Effects of Combined Application of Organic and Inorganic Fertilizers on Physical and Chemical Properties in Saline–Alkali Soil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the Study Area and Experimental Design
2.2. Sample Collection and Measurement Methods
2.2.1. Measurement and Related Calculations of the Physical and Chemical Properties in the Soil
2.2.2. Determination of the OM, TN, DON, DOC, MBC, MBC, and MBN
2.2.3. Determination of the SOC Functional Group Structure
2.3. Statistical Analysis
3. Results
3.1. Effects of the Organic Fertilizer Type and Ratio on the Water–Salt Characteristics of Salinized Soil
3.2. Effects of the Organic Fertilizer Type and Ratio on the Chemical Properties and Nutrients of Salinized Soil
3.3. Impact of the Organic Fertilizer Types and Ratios on the Inorganic Nitrogen and Active Organic Carbon and Nitrogen Components in the Salinized Soil
3.4. Impact of Organic Fertilizer Types and Ratios on the Organic Carbon Structure in Salinized Soil
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gruba, P.; Mulder, J. Tree Species Affect Cation Exchange Capacity (CEC) and Cation Binding Properties of Organic Matter in Acid Forest Soils. Sci. Total Environ. 2015, 511, 655–662. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhang, H.; Zhang, Z.; Zhang, C.; Zhang, K.; Pang, H.; Bell, S.M.; Li, Y.; Chen, J. Reinforced Soil Salinization with Distance along the River: A Case Study of the Yellow River Basin. Agric. Water Manag. 2023, 279, 108184. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, M.; Chen, H.; Chen, Y.; Wang, L.; Wang, R. Organic Amendments Promote Saline-Alkali Soil Desalinization and Enhance Maize Growth. Front. Plant Sci. 2023, 14, 1177209. [Google Scholar] [CrossRef] [PubMed]
- Hao, X.; Chang, C. Does Long-Term Heavy Cattle Manure Application Increase Salinity of a Clay Loam Soil in Semi-Arid Southern Alberta? Agric. Ecosyst. Environ. 2003, 94, 89–103. [Google Scholar] [CrossRef]
- Wang, X.; Yang, J.; Yao, R.; Xie, W.; Zhang, X. Manure plus Plastic Film Mulch Reduces Soil Salinity and Improves Barley-Maize Growth and Yield in Newly Reclaimed Coastal Land, Eastern China. Water 2022, 14, 2944. [Google Scholar] [CrossRef]
- Wang, C.; Ma, H.; Feng, Z.; Yan, Z.; Song, B.; Wang, J.; Zheng, Y.; Hao, W.; Zhang, W.; Yao, M.; et al. Integrated Organic and Inorganic Fertilization and Reduced Irrigation Altered Prokaryotic Microbial Community and Diversity in Different Compartments of Wheat Root Zone Contributing to Improved Nitrogen Uptake and Wheat Yield. Sci. Total Environ. 2022, 842, 156952. [Google Scholar] [CrossRef]
- Li, C.; Jia, Z.; Tang, L.; Wu, Y.; Li, Y. Effect of moedl of fertilization on microblial abundance and enzyme activity in oasis farmland soil. Acta Pedol. Sin. 2012, 49, 567–574. [Google Scholar]
- Guo, J.; Liu, W.; Zhu, C.; Luo, G.; Kong, Y.; Ling, N.; Wang, M.; Dai, G.; Shen, Q.; Guo, S. Bacterial Rather than Fungal Community Composition Is Associated with Microbial Activities and Nutrient-Use Efficiencies in a Paddy Soil with Short-Term Organic Amendments. Plant Soil 2018, 424, 335–349. [Google Scholar] [CrossRef]
- Tao, L.; Chu, G.; Liu, T.; Tang, C.; Li, J.; Lang, Y. Impacts of organic manure partial substitution for chemical fertilizer on cotton yield, soil microbial community and enzyme activities in mono-cropping system in drip irrigation condition. Acta Ecol. Sin. 2014, 34, 6137–6146. [Google Scholar]
- Yu, Z.; Liu, J.; Kattel, G. Historical Nitrogen Fertilizer Use in China from 1952 to 2018. Earth Syst. Sci. Data 2022, 14, 5179–5194. [Google Scholar] [CrossRef]
- Duan, Y.; Chen, L.; Zhang, J.; Li, D.; Han, X.; Zhu, B.; Li, Y.; Zhao, B.; Huang, P. Long-Term Fertilisation Reveals Close Associations between Soil Organic Carbon Composition and Microbial Traits at Aggregate Scales. Agric. Ecosyst. Environ. 2021, 306, 107169. [Google Scholar] [CrossRef]
- Yang, Q. The Combined Application of Organic and Inorganic Fertilizers Increases Soil Organic Matter and Improves Soil Microenvironment in Wheat-Maize Field. J. Soils Sediments 2020, 20, 2395–2404. [Google Scholar] [CrossRef]
- Wu, W.; Lin, Z.; Zhu, X.; Li, G.; Zhang, W.; Chen, Y.; Ren, L.; Luo, S.; Lin, H.; Zhou, H.; et al. Improved Tomato Yield and Quality by Altering Soil Physicochemical Properties and Nitrification Processes in the Combined Use of Organic-Inorganic Fertilizers. Eur. J. Soil Biol. 2022, 109, 103384. [Google Scholar] [CrossRef]
- Huo, Y.; Ding, H.; Wang, W.; Li, S.; Guo, Y. Effects of Different Sealing Methods on Soil Moisture, Salt Distribution and Growth of Tomato in Seedling Stage. Soils 2020, 52, 307–310. [Google Scholar] [CrossRef]
- Li, X.; Jiao, Y.; Dai, G.; Yang, M.; Wen, H. Soil bacterial community diversity under different degrees of saline-alkaline in the Hetao Area of Inner Mongolia. China Environ. Sci. 2016, 36, 249–260. [Google Scholar] [CrossRef]
- Redox Measurements of Soils-Patrick-1996—SSSA Book Series-Wiley Online Library. Available online: https://acsess.onlinelibrary.wiley.com/doi/abs/10.2136/sssabookser5.3.c42 (accessed on 23 September 2024).
- Chen, J.; Jia, Y.; He, Q.; Jiang, K.; Chen, C.; Ye, K. Effect of Land Use on the Stability of Soil Organic Carbon in a Karst Region. Environ. Sci. 2024, 45, 335–342. [Google Scholar] [CrossRef]
- Chen, L.-J.; Feng, Q.; Wei, Y.-P.; Li, C.-S.; Zhao, Y.; Li, H.-Y.; Zhang, B.-G. Effects of Saline Water Irrigation and Fertilization Regimes on Soil Microbial Metabolic Activity. J. Soils Sediments 2017, 17, 376–383. [Google Scholar] [CrossRef]
- Li, Q.; Wen, H.; Hu, C. Difference Between International and Domestic Methods in Determining Soil pH. Soils 2007, 39, 488–491. [Google Scholar]
- Zhou, W.; Liu, G.; Pan, J.; Feng, X. Distribution of Available Soil Water Capacity in China. J. Geogr. Sci. 2005, 15, 3–12. [Google Scholar] [CrossRef]
- Lu, R. Methods for Agricultural Chemical Analysis of Soil; China Agricultural Science and Technology Press: Nanjing, China, 2000; ISBN 7-80119-925-1. [Google Scholar]
- Huang Xiang, D.L. Study on the correlation between potassium dichromate external heating method and ASI for soil organic matter determination. Hubei Agric. Sci. 2020, 59, 122. [Google Scholar] [CrossRef]
- Qin, L.; Huang, S.; Zhong, L.; Zhou, H.; Zhao, S.; Xiang, B.; Lei, S. Comparison of Dumas combustion and Kjeldahl methods for determining total nitrogen content in soil. Soil Fertil. Sci. China 2020, 258–265. [Google Scholar]
- Bai, J.; Cui, B.; Li, X.; Zhou, L. Ammonium nitrogen concentration seasonal dynamic in soils from reed wetlands in Xianghai. Acta Pratacul Turae Sin. 2006, 117–119. [Google Scholar]
- Tu, C.; Huang, W.; Chen, A.; Song, G.; Chen, C.; Wang, W.; Xie, X. Comparison Between Ultraviolet Spectrophotometry and Cadmium Reduction Method in Determination of Soil Nitrate-N. Soils 2016, 48, 147–151. [Google Scholar] [CrossRef]
- Chen, M.; Sheng, R.; Zhang, W.; Hou, H.; Wei, W.; Ge, T.; Wang, S. The effect of cropping patterns on soil microbial biomass carbon and nitrogen in reddish paddy soil. Res. Agric. Mod. 2023, 44, 692–700. [Google Scholar] [CrossRef]
- Luo, X.; Cang, L.; Hao, X.; Li, L.; Zhou, D. In-situ sampling of Soil Solution and Determination of Dissolved Organic Carbon (DOC) with UV Absorption Method (UVA254). Soils 2007, 943–947. [Google Scholar]
- Kaiser, M.; Ellerbrock, R.H. Functional Characterization of Soil Organic Matter Fractions Different in Solubility Originating from a Long-Term Field Experiment. Geoderma 2005, 127, 196–206. [Google Scholar] [CrossRef]
- Zhang, Y.; Hu, Y.; Guo, S. Accumulation of Trace Element and Organic Functional Groups in Different Size Fractions of a Loess Topsoil After Long-term Micronutrient Fertilization. Acta Pedol. Sin. 2022, 59, 1420–1431. [Google Scholar]
- Demyan, M.S.; Rasche, F.; Schulz, E.; Breulmann, M.; Müller, T.; Cadisch, G. Use of Specific Peaks Obtained by Diffuse Reflectance Fourier Transform Mid-infrared Spectroscopy to Study the Composition of Organic Matter in a Haplic Chernozem. Eur. J. Soil Sci. 2012, 63, 189–199. [Google Scholar] [CrossRef]
- Ge, M.; Wang, C.; Xu, H.; Yang, F.; Wu, Z.; Lin, S.; Zhang, Y.; Li, X.; Wang, W. OrganicCarbonDistributionand MolecularStructureCharacteristicsof SoilAggregatesinFudingTeaGarden. J. Soiland Water Conserv. 2023, 37, 201–208. [Google Scholar] [CrossRef]
- Shao, P.; Liang, C.; Rubert-Nason, K.; Li, X.; Xie, H.; Bao, X. Secondary Successional Forests Undergo Tightly-Coupled Changes in Soil Microbial Community Structure and Soil Organic Matter. Soil Biol. Biochem. 2019, 128, 56–65. [Google Scholar] [CrossRef]
- Wang, H.; Han, S.; Tang, S.; Cheng, W.; Bu, R.; Li, M.; Wong, J.; Wang, Y.; Cao, W. Continuous Multi-year Application of Chinese Milk Vetch in Paddy Soil and Its Effect on Soil Aggregates Distribution and Their Carbon and Nitrogen Content. Acta Pedol. Sin. 2023, 60, 868–880. [Google Scholar]
- Gao, S. Variation Characteristics of Organic Matter Functional Groups and Microbial Communities in Channel Sediment. Master’s Thesis, Northwest A&F University, Xianyang, China, 2022. [Google Scholar]
- He, Z.; Pagliari, P.; Waldrip, H. Applied and Environmental Chemistry of Animal Manure: A Review. Pedosphere 2016, 26, 779–816. [Google Scholar] [CrossRef]
- Sheng, M.; Long, J.; Lie, W.; Hao, X.; Li, N.; Han, X.; Li, L. Effect of straw returning on the characteristics of Fourier Infrared Spectroscopy organic carbon within aggregates in a Mollisols. Soils Crop. 2020, 9, 355–366. [Google Scholar]
- Schrepf, A.; Clevenger, L.; Christensen, D.; DeGeest, K.; Bender, D.; Ahmed, A.; Goodheart, M.J.; Dahmoush, L.; Penedo, F.; Lucci, J.A.; et al. Cortisol and Inflammatory Processes in Ovarian Cancer Patients Following Primary Treatment: Relationships with Depression, Fatigue, and Disability. Brain Behav. Immun. 2013, 30, S126–S134. [Google Scholar] [CrossRef]
- Zhao, X.; Huang, X.; Shi, Y.; Song, X.; Qin, Z.; Tang, J. FTIR Characteristics of Rhizosphere Soil of Multi-generation Continuous Eucalyptus Plantation in South Subtropical Region. Ecol. Environ. Sci. 2022, 31, 688–694. [Google Scholar] [CrossRef]
- Xiao, M.; Liu, G.; Jiang, S.; Guan, X.; Chen, J.; Yao, R.; Wang, X. Bio-Organic Fertilizer Combined with Different Amendments Improves Nutrient Enhancement and Salt Leaching in Saline Soil: A Soil Column Experiment. Water 2022, 14, 4084. [Google Scholar] [CrossRef]
- Rengasamy, P. Soil Processes Affecting Crop Production in Salt-Affected Soils. Funct. Plant Biol. 2010, 37, 613. [Google Scholar] [CrossRef]
- Hafez, E.M.; Omara, A.E.D.; Alhumaydhi, F.A.; El-Esawi, M.A. Minimizing Hazard Impacts of Soil Salinity and Water Stress on Wheat Plants by Soil Application of Vermicompost and Biochar. Physiol. Plant. 2020, 172, 587–602. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Guo, P.; Zhang, F.; Liu, X.; Yue, Q.; Wang, Y. Optimal Irrigation Water Allocation in Hetao Irrigation District Considering Decision Makers’ Preference under Uncertainties. Agric. Water Manag. 2021, 246, 106670. [Google Scholar] [CrossRef]
- Wang, X.; Riaz, M.; Babar, S.; Eldesouki, Z.; Liu, B.; Xia, H.; Li, Y.; Wang, J.; Xia, X.; Jiang, C. Alterations in the Composition and Metabolite Profiles of the Saline-Alkali Soil Microbial Community through Biochar Application. J. Environ. Manag. 2024, 352, 120033. [Google Scholar] [CrossRef]
- Husson, O. Redox Potential (Eh) and pH as Drivers of Soil/Plant/Microorganism Systems: A Transdisciplinary Overview Pointing to Integrative Opportunities for Agronomy. Plant Soil 2013, 362, 389–417. [Google Scholar] [CrossRef]
- Singh, S.; Tripathi, D.K.; Singh, S.; Sharma, S.; Dubey, N.K.; Chauhan, D.K.; Vaculík, M. Toxicity of Aluminium on Various Levels of Plant Cells and Organism: A Review. Environ. Exp. Bot. 2017, 137, 177–193. [Google Scholar] [CrossRef]
- Martínez-Estévez, M. Aluminum, a Friend or Foe of Higher Plants in Acid Soils. Front. Plant Sci. 2017, 8, 1767. [Google Scholar]
- Lin, X.; Zhu, D.; Lin, X. Effects of Water Management and Organic Fertilization with SRI Crop Practices on Hybrid Rice Performance and Rhizosphere Dynamics. Paddy Water Environ. 2011, 9, 33–39. [Google Scholar] [CrossRef]
- Li, S.; Li, J.; Li, G.; Li, Y.; Yuan, J.; Li, D. Effect of Different Organic Fertilizers Application on Soil Organic Matter Properties. Compost. Sci. Util. 2017, 25, S31–S36. [Google Scholar] [CrossRef]
- Mohiuddin, M.; Irshad, M.; Sher, S.; Hayat, F.; Ashraf, A.; Masood, S.; Bibi, S.; Ali, J.; Waseem, M. Relationship of Selected Soil Properties with the Micronutrients in Salt-Affected Soils. Land 2022, 11, 845. [Google Scholar] [CrossRef]
- Li, X. Salinity Stress Changed the Biogeochemical Controls on CH4 and N2O Emissions of Estuarine and Intertidal Sediments. Sci. Total Environ. 2019, 652, 593–601. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Liu, X.; Zhang, Q.; Li, G.; Wang, P. Biochar Rather than Organic Fertilizer Mitigated the Global Warming Potential in a Saline-Alkali Farmland. Soil Tillage Res. 2022, 219, 105337. [Google Scholar] [CrossRef]
- Xiao, Y.; Wang, M.; Zhuang, W. Effects of Increased Water on Biomassand Absorption of Different Nitrogen Forms of Four Ephemeral Plants in Gurbantunggut Desert. Acta Bot. Boreal.-Occident. Sin. 2022, 42, 1373–1383. [Google Scholar]
- Wang, Z.; Li, S. Effects of Nitrogen and Phosphorus Fertilization on Plant Growth and Nitrate Accumulation in Vegetables. J. Plant Nutr. 2004, 27, 539–556. [Google Scholar] [CrossRef]
- Qi, R.; Li, J.; Lin, Z.; Li, Z.; Li, Y.; Yang, X.; Zhang, J.; Zhao, B. Temperature Effects on Soil Organic Carbon, Soil Labile Organic Carbon Fractions, and Soil Enzyme Activities under Long-Term Fertilization Regimes. Appl. Soil Ecol. 2016, 102, 36–45. [Google Scholar] [CrossRef]
- Ma, Q.; Wen, Y.; Wang, D.; Sun, X.; Hill, P.W.; Macdonald, A.; Chadwick, D.R.; Wu, L.; Jones, D.L. Farmyard Manure Applications Stimulate Soil Carbon and Nitrogen Cycling by Boosting Microbial Biomass Rather than Changing Its Community Composition. Soil Biol. Biochem. 2020, 144, 107760. [Google Scholar] [CrossRef]
- Schulten, H.-R.; Leinweber, P. New Insights into Organic-Mineral Particles: Composition, Properties and Models of Molecular Structure. Biol. Fertil. Soils 2000, 30, 399–432. [Google Scholar] [CrossRef]
- Lima, D.L.D.; Santos, S.M.; Scherer, H.W.; Schneider, R.J.; Duarte, A.C.; Santos, E.B.H.; Esteves, V.I. Effects of Organic and Inorganic Amendments on Soil Organic Matter Properties. Geoderma 2009, 150, 38–45. [Google Scholar] [CrossRef]
- Senesi, N. Composted Materials as Organic Fertilizers. Sci. Total Environ. 1989, 81–82, 521–542. [Google Scholar] [CrossRef]
- Sun, N.; Wang, L.; Sun, Y.; Li, H.; Liao, S.; Ding, J.; Wang, G.; Suo, L.; Li, Y.; Zou, G.; et al. Positive Effects of Organic Substitution in Reduced-Fertilizer Regimes on Bacterial Diversity and N-Cycling Functionality in Greenhouse Ecosystem. Int. J. Environ. Res. Public Health 2022, 19, 16954. [Google Scholar] [CrossRef]
- Qin, Z.; Xie, M.; Zhang, Y.; Li, X.; Li, H.; Zhang, J. Research progress in soil organic carbon stabilization mediated by arbuscular mycorrhizal fungi. J. Plant Nutr. Fertil. 2023, 29, 756–766. [Google Scholar]
- Wang, S.; Tang, J.; Li, Z.; Liu, Y.; Zhou, Z.; Wang, J.; Qu, Y.; Dai, Z. Carbon Mineralization under Different Saline—Alkali Stress Conditions in Paddy Fields of Northeast China. Sustainability 2020, 12, 2921. [Google Scholar] [CrossRef]
Soil Layer (cm) | BD (g/cm3) | θc (%) | θs (%) | Ψ (%) | EC (s/cm) | pH | OM (g/kg) | TN (g/kg) | NH4+-N (g/kg) | NO3−-N (g/kg) | TP (g/kg) | TK (g/kg) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F1 | 0–20 | 1.49 | 26.08 | 28.54 | 84.81 | 0.22 | 7.84 | 13.71 | 0.89 | 8.92 | 7.23 | 0.98 | 21.90 |
20–40 | 1.45 | 24.57 | 29.35 | 86.17 | 0.21 | 7.84 | 9.75 | 0.69 | 13.34 | 25.68 | 0.67 | 17.88 | |
40–60 | 1.49 | 24.64 | 28.45 | 86.02 | 0.21 | 7.85 | 10.07 | 0.79 | 18.35 | 37.18 | 0.58 | 16.22 | |
F2 | 0–20 | 1.43 | 29.51 | 30.91 | 84.21 | 0.32 | 8.03 | 8.43 | 0.66 | 10.51 | 3.23 | 0.66 | 15.69 |
20–40 | 1.51 | 26.27 | 27.40 | 86.17 | 0.37 | 8.03 | 7.86 | 0.55 | 12.26 | 43.68 | 0.60 | 14.83 | |
40–60 | 1.47 | 27.94 | 32.36 | 87.18 | 0.45 | 8.02 | 7.02 | 0.47 | 19.23 | 58.25 | 0.57 | 16.19 |
Treatment | Seedling Stage (Calculation of the Pure Nitrogen Content) | Flowering Stage | |
---|---|---|---|
Organic Fertilizer kg/hm2 | Urea kg/hm2 | Urea kg/hm2 | |
CK (control) | 0 | 0 | 0 |
NF (constant fertilizer) | 0 | 60 | 120 |
CF100 (constant cow manure) | 180 | 0 | 0 |
SF100 (constant sheep manure) | 180 | 0 | 0 |
PF100 (constant commercial organic fertilizer) | 180 | 0 | 0 |
CF25 (25% CF + 75% urea) | 15 | 45 | 90 |
CF50 (50% CF + 50% urea) | 30 | 30 | 60 |
CF75 (75% CF + 25% urea) | 45 | 15 | 30 |
SF25 (25% SF + 75% urea) | 15 | 45 | 90 |
SF50 (50% SF + 50% urea) | 30 | 30 | 60 |
SF75 (75% SF + 25% urea) | 45 | 15 | 30 |
PF25 (25% PF + 75% urea) | 15 | 45 | 90 |
PF50 (50% PF + 50% urea) | 30 | 30 | 60 |
PF75 (75% PF + 25% urea) | 45 | 15 | 30 |
SSC | SWC | SWDI | pH | Eh | OM | TN | C/N | NH4+-N | NO3−-N | DOC | DON | DOC/DON | MBC | MBN | MBC/MBN | MBC/SOC | MBN/TN | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Proportion of Organic Fertilizer | 0 | 2.62c | 138.96a | −7.91a | 8.49a | 285.00a | 7.46a | 0.51d | 8.93a | 90.4a | 59.6a | 260b | 26e | 1.85a | 118.40d | 9.50d | 12.92a | 1.38c | 1.17e |
25 | 2.53d | 129.41e | −9.12d | 8.50a | 279.74c | 7.37c | 0.62a | 6.86d | 79.5b | 53.9b | 332e | 39b | 1.46e | 160.50b | 23.00a | 7.00b | 1.60b | 2.32a | |
50 | 2.47e | 131.07d | −8.74b | 8.47a | 283.93a | 7.20d | 0.58b | 7.16c | 77.6c | 53.7b | 354c | 39c | 1.63c | 234.20a | 17.90b | 13.14a | 3.05a | 1.64b | |
75 | 2.67b | 133.74b | −8.72b | 8.45a | 282.10b | 6.96e | 0.55c | 7.35b | 68.5e | 55.5b | 341d | 32d | 1.82b | 111.20e | 13.70c | 8.16b | 1.34c | 1.44c | |
100 | 2.82a | 132.91c | −8.99c | 8.45a | 283.36b | 7.38b | 0.62a | 6.80e | 75.5d | 61.0a | 365a | 42a | 1.52d | 134.20c | 16.90b | 7.96b | 1.59b | 1.32d | |
Type of Organic Fertilizer | CF | 2.53c | 126.57e | −9.62d | 8.49a | 277.90d | 6.95e | 0.56c | 7.16d | 68.6e | 51.1b | 377a | 36b | 1.84b | |||||
NF | 2.71a | 144.81a | −6.98a | 8.50ab | 280.58c | 7.89a | 0.62a | 7.32b | 85.7b | 65.1a | 297b | 27d | 2.17a | 160.03a | 17.88a | 9.07c | 1.90a | 1.68a | |
CK | 2.53c | 133.10d | −8.84c | 8.48ab | 289.42a | 7.04d | 0.39d | 10.54a | 95.1a | 54.0c | 223d | 25e | 1.52d | 116.7b | 10.8b | 10.92b | 1.39b | 1.13b | |
PF | 2.68a | 132.27c | −8.87c | 8.44b | 286.23b | 7.17c | 0.62a | 6.68e | 83.0c | 50.4d | 295c | 36c | 1.40e | 120.10b | 8.20b | 14.92a | 1.36b | 1.21b | |
SF | 2.65b | 136.50b | −8.18b | 8.47ab | 282.72c | 7.56b | 0.59b | 7.29c | 74.2d | 66.5a | 372a | 43a | 1.59c | ||||||
Proportion of Organic Fertilizer | *** | *** | *** | NS | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | |
Eta | 0.978 | 0.989 | 0.959 | 0.104 | 0.455 | 0.998 | 0.93 | 0.794 | 0.989 | 0.739 | 0.981 | 0.998 | 0.999 | 0.996 | 0.832 | 0.79 | 0.995 | 0.977 | |
Type of Organic Fertilizer | *** | *** | *** | NS | *** | *** | *** | *** | *** | *** | *** | *** | *** | NS | NS | *** | NS | NS | |
Eta | 0.936 | 0.999 | 0.997 | 0.148 | 0.827 | 0.999 | 0.973 | 0.975 | 0.995 | 0.951 | 0.998 | 0.997 | 1 | 0.138 | 0.273 | 0.569 | 0.043 | 0.182 | |
Proportion of Organic Fertilizer | *** | *** | *** | NS | *** | *** | *** | *** | *** | *** | *** | *** | *** | ||||||
Eta | 0.927 | 0.995 | 0.993 | 0.198 | 0.452 | 1 | 0.603 | 0.956 | 0.996 | 0.939 | 0.991 | 0.999 | 1 |
SSC | SWC | SWDI | pH | Eh | OM | TN | C/N | NH4+-N | NO3−-N | DOC | DON | DOC/DON | MBC | MBN | MBC/MBN | MBC/SOC | MBN/TN | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Proportion of Organic Fertilizer | 0 | 4.29a | 150.25d | −9.20d | 8.57a | 277.63d | 6.63a | 0.44c | 8.77a | 59.9e | 58.8c | 254e | 21e | 2.42a | 108.55b | 9.10b | 12.06a | 1.32b | 1.21c |
25 | 3.17d | 147.91e | −9.33e | 8.46b | 281.99c | 5.58e | 0.49b | 6.65d | 72.0b | 56.0d | 295d | 27d | 1.93c | 84.10d | 9.50b | 8.99b | 1.25bc | 1.12c | |
50 | 2.88e | 151.27c | −9.09c | 8.51ab | 284.40b | 6.34b | 0.45c | 8.36b | 63.7d | 61.9b | 303c | 30b | 1.79d | 116.20a | 15.00a | 7.77b | 1.21c | 2.22a | |
75 | 3.23c | 155.18b | −8.73b | 8.44b | 284.15b | 6.10d | 0.45c | 7.94c | 73.4a | 54.4d | 327b | 29c | 2.09b | 83.20d | 10.90ab | 7.69b | 1.22c | 1.31b | |
100 | 3.35b | 156.55a | −8.60a | 8.47b | 287.53a | 6.17c | 0.52a | 6.81d | 65.9c | 67.7a | 339a | 38a | 1.62e | 99.10c | 9.60ab | 10.45ab | 1.76a | 0.93d | |
Type of Organic Fertilizer | CF | 2.48e | 147.82c | −9.36c | 8.43b | 287.40a | 6.26c | 0.42c | 8.64b | 66.7d | 56.4c | 325a | 30b | 1.92d | |||||
NF | 4.19b | 158.87a | −8.39a | 8.56a | 282.17b | 6.39b | 0.46b | 8.34bc | 69.7b | 66.3a | 268d | 25d | 2.17b | 124.20a | 10.00a | 12.57a | 1.35 | 1.24b | |
CK | 4.40a | 141.64d | −10.01d | 8.58a | 273.08c | 6.87a | 0.43c | 9.21a | 50.2e | 51.4d | 241e | 17e | 2.68a | 95.65b | 11.25ab | 8.73b | 1.36 | 1.40a | |
PF | 3.98c | 151.44b | −9.08b | 8.51ab | 280.42b | 5.89e | 0.51a | 6.82d | 67.5c | 61.7b | 302c | 28c | 1.94c | 92.90b | 8.20b | 11.54a | 1.29 | 1.18b | |
SF | 3.02d | 158.93a | −8.38a | 8.48b | 285.74a | 6.01d | 0.51a | 6.86c | 72.1a | 62.0b | 322b | 34a | 1.71e | ||||||
Proportion of Organic Fertilizer | *** | *** | *** | NS | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | NS | *** | *** | |
Eta | 0.984 | 0.997 | 0.996 | 0.208 | 0.798 | 0.999 | 0.92 | 0.962 | 0.991 | 0.899 | 0.99 | 0.998 | 1 | 0.953 | 0.689 | 0.437 | 0.955 | 0.986 | |
Type of Organic Fertilizer | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | NS | NS | NS | NS | |
Eta | 0.999 | 0.999 | 0.985 | 0.281 | 0.978 | 0.998 | 0.951 | 0.973 | 0.988 | 0.836 | 0.977 | 0.996 | 0.999 | 0.932 | 0.153 | 0.076 | 0.153 | 0.111 | |
Type of Organic Fertilizer Proportion of Organic Fertilizer | *** | *** | *** | NS | *** | *** | *** | *** | *** | *** | *** | *** | *** | ||||||
Eta | 0.998 | 0.997 | 0.987 | 0.125 | 0.556 | 0.999 | 0.829 | 0.89 | 0.998 | 0.781 | 0.845 | 0.995 | 0.999 |
MBC | MBN | MBC/MBN | MBC/SOC | MBN/TN | MBC | MBN | MBC/MBN | MBC/SOC | MBN/TN | ||
---|---|---|---|---|---|---|---|---|---|---|---|
F1PF25 | 160.5 | 23.0 | 7.0 | 1.60 | 2.32 | F2PF25 | 84.1 | 9.5 | 8.9 | 1.25 | 1.12 |
F1PF50 | 234.2 | 17.9 | 13.1 | 3.05 | 1.64 | F2PF50 | 116.2 | 15.0 | 7.7 | 1.21 | 2.22 |
F1PF75 | 111.2 | 13.7 | 8.1 | 1.34 | 1.44 | F2PF75 | 83.2 | 10.9 | 7.6 | 1.22 | 1.31 |
F1PF100 | 134.2 | 16.9 | 7.9 | 1.59 | 1.32 | F2PF100 | 99.1 | 9.6 | 10.3 | 1.76 | 0.93 |
F1CK | 120.1 | 8.2 | 14.6 | 1.36 | 1.21 | F2CK | 124.2 | 10.0 | 12.4 | 1.35 | 1.24 |
F1NF | 116.7 | 10.8 | 10.8 | 1.39 | 1.13 | F2NF | 92.9 | 8.2 | 11.3 | 1.29 | 1.18 |
Treatment | Alcohol, Phenol | Aliphatic | Aromatic | Aromatic Amide | Carboxyl Group | Aliphatic/Aromatic | Aromatic/Aromatic Amide | Alcohol, Phenol/Aromatic Amide | Carboxyl Group/Aliphatic |
---|---|---|---|---|---|---|---|---|---|
O–H/N–H | C–H | C=O/C=C | C=O/C=N | C–O | |||||
3620/1797 | 2875 | 1644 | 1434 | 1032 | |||||
F1PF25 | 2.39 | 12.13 | 2.53 | 17.01 | 65.94 | 4.79 | 0.15 | 0.14 | 5.43 |
F1PF50 | 7.39 | 28.21 | 3.73 | 13.58 | 47.09 | 7.56 | 0.27 | 0.54 | 1.67 |
F1PF75 | 21.69 | 15.39 | 2.58 | 9.84 | 50.49 | 5.96 | 0.26 | 2.20 | 3.28 |
F1PF100 | 11.56 | 15.98 | 5.06 | 16.80 | 50.61 | 3.16 | 0.30 | 0.69 | 3.17 |
F1CK | 10.33 | 46.61 | 2.46 | 9.82 | 30.78 | 18.92 | 0.25 | 1.05 | 0.66 |
F1NF | 3.67 | 40.19 | 11.70 | 8.73 | 35.72 | 3.44 | 1.34 | 0.42 | 0.89 |
F2PF25 | 10.04 | 26.14 | 2.26 | 11.86 | 49.70 | 11.57 | 0.19 | 0.85 | 1.90 |
F2PF50 | 7.46 | 25.84 | 2.67 | 13.31 | 50.72 | 9.68 | 0.20 | 0.56 | 1.96 |
F2PF75 | 9.31 | 13.88 | 2.36 | 13.33 | 61.12 | 5.87 | 0.18 | 0.70 | 4.40 |
F2PF100 | 9.00 | 45.99 | 2.40 | 11.54 | 31.07 | 19.18 | 0.21 | 0.78 | 0.68 |
F2CK | 35.81 | 16.98 | 2.87 | 9.21 | 35.13 | 5.91 | 0.31 | 3.89 | 2.07 |
F2NF | 6.52 | 19.89 | 2.86 | 14.14 | 56.59 | 6.95 | 0.20 | 0.46 | 2.85 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, D.; Miao, Q.; Shi, H.; Feng, Z.; Feng, W. Effects of Combined Application of Organic and Inorganic Fertilizers on Physical and Chemical Properties in Saline–Alkali Soil. Agronomy 2024, 14, 2236. https://doi.org/10.3390/agronomy14102236
Yu D, Miao Q, Shi H, Feng Z, Feng W. Effects of Combined Application of Organic and Inorganic Fertilizers on Physical and Chemical Properties in Saline–Alkali Soil. Agronomy. 2024; 14(10):2236. https://doi.org/10.3390/agronomy14102236
Chicago/Turabian StyleYu, Dandan, Qingfeng Miao, Haibin Shi, Zhuangzhuang Feng, and Weiying Feng. 2024. "Effects of Combined Application of Organic and Inorganic Fertilizers on Physical and Chemical Properties in Saline–Alkali Soil" Agronomy 14, no. 10: 2236. https://doi.org/10.3390/agronomy14102236
APA StyleYu, D., Miao, Q., Shi, H., Feng, Z., & Feng, W. (2024). Effects of Combined Application of Organic and Inorganic Fertilizers on Physical and Chemical Properties in Saline–Alkali Soil. Agronomy, 14(10), 2236. https://doi.org/10.3390/agronomy14102236