Factors Driving Soil Respiration Rate After Different Fertilizer Sources Addition
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design and Sampling
2.2. Edaphic Properties and Soil Respiration Analysis
2.3. Soil Microbial Community Structure and Abundance
2.4. Statistical Analysis
3. Results
3.1. Soil Respiration Rate Related with Edaphic Properties
3.2. Microbial Traits Shifted by Different Treatments
3.2.1. Bacterial Communities
- Community structure
- 2.
- Absolute abundance of bacteria similar to ACFA compared
- 3.
- Correlation between bacteria community and soil properties
3.2.2. Fungal Communities
- Community structure
- 2.
- Abundance of fungi
- 3.
- Correlation between fungi community and soil properties
3.2.3. Biotic and Abiotic Factors Contribute to Soil Carbon Dioxide Efflux
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lehmann, J.; Kleber, M. The contentious nature of soil organic matter. Nature 2015, 528, 60–68. [Google Scholar] [CrossRef] [PubMed]
- Karhu, K.; Auffret, M.; Dungait, J.; Hopkins, D.; Prosser, J.; Singh, B.; Subke, J.; Wookey, P.; Ågren, G.; Sebastià, M.; et al. Hartley Temperature sensitivity of soil respiration rates enhanced by microbial community response. Nature 2014, 513, 81–84. [Google Scholar] [CrossRef]
- Bond-Lamberty, B.; Bailey, V.; Chen, M.; Gough, C.; Vargas, R. Globally rising soil heterotrophic respiration over recent decades. Nature 2018, 560, 80–83. [Google Scholar] [CrossRef] [PubMed]
- Singh, B.; Bardgett, R.; Smith, P.; Reay, D. Microorganisms and climate change: Terrestrial feedbacks and mitigation options. Nat. Rev. Microbiol. 2010, 8, 779–790. [Google Scholar] [CrossRef]
- Bradford, M.; McCulley, R.; Crowther, T.; Oldfield, E.; Wood, S.; Fierer, N. Cross-biome patterns in soil microbial respiration predictable from evolutionary theory on thermal adaptation. Nat. Ecol. Evol. 2019, 3, 223–231. [Google Scholar] [CrossRef]
- Placella, S.; Brodie, E.; Firestone, M. Rainfall-induced carbon dioxide pulses result from sequential resuscitation of phylogenetically clustered microbial groups. Proc. Natl. Acad. Sci. USA 2012, 109, 10931–10936. [Google Scholar] [CrossRef]
- Liu, L.; Wang, X.; Lajeunesse, M.; Miao, G.; Piao, S.; Wan, S.; Wu, Y.; Wang, Z.; Yang, S.; Li, P.; et al. A cross-biome synthesis of soil respiration and its determinants under simulated precipitation changes. Glob. Chang. Bio. 2016, 22, 1394–1405. [Google Scholar] [CrossRef]
- Chen, S.; Wang, W.; Xu, W.; Wang, Y.; Wan, H.; Chen, D.; Tang, Z.; Tang, X.; Zhou, J.; Xie, Z.; et al. Plant diversity enhances productivity and soil carbon storage. Proc. Natl. Acad. Sci. USA 2018, 115, 4027–4032. [Google Scholar] [CrossRef]
- Balogh, J.; Pintér, K.; Fóti, S.; Cserhalmi, D.; Papp, M.; Nagy, Z. Dependence of soil respiration on soil moisture, clay content, soil organic matter, and CO2 uptake in dry grassland. Soil Biol. Biochem. 2011, 43, 1006–1013. [Google Scholar] [CrossRef]
- Chen, S.; Zou, J.; Hu, Z.; Chen, H.; Lu, Y. Global annual soil respiration in relation to climate, soil properties and vegetation characteristics: Summary of available data. Agric. For. Meteorol. 2014, 198–199, 335–346. [Google Scholar] [CrossRef]
- Tang, X.; Du, J.; Shi, Y.; Lei, N.; Chen, G.; Cao, L.; Pei, X. Global patterns of soil heterotrophic respiration—A meta-analysis of available dataset. Catena 2020, 191, 104574. [Google Scholar] [CrossRef]
- Ebrahimi, M.; Sarikhani, M.; Sinegani, A.; Keesstra, S. Estimating the soil respiration under different land uses using artificial neural network and linear regression models. Catena 2019, 174, 371–382. [Google Scholar] [CrossRef]
- Liu, Y.; Delgado-Baquerizo, M.; Wang, J.; Hu, H.; Yang, Z.; He, J. New insights into the role of microbial community composition in driving soil respiration rates. Soil Biol. Biochem. 2018, 118, 35–41. [Google Scholar] [CrossRef]
- Smith, K.; Waring, B. Broad-Scale Patterns of Soil Carbon (C) Pools and Fluxes Across Semiarid. Ecosystems 2019, 22, 742–753. [Google Scholar] [CrossRef]
- Cai, A.; Feng, W.; Zhang, W.; Xu, M. Climate, soil texture, and soil types affect the contributions of fine fraction-stabilized carbon to total soil organic carbon in different land uses across China. J. Environ. Manag. 2016, 172, 2–9. [Google Scholar] [CrossRef]
- Mikutta, R.; Kleber, M.; Torn, M.; Jahn, R. Stabilization of Soil Organic Matter: Association with Minerals or Chemical Recalcitrance? Biogeochemistry 2006, 77, 25–56. [Google Scholar] [CrossRef]
- Procter, A.; Gill, R.; Fay, P.; Polley, H.; Jackson, L. Soil carbon responses to past and future CO2 in three Texas prairie soils. Soil Biol. Biochem. 2015, 83, 66–75. [Google Scholar] [CrossRef]
- Xu, Q.; Jin, J.; Wang, X.; Armstrong, R.; Tang, C. Susceptibility of soil organic carbon to priming after long-term CO2 fumigation is mediated by soil texture. Sci. Total Environ. 2019, 657, 1112–1120. [Google Scholar] [CrossRef]
- Maaroufi, N.; Nordin, A.; Hasselquist, N.J.; Bach, L.; Palmqvist, K.; Gundale, M. Anthropogenic nitrogen deposition enhances carbon sequestration in boreal soils. Glob. Change Biol. 2015, 21, 3169–3180. [Google Scholar] [CrossRef]
- Mo, J.; Zhang, W.; Zhu, W.; Gundersen, P.; Fang, Y.; Li, D.; Wang, H. Nitrogen addition reduces soil respiration in a mature tropical forest in southern China. Glob. Change Biol. 2008, 14, 403–412. [Google Scholar] [CrossRef]
- Peng, Y.; Song, S.; Li, Z.; Li, S.; Chen, G.; Hu, H.; Xie, J.; Chen, G.; Xiao, Y.; Liu, L.; et al. Influences of nitrogen addition and aboveground litter-input manipulations on soil respiration and biochemical properties in a subtropical forest. Soil Biol. Biochem. 2020, 142, 107694. [Google Scholar] [CrossRef]
- Wang, J.; Song, B.; Ma, F.; Tian, D.; Li, Y.; Yan, T.; Quan, Q.; Zhang, F.; Li, Z.; Wang, B.; et al. Nitrogen addition reduces soil respiration but increases the relative contribution of heterotrophic component in an alpine meadow. Funct. Ecol. 2019, 33, 2239–2253. [Google Scholar] [CrossRef]
- Fang, C.; Ye, J.; Gong, Y.; Pei, J.; Yuan, Z.; Xie, C.; Zhu, Y.; Yu, Y. Seasonal responses of soil respiration to warming and nitrogen addition in a semi-arid alfalfa-pasture of the Loess Plateau, China. Sci. Total Environ. 2017, 590–591, 729–738. [Google Scholar] [CrossRef]
- Fang, C.; Li, F.; Pei, J.; Ren, J.; Gong, Y.; Yuan, Z.; Ke, W.; Zheng, Y.; Bai, X.; Ye, J. Impacts of warming and nitrogen addition on soil autotrophic and heterotrophic respiration in a semi-arid environment. Agric. For. Meteorol. 2018, 248, 449–457. [Google Scholar] [CrossRef]
- Chen, X.; Wang, G.; Zhang, T.; Mao, T.; Wei, D.; Song, C.; Hu, Z.; Huang, K. Effects of warming and nitrogen fertilization on GHG flux in an alpine swamp meadow of a permafrost region. Sci. Total Environ. 2017, 601–602, 1389–1399. [Google Scholar] [CrossRef]
- Brookes, V.; Jenkinson, P. An extraction method for measuring soil microbial biomass carbon. Soil Biol. Biochem. 1987, 19, 703–707. [Google Scholar]
- Zou, Y.; Zhang, J.; Yang, D.; Chen, X.; Zhao, J.; Xiu, W.; Lai, X.; Li, G. Effects of different land use patterns on nifH genetic diversity of soil nitrogen-fixing microbial communities in Leymus chinensis steppe. Acta Ecol. Sin. 2011, 31, 150–156. [Google Scholar] [CrossRef]
- Cheng, W. Rhizosphere priming effect: Its functional relationships with microbial turnover, evapotranspiration, and C–N budgets. Soil Biol. Biochem. 2009, 41, 1795–1801. [Google Scholar] [CrossRef]
- O’Callaghan, M.; Gerard, E.; Bell, N.; Waipara, N.; Aalders, L.; Baird, D.; Conner, A. Microbial and nematode communities associated with potatoes genetically modified to express the antimicrobial peptide magainin and unmodified potato cultivars. Soil Biol. Biochem. 2008, 40, 1446–1459. [Google Scholar] [CrossRef]
- Rotthauwe, J.; Witzel, K.; Liesack, W. The ammonia monooxygenase structural gene amoA as a functional marker: Molecular fine-scale analysis of natural ammonia-oxidizing populations. Appl. Environ. Microbiol. 1997, 63, 4704–4712. [Google Scholar] [CrossRef]
- Gardes, M.; Bruns, T. ITS primers with enhanced specificity for basidiomycetes—Application to the identification of mycorrhizae and rusts. Mol. Ecol. 1993, 2, 113–118. [Google Scholar] [CrossRef] [PubMed]
- Anderson, I.; Campbell, C.; Prosser, J. Diversity of fungi in organic soils under a moorland—Scots pine (Pinus sylvestris L.) gradient. Environ. Microbiol. 2003, 5, 1121–1132. [Google Scholar] [CrossRef]
- Muyzer, D.; de Waal, E.; Uitterlinden, A. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 1993, 59, 695–700. [Google Scholar] [CrossRef]
- Bergmark, L.; Poulsen, P.; Al-Soud, W.; Norman, A.; Hansen, L.; Sørensen, S. Assessment of the specificity of Burkholderia and Pseudomonas qPCR assays for detection of these genera in soil using 454 pyrosequencing. FEMS Microbiol. Lett. 2012, 333, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Malik, A.; Puissant, J.; Buckeridge, K.; Goodall, T.; Jehmlich, N.; Chowdhury, S.; Gweon, H.; Peyton, J.; Mason, K.; Agtmaal, M. Land use driven change in soil pH affects microbial carbon cycling processes. Nat. Commun. 2018, 9, 3591. [Google Scholar] [CrossRef]
- Kuzyakov, Y. Sources of CO2 efflux from soil and review of partitioning methods. Soil Biol. Biochem. 2006, 38, 425–448. [Google Scholar] [CrossRef]
- Aber, J.; McDowell, W.; Nadelhoffer, K.; Magill, A.; Berntson, G.; Kamakea, M.; McNulty, S.; Currie, W.; Rustad, L.; Fernandez, I. Nitrogen Saturation in Temperate Forest Ecosystems: Hypotheses revisited. BioScience 1998, 48, 921–934. [Google Scholar] [CrossRef]
- Fierer, N.; Strickland, M.; Liptzin, D.; Bradford, M.; Cleveland, C. Global patterns in belowground communities. Ecol. Lett. 2009, 12, 1238–1249. [Google Scholar] [CrossRef]
- Su, Y.; Huang, G.; Lin, Y.; Zhang, Y. No synergistic effects of water and nitrogen addition on soil microbial communities and soil respiration in a temperate desert. Catena 2016, 142, 126–133. [Google Scholar] [CrossRef]
- Keiblinger, K.; Hall, E.; Wanek, W.; Szukics, U.; Hammerle, I.; Ellersdorfer, G.; Bock, S.; Strauss, J.; Sterflinger, K.; Richter, A.; et al. The effect of resource quantity and resource stoichiometry on microbial carbon-use-efficiency. FEMS Microbiol. Ecol. 2010, 73, 430–440. [Google Scholar] [CrossRef]
- Wu, X.; Xu, H.; Tuo, D.; Wang, C.; Fu, B.; Lv, Y.; Liu, G. Land use change and stand age regulate soil respiration by influencing soil substrate supply and microbial community. Geoderma 2020, 359, 113991. [Google Scholar] [CrossRef]
- Wang, J.; Xie, J.; Li, L.; Effah, Z.; Xie, J.; Luo, Z.; Zhou, Y.; Jiang, Y. Fertilization treatments affect soil CO2 emission through regulating soil bacterial community composition in the semiarid Loess Plateau. Sci. Rep. 2022, 12, 20123. [Google Scholar] [CrossRef] [PubMed]
- Müller, T.; Höper, H. Soil organic matter turnover as a function of the soil clay content: Consequences for model applications. Soil Biol. Biochem. 2004, 36, 877–888. [Google Scholar] [CrossRef]
- Moyano, F.; Manzoni, S.; Chenu, C. Responses of soil heterotrophic respiration to moisture availability: An exploration of processes and models. Soil Biol. Biochem. 2013, 59, 72–85. [Google Scholar] [CrossRef]
- Wan, X.; Xiao, L.; Vadeboncoeur, M.A.; Johnson, C.E.; Huang, Z. Response of mineral soil carbon storage to harvest residue retention depends on soil texture: A meta-analysis. For. Ecol. Manag. 2018, 408, 9–15. [Google Scholar] [CrossRef]
- Yang, Y.; Fang, J.; Tang, Y.; Ji, C.; Zheng, C.; He, J.; Zhu, B. Storage, patterns and controls of soil organic carbon in the Tibetan grasslands. Glob. Change Biol. 2008, 14, 1592–1599. [Google Scholar] [CrossRef]
- Liu, Z.; Shao, M.; Wang, Y. Effect of environmental factors on regional soil organic carbon stocks across the Loess Plateau region, China. Agric. Ecosyst. Environ. 2011, 142, 184–194. [Google Scholar] [CrossRef]
- Marusenko, Y.; Huber, D.; Hall, S. Fungi mediate nitrous oxide production but not ammonia oxidation in arid land soils of the southwestern US. Soil Biol. Biochem. 2013, 63, 24–36. [Google Scholar] [CrossRef]
- Wagg, C.; Bender, S.; Widmer, F.; van der Heijden, M. Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proc. Natl. Acad. Sci. USA 2014, 111, 5266–5270. [Google Scholar] [CrossRef]
- Delgado-Baquerizo, M.; Maestre, F.; Reich, P.; Jeffries, T.; Gaitan, J.; Encinar, D.; Berdugo, M.; Campbell, C.; Singh, B. Microbial diversity drives multifunctionnality in terrestrial ecosystems. Nat. Commun. 2016, 7, 10541. [Google Scholar] [CrossRef]
- Chen, Q.; Ding, J.; Li, C.; Yan, Z.; He, J.; Hu, H. Microbial functional attributes, rather than taxonomic attributes, drive topsoil respiration, nitrification and denitrification processes. Sci. Total Environ. 2020, 734, 139479. [Google Scholar] [CrossRef] [PubMed]
Soil | TOC/% | TN/% | TP g/kg | pH | Sand/% | Silt/% | Clay/% |
---|---|---|---|---|---|---|---|
Navarra | 0.93 | 0.15 | 0.877 | 7.78 | 13 | 71 | 16 |
Saponi | 1.06 | 0.11 | 1.639 | 7.76 | 76 | 16 | 8 |
Variables | Units | Abbreviations | |
---|---|---|---|
Edaphic properties | Clay content | % | CLAY |
Total organic carbon | mg/g | TOC | |
Soluble carbon | μg/g | SC | |
Microbial biomass carbon | μg/g | MBC | |
Soluble nitrogen | μg/g | SN | |
Soluble C:N ratio | / | CN | |
Microbial communities | Abundance of bacteria (qPCR) | gene copies lg/g | B |
Shannon–Wiener index of bacteria | / | BH | |
Bacteria richness | numbers of bands | BR | |
Abundance of ammonia-oxidizing bacteria (qPCR) | gene copies lg/g | AOB | |
Shannon–Wiener index of ammonia-oxidizing bacteria | / | AOBH | |
Ammonia-oxidizing bacteria richness | numbers of bands | AOBR | |
Abundance of fungi (qPCR) | gene copies lg/g | F | |
Shannon–Wiener index of fungi | / | FH | |
Fungi richness | numbers of bands | FR | |
Fungi/bacteria ratio | / | FB |
CLAY | SC | MBC | SN | C/N | |
---|---|---|---|---|---|
Soil respiration rate | 0.423 * | 0.112 | 0.061 | 0.343 | −0.155 |
p Sig. (2-tailed) | 0.016 | 0.541 | 0.738 | 0.055 | 0.396 |
CLAY | 1.000 | 0.390 * | 0.552 ** | −0.165 | 0.468 ** |
p Sig. (2-tailed) | / | 0.027 | 0.001 | 0.367 | 0.007 |
CLAY | SN | F | SC | |
---|---|---|---|---|
B | 0.410 * | −0.147 | 0.467 ** | 0.279 |
BH | 0.395 * | −0.220 | 0.460 ** | 0.074 |
BR | 0.435 * | −0.165 | 0.434 * | 0.105 |
AOB | −0.065 | 0.451 ** | −0.136 | −0.054 |
AOBH | −0.900 ** | 0.003 | −0.376 * | −0.229 |
AOBR | −0.427 * | 0.019 | −0.432 * | 0.200 |
F | 0.499 ** | −0.365 * | 1.000 | 0.442 * |
FH | 0.049 | −0.261 | 0.189 | 0.409 * |
FR | 0.396 * | −0.224 | −0.052 | 0.501 ** |
Model | Predictors | R | R2 |
---|---|---|---|
1 | B | 0.482 | 0.232 |
2 | B, SN | 0.638 | 0.407 |
3 | B, SN, CLAY | 0.704 | 0.496 |
4 | B, SN, CLAY, BH | 0.798 | 0.637 |
Predictors | Standardized Coefficients | t | Sig. | Explained Variance |
---|---|---|---|---|
B | 0.461 | 3588 | 0.001 | 22.22% |
SN | 0.396 | 3307 | 0.003 | 13.58% |
CLAY | 0.464 | 3443 | 0.002 | 19.63% |
BH | −0.417 | 3232 | 0.003 | 8.26% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zou, Y.; Shan, Y.; Yue, Z.; Gioacchini, P.; Montecchio, D.; Gaggia, F.; Alberoni, D.; Baffoni, L.; Zhang, Q.; Xiong, P.; et al. Factors Driving Soil Respiration Rate After Different Fertilizer Sources Addition. Agronomy 2024, 14, 2468. https://doi.org/10.3390/agronomy14112468
Zou Y, Shan Y, Yue Z, Gioacchini P, Montecchio D, Gaggia F, Alberoni D, Baffoni L, Zhang Q, Xiong P, et al. Factors Driving Soil Respiration Rate After Different Fertilizer Sources Addition. Agronomy. 2024; 14(11):2468. https://doi.org/10.3390/agronomy14112468
Chicago/Turabian StyleZou, Yukun, Ying Shan, Zhengfu Yue, Paola Gioacchini, Daniela Montecchio, Francesca Gaggia, Daniele Alberoni, Loredana Baffoni, Qiaoyan Zhang, Peng Xiong, and et al. 2024. "Factors Driving Soil Respiration Rate After Different Fertilizer Sources Addition" Agronomy 14, no. 11: 2468. https://doi.org/10.3390/agronomy14112468
APA StyleZou, Y., Shan, Y., Yue, Z., Gioacchini, P., Montecchio, D., Gaggia, F., Alberoni, D., Baffoni, L., Zhang, Q., Xiong, P., Marzadori, C., & Di Gioia, D. (2024). Factors Driving Soil Respiration Rate After Different Fertilizer Sources Addition. Agronomy, 14(11), 2468. https://doi.org/10.3390/agronomy14112468