Effects of Rainfall Variability and Land Cover Type on Soil Organic Carbon Loss in a Hilly Red Soil Region of Southern China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling Design
2.3. In Situ Observations
2.4. Data Analysis
3. Results
3.1. Rainfall Pattern
3.2. Runoff and Sediment Loss
3.3. Organic C Export in Runoff and Sediments
4. Discussion
4.1. Selective Transportation of SOC by Runoff or Sediment
4.2. ERoc in Sediments
4.3. The Effects of RI on SOC Selective Transportation and ERoc
4.4. The Effects of Land Cover Types on SOC Selective Transportation and ERoc
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
Abbreviation | Implication | Detailed Description |
A | The area of the runoff plot | / |
Ah | The surface layer | 25–30 cm |
CV | Coefficient of variation | / |
CLt | The total C loss for an individual rainfall event | |
CLI | The C loss intensity | |
CLM | The C loss modulus | / |
CCs | The sediment C concentration | / |
CCr | The runoff C concentration | / |
CCss | The organic C content in the 0–20 cm surface soil layer | / |
DBH | Diameter at breast height | 7.6 cm |
ERoc | The enrichment ratio of SOC in sediments | |
EM | The soil erosion modulus | / |
Ps | The average proportions of sediment-transported C in total SOC loss | |
P | The rainfall depth | |
RC | The runoff coefficient | |
RD | The runoff depth | / |
RI | Rainfall intensity | / |
SY | The sediment yield | / |
SLI | Soil erosion intensity | |
Vr | The runoff volume for an individual rainfall event | / |
References
- Jacinthe, P.; Lal, R.; Owens, L.; Hothem, L. Transport of labile carbon in runoff as affected by land use and rainfall characteristics. Soil Tillage Res. 2004, 77, 111–123. [Google Scholar] [CrossRef]
- Yue, Y.; Ni, J.; Ciais, P.; Piao, S.; Wang, T.; Huang, M.; Borthwick, A.G.L.; Li, T.; Wang, Y.; Chappell, A.; et al. Lateral transport of soil carbon and land-atmosphere CO2 flux induced by water erosion in China. Proc. Natl. Acad. Sci. USA 2016, 113, 17–22. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Liu, W.; Feng, Q.; Zhu, M.; Yang, L.; Zhang, J. Effects of land use and land cover change on soil organic carbon storage in the Hexi regions, Northwest China. J. Environ. Manag. 2022, 312, 114911. [Google Scholar] [CrossRef] [PubMed]
- Lal, R. Soil erosion and the global carbon budget. Environ. Int. 2003, 29, 437–450. [Google Scholar] [CrossRef]
- Lal, R. Soil carbon sequestration to mitigate climate change. Geoderma 2004, 12, 1–22. [Google Scholar] [CrossRef]
- Mariappan, S.; Hartley, I.P.; Cressey, E.L.; Dungait, J.A.; Quine, T.A. Soil burial reduces decomposition and offsets erosion-induced soil carbon losses in the Indian Himalaya. Glob. Chang. Biol. 2022, 28, 1643–1658. [Google Scholar] [CrossRef]
- Hunter, B.D.; Roering, J.J.; Silva, L.C.R.; Moreland, K.C. Geomorphic controls on the abundance and persistence of soil organic carbon pools in erosional landscapes. Nat. Geosci. 2024, 17, 151–157. [Google Scholar] [CrossRef]
- Zhang, H.; Lauerwald, R.; Regnier, P.; Ciais, P.; Yuan, W.; Naipal, V.; Guenet, B.; Van Oost, K.; Camino-Serrano, M. Simulating erosion-induced soil and carbon delivery from uplands to rivers in a global land surface model. J. Adv. Model. Earth Syst. 2020, 12, e2020MS002121. [Google Scholar] [CrossRef]
- Li, Z.; Nie, X.; He, J.; Chang, X.; Liu, C.; Liu, L.; Sun, L. Zonal characteristics of sediment-bound organic carbon loss during water erosion: A case study of four typical loess soils in Shanxi Province. Catena 2017, 156, 393–400. [Google Scholar] [CrossRef]
- Nie, X.; Li, Z.; He, J.; Huang, J.; Zhang, Y.; Huang, B.; Ma, W.; Lu, Y.; Zeng, G. Enrichment of organic carbon in sediment under field simulated rainfall experiments. Environ. Earth Sci. 2015, 74, 5417–5425. [Google Scholar] [CrossRef]
- Adhikary, P.; Hombegowda, C.; Barman, D.; Madhu, M. Soil and onsite nutrient conservation potential of aromatic grasses at field scale under a shifting cultivated, degraded catchment in Eastern Ghats, India. Int. J. Sediment. Res. 2018, 33, 340–350. [Google Scholar] [CrossRef]
- Yao, Y.; Liu, J.; Wang, Z.; Wei, X.; Zhu, H.; Fu, W.; Shao, M. Responses of soil aggregate stability, erodibility and nutrient enrichment to simulated extreme heavy rainfall. Sci. Total Environ. 2020, 709, 136150. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Yen, H.; Wang, X.; Huang, C.; Sun, J.; Hammac, A.; Wang, Y. Deposition- and transport-dominated erosion regime effects on the loss of dissolved and sediment-bound organic carbon: Evaluation in a cultivated soil with laboratory rainfall simulations. Sci. Total Environ. 2021, 750, 141717. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Pan, Y.; Xiao, P.; Ge, W.; Sun, P. Quantifying the Effects of Climate Change and Revegetation on Erosion-Induced Lateral Soil Organic Carbon Loss on the Chinese Loess Plateau. Remote Sens. 2023, 15, 1775. [Google Scholar] [CrossRef]
- Massey, H.; Jackson, M. Selective erosion of soil fertility constituents. Soil Sci. Soc. Am. J. 1952, 16, 353–356. [Google Scholar] [CrossRef]
- Liu, L.; Li, Z.; Jiao, P. Hydraulic mechanisms of the uneven enrichment of soil organic carbon in sediments during rain-induced overland flow. PLoS ONE 2022, 17, e0262865. [Google Scholar] [CrossRef]
- Wouter, S.; Donald, G.; Cornelis, W.M.; Hofman, G. Enrichment of Organic Carbon in Sediment Transport by Interrill and Rill Erosion Processes. Soil Sci. Soc. Am. J. 2008, 72, 50–55. [Google Scholar]
- Lin, J.; Fang, N.; Zhang, Y.; Zeng, Y.; Yang, D.; Dai, W.; Wang, L.; Shi, Z. Dynamics of soil organic carbon in different-sized aggregates under splash erosion. J. Soils Sediments 2022, 22, 1713–1723. [Google Scholar] [CrossRef]
- Park, S.; Yang, H.; Park, H.; Seo, B.S.; Jeong, Y.J.; Lim, S.S.; Kwak, J.H.; Kim, H.Y.; Yoon, K.S.; Lee, S.M.; et al. Rice straw cover decreases soil erosion and sediment-bound C, N, and P losses but increases dissolved organic C export from upland maize fields as evidenced by δ 13 C. Sci. Total Environ. 2021, 753, 142053. [Google Scholar] [CrossRef]
- Martínez-Mena, M.; López, J.; Almagro, M.; Albaladejo, J.; Castillo, V.; Ortiz, R.; Boix-Fayos, C. Organic carbon enrichment in sediments: Effects of rainfall characteristics under different land uses in a Mediterranean area. Catena 2012, 94, 36–42. [Google Scholar] [CrossRef]
- Zhao, Q. Red Soil Material Cycling and Its Regulation; Science Publisher: Beijing, China, 2002. [Google Scholar]
- Li, X.; Yang, J.; Zhao, C. Effect of agroforestry and time on soil and water conservation of sloping red soil in southeastern China. J. Soil Water Conserv. 2014, 69, 131–139. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, L.; Wei, A.; Gao, J.; Lu, Y.; Zhou, J. Land-use change from arable lands to orchards reduced soil erosion and increased nutrient loss in a small catchment. Sci. Total Environ. 2019, 648, 1097–1104. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Li, Z.; Xiao, H.; Ning, K.; Tang, C. Effects of land use and land cover on soil erosion control in southern China: Implications from a systematic quantitative review. J. Environ. Manag. 2021, 282, 111924. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.J.; Yang, J.; Hu, J.M.; Tang, C.J.; Zheng, H.J. Characteristics of the surface-subsurface flow generation and sediment yield to the rainfall regime and land-cover by long-term in-situ observation in the red soil region, Southern China. J. Hydrol. 2016, 539, 457–467. [Google Scholar] [CrossRef]
- Duan, J.; Liu, Y.; Yang, J.; Tang, C.; Shi, Z. Role of groundcover management in controlling soil erosion under extreme rainfall in citrus orchards of southern China. J. Hydrol. 2020, 582, 124290. [Google Scholar] [CrossRef]
- Ma, W.; Li, Z.; Ding, K.; Huang, J.; Nie, X.; Zeng, G.; Liu, G. Effect of soil erosion on dissolved organic carbon redistribution in subtropical red soil under rainfall simulation. Geomorphology 2014, 226, 217–225. [Google Scholar] [CrossRef]
- Qi, Y.; Dong, Y.; Peng, Q.; Xiao, S.; He, Y.; Liu, X.; Sun, L.; Jia, J.; Yang, Z. Effects of a conversion from grassland to cropland on the different soil organic carbon fractions in Inner Mongolia, China. J. Geogr. Sci. 2012, 22, 315–328. [Google Scholar] [CrossRef]
- Xie, Y.; Liu, B. Nearing AM. Practical thresholds for separating erosive and non-erosive storms. Trans. ASABE 2002, 45, 1843–1847. [Google Scholar]
- Majid, M.; Samira, Z.; Najme, Y. Enrichment of soil organic carbon in the eroded sediments due to the simultaneous occurrence of rain and wind. Geoderma 2021, 386, 114926. [Google Scholar]
- ISSAS. Chinese Soil Taxonomy Retrieval, 3rd ed.; USS Working Group: London, UK, 2001. [Google Scholar]
- Wen, L.; Peng, Y.; Zhou, Y.; Guo, C.; Lin, Y.; Li, B. Study on soil erosion and its driving factors from the perspective of landscape in Xiushui watershed, China. Sci. Rep. 2023, 13, 8182. [Google Scholar] [CrossRef]
- Lowrance, R.; Williams, R.G. Carbon movement in runoff and erosion under simulated rainfall conditions. Soil Sci. Soc. Am. 1988, 52, 1445–1448. [Google Scholar] [CrossRef]
- Bai, R.; Wang, X.; Li, J.; Yang, F.; Shangguan, Z.; Deng, L. The impact of vegetation reconstruction on soil erosion in the Loess plateau. J. Environ. Manag. 2024, 363, 121382. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Fu, B.; Piao, S.; Lü, Y.; Ciais, P.; Feng, X.; Wang, Y. Reduced sediment transport in the Yellow River due to anthropogenic changes. Nat. Geosci. 2016, 9, 38–41. [Google Scholar] [CrossRef]
- Ghadiri, H.; Rose, C. Sorbed chemical transport in overland flow: II. Enrichment ratio variation with erosion processes. J. Environ. Qual. 1991, 20, 634–641. [Google Scholar] [CrossRef]
- Han, Z.; Wang, X.; Song, D.; Li, X.; Huang, P.; Ma, M. Response of soil erosion and sediment sorting to the transport mechanism on a steep rocky slope: The journal of the british geomorphological research group. Earth Surf. Process. Landf. 2019, 44, 2467–2478. [Google Scholar] [CrossRef]
- Qian, J.; Zhang, L.P.; Wang, W.Y.; Liu, Q. Organic carbon losses by eroded sediments from sloping vegetable fields in South China. J. Mt. Sci. 2017, 14, 539–548. [Google Scholar] [CrossRef]
- Jiang, Y.; Zheng, F.; Wen, L.; Shen, H. Effects of sheet and rill erosion on soil aggregates and organic carbon losses for a mollisol hillslope under rainfall simulation. J. Soils Sediments 2019, 19, 467–477. [Google Scholar] [CrossRef]
- Ma, Y.; Li, Z.; Tian, L.; Yang, Y.; Li, W.; He, Z.; Nie, X.; Liu, Y. Erosion of granite red soil slope and processes of subsurface flow generation, prediction, and Simulation. Int. J. Environ. Res. Public Health 2023, 20, 2104. [Google Scholar] [CrossRef]
- Xie, S.; Mo, M.; Tu, A.; Liu, Y. Characteristics of vertical runoff output on red-soil slope under natural rainfall condition. Trans. Chin. Soc. Agric. Eng. 2014, 30, 132–138. [Google Scholar]
- Polyakov, V.; Lal, R. Soil erosion and carbon dynamics under simulated rainfall. Soil Sci. 2004, 169, 590–599. [Google Scholar] [CrossRef]
- Wang, S.; Fan, Y.; Liu, L.; Qu, J. Transport/Detachment regimes of different size class sediment particles and enlightenments for transport capacity prediction for rain-induced overland flow erosion. Sustainability 2023, 15, 7096. [Google Scholar] [CrossRef]
- Aneseyee, A.; Elias, E.; Soromessa, T.; Feyisa, G. Land use/land cover change effect on soil erosion and sediment delivery in the Winike watershed, Omo Gibe Basin, Ethiopia. Sci. Total Environ. 2020, 728, 138776. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Xiao, H.; Li, Z.; Liu, C.; Ning, K.; Tang, C. How effective are soil and water conservation measures (SWCMs) in reducing soil and water losses in the red soil hilly region of China? A meta-analysis of field plot data. Sci. Total Environ. 2020, 735, 139517. [Google Scholar] [CrossRef] [PubMed]
- Jin, H.; Huang, S.; Shi, D.; Chen, B.; Zhang, Y.; Liu, Q.; Liu, E. Effects of different tillage practices on soil stability and erodibility for red soil sloping farmland in southern China. Agronomy 2023, 13, 1310. [Google Scholar] [CrossRef]
- Wu, W.; Chen, G.; Meng, T.; Li, C.; Feng, H.; Si, B.; Siddique, K.H. Effect of different vegetation restoration on soil properties in the semi-arid Loess Plateau of China. Catena 2023, 220, 106630. [Google Scholar] [CrossRef]
- Yu, P.; Li, Y.; Liu, S.; Liu, J.; Ding, Z.; Ma, M.; Tang, X. Afforestation influences soil organic carbon and its fractions associated with aggregates in a karst region of Southwest China. Sci. Total Environ. 2021, 814, 152710. [Google Scholar] [CrossRef]
- Qi, Z.; Cui, W.; Tian, Z.; Li, J.; Wang, Y.; Wu, P.; Gao, Z.; Xue, J. Soil aggregates stability response to summer fallow tillage in rainfed winter wheat fields on the loess plateau. Agronomy 2023, 13, 1413. [Google Scholar] [CrossRef]
Year | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 |
---|---|---|---|---|---|---|---|---|---|---|
Annual rainfall depth (mm) | 1637.8 | 898.5 | 1867.9 | 1336.4 | 1635.3 | 2685.4 | 1797.4 | 1839.6 | 1176.4 | 1207.7 |
Rainfall depth from March to August (mm) | 1192.5 | 730.0 | 1166.2 | 1137 | 1297.4 | 1214.7 | 1388.5 | 1537.2 | 775.8 | 853 |
Annual duration (h) | 749.8 | 772.4 | 1060.2 | 628.0 | 764.0 | 809.1 | 1020.4 | 1129.5 | 1151.0 | 1181.8 |
Annual mean rainfall intensity (mm h−1) | 2.2 | 1.2 | 1.8 | 2.1 | 2.1 | 2.3 | 2.1 | 2.4 | 2.3 | 1.6 |
Treatment | Sand (g kg−1) | Silt (g kg−1) | Clay (g kg−1) | pH (1:2.5) | Soil Bulk Density (g cm−3) | Total Soil Nitrogen (g kg−1) | Total Soil Phosphorus (g kg−1) | Total Soil Potassium (g kg−1) | Soil Organic Carbon (g kg−1) | Dissolved Organic Carbon (mg kg−1) |
---|---|---|---|---|---|---|---|---|---|---|
Bare land | 398.3 ± 19.2 a | 258.4 ± 14.8 a | 343.3 ± 14.3 a | 5.90 ± 0.19 a | 1.53 ± 0.05 a | 0.66 ± 0.07 a | 0.31 ± 0.03 a | 14.19 ± 1.06 a | 6.08 ± 0.34 a | 150.88 ± 19.03 a |
Orchard | 386.5 ± 19.7 a | 260.6 ± 17.7 a | 353.0 ± 16.5 a | 6.23 ± 0.19 a | 1.55 ± 0.05 a | 0.97 ± 0.10 b | 0.38 ± 0.05 a | 14.34 ± 1.12 a | 7.35 ± 0.35 b | 399.96 ± 46.62 b |
Grassland | 380.2 ± 14.5 a | 256.9 ± 14.7 a | 362.9 ± 155.3 a | 5.78 ± 0.16 a | 1.41 ± 0.03 a | 0.72 ± 0.08 a | 0.32 ± 0.03 a | 13.84 ± 0.96 a | 10.71 ± 0.47 b | 376.23 ± 54.21 b |
Bare Land | Orchard | Grass Cover | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
RC | SLI | RC | SLI | RC | SLI | |||||||
2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | |
Rainfall depth | 0.564 ** | 0.387 | 0.869 ** | 0.569 ** | 0.653 ** | 0.691 ** | 0.753 ** | 0.565 ** | 0.004 | 0.131 | 0.708 ** | 0.748 ** |
RI | 0.344 | 0.308 | 0.352 | 0.070 | 0.725 ** | −0.054 | 0.446 * | −0.115 | 0.051 | 0.089 | 0.114 | −0.129 |
Bare Land | Orchard | Grassland | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
CCr | CCs | CCr | CCs | CCr | CCs | |||||||
2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | |
RI | −0.299 | −0.794 ** | −0.877 ** | −0.859 ** | −0.520* | −0.526 ** | −0.008 | 0.066 | −0.543 * | −0.518 * | 0.146 | 0.029 |
Runoff depth | −0.496 * | −0.376 | / | / | −0.568 | −0.215 | / | / | −0.467 * | 0.173 | / | / |
Sediment yield | / | / | −0.490* | −0.263 | / | / | 0.026 | 0.134 | / | / | 0.669 ** | 0.361 |
Bare Land | Orchard | Grassland | ||||
---|---|---|---|---|---|---|
RI | RI | RI | ||||
2020 | 2021 | 2020 | 2021 | 2020 | 2021 | |
ERoc | −0.876 ** | −0.859 ** | −0.007 | −0.698 ** | −0.766 ** | −0.674 |
Ps | 0.537 ** | 0.454 * | 0.623 ** | 0.504 * | 0.170 | −0.065 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, M.; Xiao, S.; Liao, Y.; Huang, J.; Li, H. Effects of Rainfall Variability and Land Cover Type on Soil Organic Carbon Loss in a Hilly Red Soil Region of Southern China. Agronomy 2024, 14, 2563. https://doi.org/10.3390/agronomy14112563
Chang M, Xiao S, Liao Y, Huang J, Li H. Effects of Rainfall Variability and Land Cover Type on Soil Organic Carbon Loss in a Hilly Red Soil Region of Southern China. Agronomy. 2024; 14(11):2563. https://doi.org/10.3390/agronomy14112563
Chicago/Turabian StyleChang, Mengqi, Shengsheng Xiao, Yunhua Liao, Junjie Huang, and Haifeng Li. 2024. "Effects of Rainfall Variability and Land Cover Type on Soil Organic Carbon Loss in a Hilly Red Soil Region of Southern China" Agronomy 14, no. 11: 2563. https://doi.org/10.3390/agronomy14112563
APA StyleChang, M., Xiao, S., Liao, Y., Huang, J., & Li, H. (2024). Effects of Rainfall Variability and Land Cover Type on Soil Organic Carbon Loss in a Hilly Red Soil Region of Southern China. Agronomy, 14(11), 2563. https://doi.org/10.3390/agronomy14112563