Differential Effects of Sulfur Fertilization on Soil Microbial Communities and Maize Yield Enhancement
Abstract
1. Introduction
2. Materials and Methods
2.1. Field Sites and Sample Collection
2.2. Soil Properties and Maize Yield Determination
2.3. Illumina MiSeq High-Throughput Sequencing and Data Analysis
2.4. Statistical Analysis
3. Results
3.1. Effects of Different S Types Application on Maize Yield
3.2. Effects of Different S Types Application on Soil Properties
3.3. Effects of Different S Types Application on Bacterial Alpha Diversity and Community Structure
3.4. Effects of Different S Types Application on Bacterial Community Stability
3.5. Driving Factors of Rare and Abundant Taxa
3.6. Effect of Different Types S Fertilization-Driven Soil Properties on Maize Yields
3.7. Predictive Functional Analysis of Abundant and Rare Taxa under Different S Applications
4. Discussion
4.1. The Effect of Different S Fertilizer Applications on Maize Yield
4.2. The Effect of Different S Fertilizer Applications on Soil Properties
4.3. The Effect of Different S Application on Rare and Abundant Bacterial Communities
4.4. The Mechanism of Rare and Abundant Taxa Regulating Maize Yield
4.5. The Effects of Different S Applications on the Functions of Rare and Abundant Taxa
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chaudhary, S.; Sindhu, S.S.; Dhanker, R.; Kumari, A. Microbes-mediated sulphur cycling in soil: Impact on soil fertility, crop production and environmental sustainability. Microbiol. Res. 2023, 271, 127340. [Google Scholar] [CrossRef] [PubMed]
- Maruyama Nakashita, A. Metabolic changes sustain the plant life in low-sulfur environments. Curr. Opin. Plant Biol. 2017, 39, 144–151. [Google Scholar] [CrossRef] [PubMed]
- Sutar, R.K.; Pujar, A.M.; Kumar, B.N.A.; Hebsur, N.S. Sulphur nutrition in maize a critical review. Int. J. Pure Appl. Biosci. 2018, 5, 1582–1596. [Google Scholar] [CrossRef]
- Kulczycki, G. The effect of elemental sulfur fertilization on plant yields and soil properties. Adv. Agron. 2021, 167, 105–181. [Google Scholar] [CrossRef]
- Carciochi, W.D.; Wyngaard, N.; Divito, G.A.; Calvo, N.I.R.; Cabrera, M.L.; Echeverría, H.E. Diagnosis of sulfur availability for corn based on soil analysis. Biol. Fertil. Soils 2016, 52, 917–926. [Google Scholar] [CrossRef]
- Sutradhar, A.K.; Kaiser, D.E.; Fernández, F.G. Does total nitrogen/sulfur ratio predict nitrogen or sulfur requirement for corn? Soil Sci. Soc. Am. J. 2017, 81, 564–577. [Google Scholar] [CrossRef]
- Malik, A.A.; Puissant, J.; Buckeridge, K.M.; Goodall, T.; Jehmlich, N.; Chowdhury, S.; Gweon, H.S.; Peyton, J.M.; Mason, K.E.; van Agtmaal, M.; et al. Land use driven change in soil pH affects microbial carbon cycling processes. Nat. Commun. 2018, 9, 3591. [Google Scholar] [CrossRef]
- Zenda, T.; Liu, S.; Dong, A.; Duan, H. Revisiting Sulphur—The Once Neglected Nutrient: It’s Roles in Plant Growth, Metabolism, Stress Tolerance and Crop Production. Agriculture 2021, 11, 626. [Google Scholar] [CrossRef]
- Fageria, N.K.; dos Santos, A.B.; Moraes, M.F. Influence of Urea and Ammonium Sulfate on Soil Acidity Indices in Lowland Rice Production. Commun. Soil Sci. Plant Anal. 2010, 41, 1565–1575. [Google Scholar] [CrossRef]
- Anwari, G.; Tianxu, Y.; Alio Moussa, A.; Wentao, Z.; Mandozai, A.; Gamal, M.; Feng, J. Influence of biochar and aluminum sulfate on rice growth and production in saline soil. J. Crop Improv. 2022, 37, 776–795. [Google Scholar] [CrossRef]
- Eriksen, J. Gross sulphur mineralization-immobilization turnover in soil amended with plant residues. Soil Biol. Biochem. 2005, 37, 2216–2224. [Google Scholar] [CrossRef]
- Bolan, N.S.; Hedley, M.J. Role of carbon, nitrogen, and sulfur cycles in soil acidification. Acidification of soils. In Handbook of Soil Acidity, 1st ed.; CRC Press: Boca Raton, FL, USA, 2003; pp. 29–56. [Google Scholar]
- Scherer, H.W. Sulfur in soils. J. Plant Nutr. Soil Sci. 2009, 172, 326–335. [Google Scholar] [CrossRef]
- Wang, M.; Wang, L.; Shi, H.; Liu, Y.; Chen, S. Soil bacteria, genes, and metabolites stimulated during sulfur cycling and cadmium mobilization under sodium sulfate stress. Environ. Res. 2021, 201, 111599. [Google Scholar] [CrossRef] [PubMed]
- Pedrós-Alió, C. The rare bacterial biosphere. Annu. Rev. Mar. Sci. 2012, 4, 449–466. [Google Scholar] [CrossRef] [PubMed]
- Parvathi, A.; Catena, M.; Jasna, V.; Phadke, N.; Gogate, N. Influence of hydrological factors on bacterial community structure in a tropical monsoonal estuary in India. Environ. Sci. Pollut. Res. 2021, 28, 50579–50592. [Google Scholar] [CrossRef] [PubMed]
- Lauber, C.; Ramirez, K.; Aanderud, Z.; Jay, L.; Noah, F. Temporal variability in soil microbial communities across land-use types. ISME J. 2013, 7, 1641–1650. [Google Scholar] [CrossRef]
- Jousset, A.; Bienhold, C.; Chatzinotas, A.; Gallien, L.; Gobet, A.; Kurm, V.; Hol, W.H. Where less may be more: How the rare biosphere pulls ecosystems strings. ISME J. 2017, 11, 853–862. [Google Scholar] [CrossRef] [PubMed]
- Lynch, M.; Neufeld, J. Ecology and exploration of the rare biosphere. Nat. Rev. Microbiol. 2015, 13, 217–229. [Google Scholar] [CrossRef]
- Pester, M.; Bittner, N.; Deevong, P.; Wagner, M.; Loy, A. A ‘rare biosphere’ microorganism contributes to sulfate reduction in a peatland. ISME J. 2010, 4, 1591–1602. [Google Scholar] [CrossRef]
- Sauret, C.; Séverin, T.; Vétion, G.; Guigue, C.; Goutx, M.; Pujo-Pay, M.; Conan, P.; Fagervold, S.K.; Ghiglione, J.F. Rare biosphere’ bacteria as key phenanthrene degraders in coastal seawaters. Environ. Pollut. 2014, 194, 246–253. [Google Scholar] [CrossRef]
- Pennekamp, F.; Pontarp, M.; Tabi, A.; Altermatt, F.; Alther, R.; Choffat, Y.; Fronhofer, E.A.; Ganesanandamoorthy, P.; Garnier, A.; Griffiths, J.I.; et al. Biodiversity increases and decreases ecosystem stability. Nature 2018, 563, 109–112. [Google Scholar] [CrossRef] [PubMed]
- Bao, P.; Li, G.X.; Sun, G.X.; Xu, Y.Y.; Meharg, A.A.; Zhu, Y.G. The role of sulfate-reducing prokaryotes in the coupling of element biogeochemical cycling. Sci. Total Environ. 2018, 613, 398–408. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Ling, N.; Wang, T.; Zhu, C.; Wang, Y.; Wang, S.; Gao, Q. Responses of soil biological traits and bacterial communities to nitrogen fertilization mediate maize yields across three soil types. Soil Tillage Res. 2019, 185, 61–69. [Google Scholar] [CrossRef]
- Gill, S.R.; Pop, M.; DeBoy, R.T.; Eckburg, P.B.; Turnbaugh, P.J.; Samuel, B.S.; Gordon, J.I.; Relman, D.A.; Fraser-Liggett, C.M.; Nelson, K.E. Metagenomic analysis of the human distal gut microbiome. Science 2006, 312, 1355–1359. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Jiang, W. Application of high-throughput sequencing in understanding human oral microbiome related with health and disease. Front. Microbiol. 2014, 5, 6. [Google Scholar] [CrossRef] [PubMed]
- Caporaso, J.G.; Kuczynski, J.; Stombaugh, J.; Bittinger, K.; Bushman, F.D.; Costellz, E.K.; Fierer, N.; Pena, A.G.; Goodrich, J.K.; Gordon, J.I.; et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 2010, 7, 335–336. [Google Scholar] [CrossRef]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef]
- Dong, S.; Zhang, B.; Wang, Z.; Zhou, X.; Gao, Q. Responses of soil bacterial communities and maize yields to sulfur application across four soil types. Front. Microbiol. 2024, 13, 1329938. [Google Scholar] [CrossRef]
- He, Z.; Liu, D.; Shi, Y.; Wu, X.; Dai, Y.; Shang, Y.; Peng, J.; Cui, Z. Broader environmental adaptation of rare rather than abundant bacteria in reforestation succession soil. Sci. Total Environ. 2022, 828, 154364. [Google Scholar] [CrossRef]
- Pan, C.; Feng, Q.; Li, Y.; Li, Y.; Liu, L.; Yu, X.; Ren, S. Rare soil bacteria are more responsive in desertification restoration than abundant bacteria. Environ. Sci. Pollut. Res. 2022, 29, 33323–33334. [Google Scholar] [CrossRef]
- Zhou, Z.; Zhang, Y.; Zhang, F. Abundant and rare bacteria possess different diversity and function in crop monoculture and rotation systems across regional farmland. Soil Biol. Biochem. 2022, 171, 108742. [Google Scholar] [CrossRef]
- Skwierawska, M.; Zawartka, L.; Zawadski, B. The effect of different rates and forms of sulphur applied on changes of soil agrochemical properties. Plant Soil Environ. 2008, 54, 171–177. [Google Scholar] [CrossRef]
- Du, X.; Liu, G.; Pu, P.; Liu, J.; Li, W.; Xu, X. Effects of SO42−-S and S0-S on the Sultur Nutrition in Pakchoi. J. Nucl. Agric. Sci. 2020, 34, 0635–0641. [Google Scholar] [CrossRef]
- Jiang, M.; Dong, C.; Bian, W.; Zhang, W.; Wang, Y. Effects ofdifferent fertilization practices on maize yield, soil nutrients, soil moisture, and water use efficiency in northern China based on a meta-analysis. Sci. Rep. 2024, 14, 6480. [Google Scholar] [CrossRef]
- Khan, K.S.; Joergensen, R.G. Microbial C, N, and P relationships in moisture–stressed soils of a semiarid subtropical forest after nitrogen and sulfur amendments. Soil Biol. Biochem. 2006, 38, 2902–2911. [Google Scholar] [CrossRef]
- Masuda, S.; Bao, Z.; Okubo, T.; Sasaki, K.; Ikeda, S.; Shinoda, R.; Anda, M.; Kondo, R.; Mori, Y.; Minamisawa, K. Sulfur Fertilization Changes the Community Structure of Rice Root-, and Soil- Associated Bacteria. Microbes Environ. 2016, 31, 70–75. [Google Scholar] [CrossRef]
- McGrath, S.P.; Zhao, F.J.; Blake-Kalff, M.M.A. History and outlook for sulfur fertilizers in Europe. Commun. Soil Sci. Plant Anal. 2002, 33, 421–425. [Google Scholar]
- Eriksen, J.; Mortensen, J.V. Effects of timing of sulphur application on yield, S-uptake and quality of barley. Agron. J. 2002, 94, 493–499. [Google Scholar] [CrossRef]
- Zhao, F.J.; McGrath, S.P. Biofortification and phytoremediation. Curr. Opin. Plant Biol. 2009, 12, 373–380. [Google Scholar] [CrossRef]
- Klose, S.; Bilen, S.; Ali Tabatabai, M.; Dick, W.A. Sulfur Cycle Enzymes. Soil Biol. Biochem. 2011, 9, 125–159. [Google Scholar] [CrossRef]
- Kunito, T.; Kurita, H.; Kumori, M.; Sakaguchi, K.; Nishizawa, S.; Fujita, K.; Moro, H.; Sawada, K.; Miyabara, Y.; Toda, H.; et al. Microbial synthesis of arylsulfatase depends on the soluble and adsorbed sulfate concentration in soils. Eur. J. Soil Biol. 2022, 111, 103418. [Google Scholar] [CrossRef]
- Chen, H.; Yang, L.; Wen, L.; Luo, P.; Liu, L.; Yang, Y.; Wang, K.; Li, D. Effects of nitrogen deposition on soil sulfur cycling, Global Biogeochem. Cycles 2016, 30, 1568–1577. [Google Scholar] [CrossRef]
- Chen, H.; Liu, J.; Li, D.; Xiao, K.; Wang, K. Controls on soil arylsulfatase activity at a regional scale. Eur. J. Soil Biol. 2019, 90, 9–14. [Google Scholar] [CrossRef]
- Yang, Y.; Cheng, K.; Li, K.; Jin, Y.; He, X. Deciphering the diversity patterns and community assembly of rare and abundant bacterial communities in a wetland system. Sci. Total Environ. 2022, 838, 156334. [Google Scholar] [CrossRef]
- Li, G.L.; Meng, W.U.; Li, P.F.; Wei, S.P.; Jia, L.I.U.; Jiang, C.Y.; Ming, L.I.U.; Li, Z.P. Assembly and co-occurrence patterns of rare and abundant bacterial sub-communities in rice rhizosphere soil under short-term nitrogen deep placement. J. Integr. Agric. 2021, 20, 3299–3311. [Google Scholar] [CrossRef]
- Ma, Y.; Oliveira, R.S.; Nai, F.; Rajkumar, M.; Luo, Y.; Rocha, I.; Freitas, H. The hyperaccumulator Sedum plumbizincicola harbors metal-resistant endophytic bacteria that improve its phytoextraction capacity in multi-metal contaminated soil. J. Environ. Manag. 2015, 156, 62–69. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, E.D.B.; Stone, L.F.; Martin-Didonet, C.C.G. Populacao e atividade microbiana do solo em sistema agroecologico de producao. Rev. Cienc. Agron. 2017, 48, 3–22. [Google Scholar] [CrossRef]
- Schmalenberger, A.; Telford, A.; Kertesz, M. Sulfate treatment affects desulfonating bacterial community structures in Agrostis rhizospheres as revealed by functional geneanalysis based on asfA. Eur. J. Soil Biol. 2010, 46, 248–254. [Google Scholar] [CrossRef]
- Lu, Y.; Cong, P.; Kuang, S.; Tang, L.; Li, Y.; Dong, J.; Song, W. Long-term excessive application of K2SO4 fertilizer alters bacterial community and functional pathway of tobacco-planting soil. Front. Plant Sci. 2022, 13, 1005303. [Google Scholar] [CrossRef] [PubMed]
- Deltedesco, E.; Keiblinger, K.M.; Piepho, H.P.; Antonielli, L.; Pötsch, E.M.; Zechmeister-Boltenstern, S.; Gorfer, M. Soil microbial community structure and function mainly respond to indirect effects in a multifactorial climate manipulation experiment. Soil Biol. Biochem. 2020, 142, 107704. [Google Scholar] [CrossRef]
- Zhalnina, K.; Dias, R.; de Quadros, P.D.; Davis-Richardson, A.; Camargo, F.A.; Clark, I.M.; McGrath, S.P.; Hirsch, P.R.; Triplett, E.W. Soil pH determines microbial diversity and composition in the Park Grass Experiment. Nat. Microbiol. 2015, 69, 395–406. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Lao, Y.-M.; Song, J.-T.; Jin, H.; Zhu, J.-M.; Cai, Z.-H. Temporal heterogeneity of microbial communities and metabolic activities during a natural algal bloom. Water Res. 2020, 183, 116020. [Google Scholar] [CrossRef] [PubMed]
- Gupta, V.; Lawrence, J.; Germida, J. Impact of elemental sulfur fertilization on agricultural soils. i. effects on microbial biomass and enzyme activities. Can. J. Soil Sci. 1988, 68, 463–473. [Google Scholar] [CrossRef]
- Tripathi, B.M.; Kim, M.; Lai-Hoe, A.; Shukor, N.A.; Rahim, R.A.; Go, R.; Adams, J.M. pH dominates variation in tropical soil archaeal diversity and community structure. FEMS Microbiol. Ecol. 2013, 86, 303–311. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, B.M.; Kim, M.; Tateno, R.; Kim, W.; Wang, J.J.; Lai-Hoe, A.; Ab Shukor, N.A.; Rahim, R.A.; Go, R.; Adams, J.M. Soil pH and biome are both key determinants of soil archaeal community structure. Soil Biol. Biochem. 2015, 88, 1–8. [Google Scholar] [CrossRef]
- Duan, L.; Yu, Q.; Zhang, Q.; Wang, Z.; Pan, Y.; Larssen, T.; Tang, J.; Mulder, J. Acid deposition in Asia: Emissions, deposition, and ecosystem effects. Atmos. Environ. 2016, 146, 55–69. [Google Scholar] [CrossRef]
- Liu, H.; Dai, Z.; Wang, Y.; Ma, X.; Shi, Z.; Wang, R.; Xu, Z.; Li, H.; Han, X.; Jiang, Y. Interacting effects of water and nitrogen addition on soil–plant sulfur dynamics in a semi-arid grassland. Geoderma 2024, 442, 116796. [Google Scholar] [CrossRef]
- Jiao, S.; Wang, J.; Wei, G.; Chen, W.; Lu, Y. Dominant role ofabundant rather than rare bacterial taxa in maintaining agro-soil microbiomes under environmental disturbances. Chemosphere 2019, 235, 248–259. [Google Scholar] [CrossRef]
- Wagg, C.; Bender, S.F.; Widmer, F.; van der Heijden, M.G. Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proc. Natl. Acad. Sci. USA 2014, 111, 5266–5270. [Google Scholar] [CrossRef]
- Zhao, R.; Liu, J.; Feng, J.; Li, X.; Li, B. Microbial community composition and metabolic functions in landfill leachate from different landfills of China. Sci. Total Environ. 2021, 767, 144861. [Google Scholar] [CrossRef]
- Hu, C.; Yang, Z.; Chen, Y.; Tang, J.; Zeng, L.; Cong, P.; Chen, L.; Wang, J. Unlocking soil revival: The role of sulfate-reducing bacteria in mitigating heavy metal contamination. Environ. Geochem. Health 2024, 46, 417. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Gao, W.; Wang, C.; Gao, M. Distinct distribution patterns and functional potentials of rare and abundant microorganisms between plastisphere and soils. Sci. Total Environ. 2023, 873, 162413. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.W.; Bai, D.S.; Yang, X.; Zhang, Y.; Luo, X.G. Soil sulfur cycle bacteria and metabolites affected by soil depth and afforestation conditions in high-sulfur coal mining areas. Appl. Soil Ecol. 2023, 185, 104802. [Google Scholar] [CrossRef]
- Wang, X.; Zhou, Z.; Zijing, L.; Xia, L.; Song, S.; Meza, J.V.G.; Montes, M.L.; Li, J. Surge of native rare taxa in tailings soil induced by peat bacterial invasion. Sci. Total Environ. 2024, 908, 168596. [Google Scholar] [CrossRef] [PubMed]
- Marzec-Grządziel, A.; Gałązka, A. Sequencing of the Whole Genome of a Bacterium of the Genus Achromobacter Reveals Its Potential for Xenobiotics Biodegradation. Agriculture 2023, 13, 1519. [Google Scholar] [CrossRef]
- Liu, S.; Cui, S.; Ying, F.; Nasar, J.; Wang, Y.; Gao, Q. Simultaneous improvement of protein concentration and amino acid balance in maize grains by coordination application of nitrogen and sulfur. J. Cereal Sci. 2021, 99, 103189. [Google Scholar] [CrossRef]
- Xin, Y.; Ji, L.; Wang, Z.; Li, K.; Xu, X.; Guo, D. Functional Diversity and CO2 Emission Characteristics of Soil Bacteria during the Succession of Halophyte Vegetation in the Yellow River Delta. Int. J. Environ. Res. Public Health 2022, 19, 12919. [Google Scholar] [CrossRef] [PubMed]
Soil Types | Sample | pH | OM Organic Matter (g kg−1) | AS Available Sulfur (mg kg−1) | SAR Aryl Sulfatase (nmol−1 g−1 min−1) |
---|---|---|---|---|---|
Black | S0 | 5.78 ± 0.07 a | 21.71 ± 0.79 a | 13.3 ± 1.31 b | 7.4 ± 0.53 c |
S90 | 5.62 ± 0.03 b | 21.80 ± 2.98 a | 21.3 ± 2.87 a | 13.7 ± 0.47 a | |
s90 | 5.58 ± 0.02 b | 21.13 ± 0.66 a | 18.6 ± 1.85 a | 9.4 ± 0.08 b | |
Sandy | S0 | 5.57 ± 0.03 a | 15.67 ± 0.02 a | 11.8 ± 1.03 b | 7.9 ± 0.11 c |
S90 | 5.53 ± 0.08 b | 15.77 ± 0.31 a | 17.5 ± 1.08 a | 10.0 ± 0.14 a | |
s90 | 5.43 ± 0.04 c | 15.44 ± 0.34 a | 15.6 ± 0.72 a | 8.9 ± 0.20 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, S.; Zhang, B.; Hou, W.; Zhou, X.; Gao, Q. Differential Effects of Sulfur Fertilization on Soil Microbial Communities and Maize Yield Enhancement. Agronomy 2024, 14, 2251. https://doi.org/10.3390/agronomy14102251
Dong S, Zhang B, Hou W, Zhou X, Gao Q. Differential Effects of Sulfur Fertilization on Soil Microbial Communities and Maize Yield Enhancement. Agronomy. 2024; 14(10):2251. https://doi.org/10.3390/agronomy14102251
Chicago/Turabian StyleDong, Siqi, Bing Zhang, Wenfeng Hou, Xue Zhou, and Qiang Gao. 2024. "Differential Effects of Sulfur Fertilization on Soil Microbial Communities and Maize Yield Enhancement" Agronomy 14, no. 10: 2251. https://doi.org/10.3390/agronomy14102251
APA StyleDong, S., Zhang, B., Hou, W., Zhou, X., & Gao, Q. (2024). Differential Effects of Sulfur Fertilization on Soil Microbial Communities and Maize Yield Enhancement. Agronomy, 14(10), 2251. https://doi.org/10.3390/agronomy14102251