Common Tansy (Tanacetum vulgare L.) Growth on Sandy Soil—Insights from a Pot Experiment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Location and Climatic Conditions
2.2. Setup of the Pot Trial, Soil Analyses, Seed Origin and Plant Management
2.3. Harvest and Biomass Analyses
2.4. Statistical Analysis
3. Results and Discussion
3.1. Morphological and Phenological Plant Development
3.2. Biomass Yield and Quality Parameters
4. Conclusions and Outlook
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brander, L.M.; Groot, R.; Guisado Goñi, V.; van ’t Hoff, V.; Schägner, P.; Solomonides, S.; McVittie, A.; Eppink, F.; Sposato, M.; Do, L.; et al. Ecosystem Services Valuation Database (ESVD). Available online: https://www.esvd.net/ (accessed on 18 July 2024).
- Bai, Y.; Cotrufo, M.F. Grassland Soil Carbon Sequestration: Current Understanding, Challenges, and Solutions. Science 2022, 377, 603–608. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Lærke, P.E.; Jørgensen, U. Land Conversion from Annual to Perennial Crops: A Win-Win Strategy for Biomass Yield and Soil Organic Carbon and Total Nitrogen Sequestration. Agric. Ecosyst. Environ. 2022, 330, 107907. [Google Scholar] [CrossRef]
- Martani, E.; Ferrarini, A.; Hastings, A.; Amaducci, S. Soil Organic Carbon Significantly Increases When Perennial Biomass Plantations Are Reverted Back to Annual Arable Crops. Agronomy 2023, 13, 447. [Google Scholar] [CrossRef]
- Das, S.; Teuffer, K.; Stoof, C.R.; Walter, M.F.; Walter, M.T.; Steenhuis, T.S.; Richards, B.K. Perennial Grass Bioenergy Cropping on Wet Marginal Land: Impacts on Soil Properties, Soil Organic Carbon, and Biomass During Initial Establishment. Bioenerg. Res. 2018, 11, 262–276. [Google Scholar] [CrossRef]
- Frank, S.; Schmid, E.; Havlík, P.; Schneider, U.A.; Böttcher, H.; Balkovič, J.; Obersteiner, M. The Dynamic Soil Organic Carbon Mitigation Potential of European Cropland. Glob. Environ. Chang. 2015, 35, 269–278. [Google Scholar] [CrossRef]
- Pörtner, H.-O.; Roberts, D.C.; Tignor, M.; Poloczanska, E.S.; Mintenbeck, K.; Alegría, A.; Craig, M.; Langsdorf, S. IPCC 2022: Climate Change 2022: Impacts, Adaptation and Vulnerability. In Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2022. [Google Scholar]
- Osička, J.; Černoch, F. European Energy Politics after Ukraine: The Road Ahead. Energy Res. Soc. Sci. 2022, 91, 102757. [Google Scholar] [CrossRef]
- Singh, N.; Singhania, R.R.; Nigam, P.S.; Dong, C.-D.; Patel, A.K.; Puri, M. Global Status of Lignocellulosic Biorefinery: Challenges and Perspectives. Bioresour. Technol. 2022, 344, 126415. [Google Scholar] [CrossRef]
- Zhang, B.; Biswal, B.K.; Zhang, J.; Balasubramanian, R. Hydrothermal Treatment of Biomass Feedstocks for Sustainable Production of Chemicals, Fuels, and Materials: Progress and Perspectives. Chem. Rev. 2023, 123, 7193–7294. [Google Scholar] [CrossRef]
- Bui, M.; Adjiman, C.S.; Bardow, A.; Anthony, E.J.; Boston, A.; Brown, S.; Fennell, P.S.; Fuss, S.; Galindo, A.; Hackett, L.A.; et al. Carbon Capture and Storage (CCS): The Way Forward. Energy Environ. Sci. 2018, 11, 1062–1176. [Google Scholar] [CrossRef]
- Isbell, F.; Reich, P.B.; Tilman, D.; Hobbie, S.E.; Polasky, S.; Binder, S. Nutrient Enrichment, Biodiversity Loss, and Consequent Declines in Ecosystem Productivity. Proc. Natl. Acad. Sci. USA 2013, 110, 11911–11916. [Google Scholar] [CrossRef]
- Bateman, I.; Balmford, A. Current Conservation Policies Risk Accelerating Biodiversity Loss. Nature 2023, 618, 671–674. [Google Scholar] [CrossRef] [PubMed]
- Altieri, M.A. The Ecological Role of Biodiversity in Agroecosystems. Agric. Ecosyst. Environ. 1999, 74, 19–31. [Google Scholar] [CrossRef]
- Bridgewater, P.; Schmeller, D.S. The Ninth Plenary of the Intergovernmental Platform on Biodiversity and Ecosystem Services (IPBES-9): Sustainable Use, Values, and Business (as Usual). Biodivers Conserv 2023, 32, 1–6. [Google Scholar] [CrossRef] [PubMed]
- MIDAS, Marginal Lands and Industrial Crops for the European Bioeconomy, Horizon Europe Innovation Action. Available online: https://www.midas-bioeconomy.eu/ (accessed on 21 June 2023).
- Alexopoulou, E.; Elbersen, B.; Trindade, L.; Cosentino, S.L.; Monti, A.; Carmona, M.; Lewandowski, I.; Kyritsis, S.; Cocchi, M.; Papazoglou, E.G. The MIDAS Project: Utilization of Marginal Lands for Growing Sustainable Industrial Crops and Developing Innovative Bio-Based Products. In Proceedings of the European Biomass Conference and Exhibition, ETA-Florence Renewable Energies, Bologna, Italy, 5–9 June 2023; pp. 137–141. [Google Scholar]
- Anderson, E.; Arundale, R.; Maughan, M.; Oladeinde, A.; Wycislo, A.; Voigt, T. Growth and Agronomy of Miscanthus x Giganteus for Biomass Production. Biofuels 2011, 2, 71–87. [Google Scholar] [CrossRef]
- Ben Fradj, N.; Rozakis, S.; Borzęcka, M.; Matyka, M. Miscanthus in the European Bio-Economy: A Network Analysis. Ind. Crops Prod. 2020, 148, 112281. [Google Scholar] [CrossRef]
- Winkler, B.; Mangold, A.; Von Cossel, M.; Clifton-Brown, J.; Pogrzeba, M.; Lewandowski, I.; Iqbal, Y.; Kiesel, A. Implementing Miscanthus into Farming Systems: A Review of Agronomic Practices, Capital and Labour Demand. Renew. Sustain. Energy Rev. 2020, 132, 110053. [Google Scholar] [CrossRef]
- Cumplido-Marin, L.; Graves, A.R.; Burgess, P.J.; Morhart, C.; Paris, P.; Jablonowski, N.D.; Facciotto, G.; Bury, M.; Martens, R.; Nahm, M. Two Novel Energy Crops: Sida hermaphrodita (L.) Rusby and Silphium perfoliatum L.—State of Knowledge. Agronomy 2020, 10, 928. [Google Scholar] [CrossRef]
- Gansberger, M.; Montgomery, L.F.R.; Liebhard, P. Botanical Characteristics, Crop Management and Potential of Silphium perfoliatum L. as a Renewable Resource for Biogas Production: A Review. Ind. Crops Prod. 2015, 63, 362–372. [Google Scholar] [CrossRef]
- von Cossel, M.; Amarysti, C.; Wilhelm, H.; Priya, N.; Winkler, B.; Hoerner, L. The Replacement of Maize (Zea mays L.) by Cup Plant (Silphium perfoliatum L.) as Biogas Substrate and Its Implications for the Energy and Material Flows of a Large Biogas Plant. Biofuels Bioprod. Biorefining 2020, 14, 152–179. [Google Scholar] [CrossRef]
- Ende, L.M.; Laurer, M. Spontanvorkommen Der Silphie Im Bayreuther Raum: Birgt Diese Neue Bioenergiepflanze Ein Invasionspotenzial?—Spontaneous Occurences of the Cup Plant in the Bayreuth Region: Does This New Bioenergy Crop Have Invasive Potential? Nat. Und Landsch. 2020, 95, 310–315. [Google Scholar] [CrossRef]
- Grunwald, D.; Panten, K.; Schwarz, A.; Bischoff, W.-A.; Schittenhelm, S. Comparison of Maize, Permanent Cup Plant and a Perennial Grass Mixture with Regard to Soil and Water Protection. GCB Bioenergy 2020, 12, 694–705. [Google Scholar] [CrossRef]
- Schoo, B.; Wittich, K.P.; Böttcher, U.; Kage, H.; Schittenhelm, S. Drought Tolerance and Water-Use Efficiency of Biogas Crops: A Comparison of Cup Plant, Maize and Lucerne-Grass. J. Agron. Crop Sci. 2017, 203, 117–130. [Google Scholar] [CrossRef]
- Ustak, S.; Munoz, J. Cup-Plant Potential for Biogas Production Compared to Reference Maize in Relation to the Balance Needs of Nutrients and Some Microelements for Their Cultivation. J. Environ. Manag. 2018, 228, 260–266. [Google Scholar] [CrossRef] [PubMed]
- Krimmer, E.; Marzini, K.; Heidinger, I. Wild Plant Mixtures for Biogas: Promoting Biodiversity in a Production-Integrated Manner—Practical Trials for Ecological Enhancement of the Landscape. Naturschutz Landschaftsplanung 2021, 2. [Google Scholar] [CrossRef]
- Paltrinieri, S. Cultivated wilt plant mixtures—Description of their botanical appearance as a basis for the assessment of possible ecological potentials. J. Fur Kult. 2023, 75, 77–89. [Google Scholar] [CrossRef]
- Paltrinieri, S.; Schmidt, J. Wild Plants Instead of Maize for Biogas—What Influences the Acceptance of This Biodiversity-Promoting Alternative Crop? Naturschutz Und Landschaftsplanung 2020, 52. [Google Scholar]
- Huth, E.; Paltrinieri, S.; Thiele, J. Bioenergy and Its Effects on Landscape Aesthetics–A Survey Contrasting Conventional and Wild Crop Biomass Production. Biomass Bioenergy 2019, 122, 313–321. [Google Scholar] [CrossRef]
- Mol, F.; Tamms, L.; Gerowitt, B. Biodiversität Einer Mehrjährigen Wildpflanzenmischung Für Die Biogasproduktion. Jul.-Kühn-Arch. 2018, 458, 238. [Google Scholar] [CrossRef]
- Kuhn, W.; Zeller, J.; Bretschneider-Herrmann, N.; Drenckhahn, K. Energy from Wild Plants—Practical Tips for the Cultivation of Wild Plants to Create Biomass for Biogas Generation Plants; Netzwerk Lebensraum Feldflur: Berlin, Germany, 2014; Volume 1, ISBN 978-3-936802-16-0. [Google Scholar]
- Becker, D.; Ilic, A.-M.; Reichardt, F.J.; Hartung, J.; Beck, J.; Jablonowski, N.D.; Lewin, E.; Von Cossel, M. Grower Perspectives on Perennial Wild Plant Mixtures for Biogas Production in Germany. Ind. Crops Prod. 2024, 220, 119126. [Google Scholar] [CrossRef]
- Fürst-Preiß, C.; Von Cossel, M. Biodiversity-Friendly Bioenergy—A Closer Look on Farmer’s Experiences with Perennial Wild Plant Mixture Cultivation for Biogas Production. In Biodiversity and Bioeconomy; Elsevier: Amsterdam, The Netherlands, 2024; pp. 383–408. ISBN 978-0-323-95482-2. [Google Scholar]
- von Cossel, M. How to Reintroduce Arable Crops after Growing Perennial Wild Plant Species Such as Common Tansy (Tanacetum vulgare L.) for Biogas Production. Energies 2022, 15, 4380. [Google Scholar] [CrossRef]
- Kuhn, W. Expert Interview about the Cultivation of WPM and Potential Shift to Late Harvest Regime. 2022. [Google Scholar]
- Croghan, L.; Smith, A.; Tancos, M.; Anderson, N.; Becker, R. Benefits and Risks of Gene Drives for Invasive Plant Management—The Case for Common Tansy. Front. Agron. 2023, 5, 1290781. [Google Scholar] [CrossRef]
- Ak, G.; Gevrenova, R.; Sinan, K.; Zengin, G.; Zheleva, D.; Mahomoodally, M.; Senkardes, I.; Brunetti, L.; Leone, S.; Di Simone, S.; et al. Tanacetum vulgare L. (Tansy) as an Effective Bioresource with Promising Pharmacological Effects from Natural Arsenal. Food Chem. Toxicol. 2021, 153, 112268. [Google Scholar] [CrossRef] [PubMed]
- Rebele, F. Competition and Coexistence of Rhizomatous Perennial Plants along a Nutrient Gradient. Plant Ecol. 2000, 147, 77–94. [Google Scholar] [CrossRef]
- Kurhanova, I. Lice Infestation and Lice Control Remedies in the Ukraine. Ann. N. Y. Acad. Sci. 2006, 1078, 357–360. [Google Scholar] [CrossRef] [PubMed]
- Dragland, S.; Rohloff, J.; Mordal, R.; Iversen, T.-H. Harvest Regimen Optimization and Essential Oil Production in Five Tansy (Tanacetum vulgare L.) Genotypes under a Northern Climate. J. Agric. Food Chem. 2005, 53, 4946–4953. [Google Scholar] [CrossRef]
- Pszczolkowski, M.A. Prospects of Codling Moth Management on Apples with Botanical Antifeedants and Repellents. Agriculture 2023, 13, 311. [Google Scholar] [CrossRef]
- Rausch, R. Arten-Portraits von Pflanzen oder Flechten (Translation: Species Portraits of Plants or Lichens)—Tanacetum vulgare. Available online: https://www.oekologie-seite.de/index.php?id=24&pid=2468 (accessed on 18 July 2024).
- Von Cossel, M.; Lewandowski, I. Perennial Wild Plant Mixtures for Biomass Production: Impact of Species Composition Dynamics on Yield Performance over a Five-Year Cultivation Period in Southwest Germany. Eur. J. Agron. 2016, 79, 74–89. [Google Scholar] [CrossRef]
- Elbersen, B.; Van Verzandvoort, M.; Boogaard, S.; Mucher, S.; Cicarelli, T.; Elbersen, W.; Mantel, S.; Bai, Z.; MCallum, I.; Iqbal, Y.; et al. Definition and Classification of Marginal Lands Suitable for Industrial Crops in Europe (EU Deliverable); Wageningen University and Research: Wageningen, The Netherlands, 2017. [Google Scholar]
- Von Cossel, M.; Lewandowski, I.; Elbersen, B.; Staritsky, I.; Van Eupen, M.; Iqbal, Y.; Mantel, S.; Scordia, D.; Testa, G.; Cosentino, S.L.; et al. Marginal Agricultural Land Low-Input Systems for Biomass Production. Energies 2019, 12, 3123. [Google Scholar] [CrossRef]
- Confalonieri, R.; Jones, B.; Van Diepen, K.; Van Orshoven, J. Scientific Contribution on Combining Biophysical Criteria Underpinning the Delineation of Agricultural Areas Affected by Specific Constraints: Methodology and Factsheets for Plausible Criteria Combinations; Terres, J.-M., Hagyo, A., Wania, A., Eds.; Publications Office of the European Union: Luxembourg, 2014; ISBN 978-92-79-44340-4. [Google Scholar]
- VDLUFA. Methodenbuch Band III Futtermittel (Grundwerk 1976); VDLUFA—Verband Deutscher Landwirtschaftlicher Untersuchungs- und Forschungsanstalten e.V.: Speyer, Germany, 1976. [Google Scholar]
- Kenward, M.G.; Roger, J.H. Small Sample Inference for Fixed Effects from Restricted Maximum Likelihood. Biometrics 1997, 53, 983–997. [Google Scholar] [CrossRef]
- Piepho, H.-P. An Algorithm for a Letter-Based Representation of All-Pairwise Comparisons. J. Comput. Graph. Stat. 2004, 13, 456–466. [Google Scholar] [CrossRef]
- Poorter, H.; Bühler, J.; van Dusschoten, D.; Climent, J.; Postma, J.A. Pot Size Matters: A Meta-Analysis of the Effects of Rooting Volume on Plant Growth. Funct. Plant Biol. 2012, 39, 839–850. [Google Scholar] [CrossRef] [PubMed]
- Ciesielczuk, T.; Poluszynska, J.; Rosik-Dulewska, C.; Sporek, M.; Lenkiewicz, M. Uses of Weeds as an Economical Alternative to Processed Wood Biomass and Fossil Fuels. Ecol. Eng. 2016, 95, 485–491. [Google Scholar] [CrossRef]
- Scordia, D.; Papazoglou, E.G.; Kotoula, D.; Sanz, M.; Ciria, C.S.; Pérez, J.; Maliarenko, O.; Prysiazhniuk, O.; von Cossel, M.; Greiner, B.E.; et al. Towards Identifying Industrial Crop Types and Associated Agronomies to Improve Biomass Production from Marginal Lands in Europe. GCB Bioenergy 2022, 14, 710–734. [Google Scholar] [CrossRef]
- Von Cossel, M.; Lebendig, F.; Müller, M.; Hieber, C.; Iqbal, Y.; Cohnen, J.; Jablonowski, N. Improving Combustion Quality of Miscanthus by Adding Biomass from Perennial Flower-Rich Wild Plant Species. Renew. Sustain. Energy Rev. 2022, 168, 112814. [Google Scholar] [CrossRef]
- Von Cossel, M.; Lebendig, F.; Müller, M.; Hieber, C.; Iqbal, Y.; Cohnen, J.; Jablonowski, N.D. Comparison of Thermochemical Conversion and Anaerobic Digestion of Perennial Flower-Rich Herbaceous Wild Plant Species for Bioenergy Production. Bioresour. Technol. 2021, 340, 125724. [Google Scholar] [CrossRef]
- ISO/DIS 17225-7:2020; DIN Solid Biofuels—Fuel Specifications and Classes—Part 7: Graded Non-Woody Briquettes. Deutsches Institut für Normung e.V.: Berlin, Germany, 2020.
- Piatkowska, E.; Biel, W.; Witkowicz, R.; Kepinska-Pacelik, J. Chemical Composition and Antioxidant Activity of Asteraceae Family Plants. Appl. Sci. 2022, 12, 12293. [Google Scholar] [CrossRef]
- von Cossel, M.; Heinzel, K.; Patiño Lordello, G.; Aron Winkler, A.; Lauria, M.V.; Gandamalla, G.; Jablonowski, N.D. Exploring the Potential of Perennial Nectar-Producing Wild Plants for Pellet Combustion. Adv. Sustain. Syst. 2024, 8, 2300599. [Google Scholar] [CrossRef]
Plant Fraction | Treatment | Ash Content (% of DM) | N Content (mg g−1) | P Content (mg g−1) | K Content (mg g−1) | Mg Content (mg g−1) | Ca Content (mg g−1) |
---|---|---|---|---|---|---|---|
Shoots | Control | 12.6 ± 1.1 a | 0.8 ± 0.1 a | 1.3 ± 0.3 b | 6.4 ± 2.9 a | 2.1 ± 0.1 a | 18.3 ± 1.2 b |
M1 | 13.4 ± 1.1 a | 0.8 ± 0.1 a | 1.7 ± 0.3 ab | 10.4 ± 2.9 a | 2 ± 0.1 ab | 19 ± 1.2 b | |
M2 | n.a. a | 0.9 ± 0.1 a | 2 ± 0.3 a | 10.9 ± 2.9 a | 1.8 ± 0.1 b | 22.3 ± 1.2 a | |
Roots | Control | 20.9 ± 5.1 b | 0.7 ± 0.1 ab | 2.2 ± 0.3 a | 11.6 ± 4 a | 1.7 ± 0.2 a | 16.9 ± 3.5 a |
M1 | 15.5 ± 5.1 b | 0.5 ± 0.1 b | 2.3 ± 0.3 a | 14.2 ± 4 a | 1.2 ± 0.2 b | 15.1 ± 3.5 a | |
M2 | 47.1 ± 5.1 a | 0.8 ± 0.1 a | 2.3 ± 0.3 a | 13.7 ± 4 a | 1.7 ± 0.2 a | 21.1 ± 3.5 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
von Cossel, M.; Kunisch, J.; Iqbal, Y.; Berwanger, E.; Thiel, T.; Gandamalla, G.; Jablonowski, N.D. Common Tansy (Tanacetum vulgare L.) Growth on Sandy Soil—Insights from a Pot Experiment. Agronomy 2024, 14, 2213. https://doi.org/10.3390/agronomy14102213
von Cossel M, Kunisch J, Iqbal Y, Berwanger E, Thiel T, Gandamalla G, Jablonowski ND. Common Tansy (Tanacetum vulgare L.) Growth on Sandy Soil—Insights from a Pot Experiment. Agronomy. 2024; 14(10):2213. https://doi.org/10.3390/agronomy14102213
Chicago/Turabian Stylevon Cossel, Moritz, Jana Kunisch, Yasir Iqbal, Eva Berwanger, Theresa Thiel, Gawasker Gandamalla, and Nicolai D. Jablonowski. 2024. "Common Tansy (Tanacetum vulgare L.) Growth on Sandy Soil—Insights from a Pot Experiment" Agronomy 14, no. 10: 2213. https://doi.org/10.3390/agronomy14102213
APA Stylevon Cossel, M., Kunisch, J., Iqbal, Y., Berwanger, E., Thiel, T., Gandamalla, G., & Jablonowski, N. D. (2024). Common Tansy (Tanacetum vulgare L.) Growth on Sandy Soil—Insights from a Pot Experiment. Agronomy, 14(10), 2213. https://doi.org/10.3390/agronomy14102213