2 mortality, egg-hatching inhibition | in vitro | M. incognita | Component: 1500 μg/mL−1 for 96 h | [16] | |
Citrus sinensis | l-limonene | J2 | J2 mortality, J2 paralysis | in vitro | M. incognita | EO: 353.20 μg mL−1 for 24 h | [48] | |
Verbenaceae | ||||||||
Lippia citriodora | citral | Egg | Egg hatch inhibition | in vitro | M. hapla | [42] | ||
Zingibiraceae | ||||||||
Hedychium coccineum | e-neradiol, davanone B, spathulenol, eucalyptol | Eggs, J2 | J2 mortality, egg-hatching inhibition | in vitro | M. incognita | EO: 0.25 μg/mL for 24 h 1 μg/mL for 96 h | [64] | |
Zingiber officinale | Galls, eggs | Reduction of galls and eggs | tomato | in vitro, pots | M. incognita | EO: 3% and 5% (v/v) | [39] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sarri, K.; Mourouzidou, S.; Ntalli, N.; Monokrousos, N. Recent Advances and Developments in the Nematicidal Activity of Essential Oils and Their Components against Root-Knot Nematodes. Agronomy 2024, 14, 213. https://doi.org/10.3390/agronomy14010213
Sarri K, Mourouzidou S, Ntalli N, Monokrousos N. Recent Advances and Developments in the Nematicidal Activity of Essential Oils and Their Components against Root-Knot Nematodes. Agronomy. 2024; 14(1):213. https://doi.org/10.3390/agronomy14010213
Chicago/Turabian StyleSarri, Konstantia, Snezhana Mourouzidou, Nikoletta Ntalli, and Nikolaos Monokrousos. 2024. "Recent Advances and Developments in the Nematicidal Activity of Essential Oils and Their Components against Root-Knot Nematodes" Agronomy 14, no. 1: 213. https://doi.org/10.3390/agronomy14010213
APA StyleSarri, K., Mourouzidou, S., Ntalli, N., & Monokrousos, N. (2024). Recent Advances and Developments in the Nematicidal Activity of Essential Oils and Their Components against Root-Knot Nematodes. Agronomy, 14(1), 213. https://doi.org/10.3390/agronomy14010213