The Effects of Tomato Intercropping with Medicinal Aromatic Plants Combined with Trichoderma Applications in Organic Cultivation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Trichoderma spp. Formulations and Plants Used in the Experiments
2.2. Field Experiment Set Up
2.3. Evaluation of Tomato Plants Morphological Parameters
2.4. Assessment of Soil Microbiological Parameters
2.5. Statistical Analysis
3. Results
3.1. The Effect of Intercropping and Trichoderma spp. Application on Tomato Yield and Late Blight Severity
3.2. The Effect of Intercropping and Trichoderma spp. on Tomato Growth Parameters
3.3. Soil Microbiological Assessment
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- EASAC Policy Report 44. Available online: https://easac.eu/fileadmin/PDF_s/reports_statements/Regenerative_Agriculture/EASAC_Report_RegenerativeAgriculture_April_2022_WEB.pdf (accessed on 1 April 2022).
- EU Biodiversity Strategy for 2030. Available online: https://www.eea.europa.eu/policy-documents/eu-biodiversity-strategy-for-2030-1 (accessed on 24 August 2020).
- Saleem, M.; Hu, J.; Jousset, A. More than the sum of its Parts: Microbiome Biodiversity as a Driver of Plant Growth and Soil Health. Annu. Rev. Ecol. Evol. Syst. 2019, 50, 145–168. [Google Scholar] [CrossRef]
- Chiaranunt, P.; White, J.F. Plant Beneficial Bacteria and their Potential Applications in Vertical Farming Systems. Plants 2023, 12, 400. [Google Scholar] [CrossRef] [PubMed]
- Vincze, É.-B.; Becze, A.; Laslo, É.; Mara, G. Beneficial Soil Microbiomes and their Potential Role in Plant Growth and Soil Fertility. Agriculture 2024, 14, 152. [Google Scholar] [CrossRef]
- O’Callaghan, M.; Ballard, R.A.; Wright, D. Soil Microbial Inoculants for Sustainable Agriculture: Limitations and Opportunities. Soil Use Manag. 2022, 38, 1340–1369. [Google Scholar] [CrossRef]
- Sivaram, A.K.; Abinandan, S.; Chen, C.; Venkateswartlu, K.; Megharaj, M. Chapter Two—Microbial Inoculant Carriers: Soil Health Improvement and Moisture Retention in Sustainable Agriculture. Adv. Agron. 2023, 180, 35–91. [Google Scholar] [CrossRef]
- Vandermeer, J. The Ecology of Intercropping; Cambridge University Press: Cambridge, UK, 1989. [Google Scholar]
- Cruz-López, V.; Granados-Echegoyen, C.A.; Pérez-Pacheco, R.; Robles, C.; Álvarez-Lopeztello, J.; Morales, J.; Bastidas-Orrego, L.M.; Garcia-Pérez, F.; Dorantes-Jimenez, J.; Landero-Valenzuela, N. Plant Diversity as a Sustainable Strategy for Mitigating Biotic and Abiotic Stresses in Tomato Cultivation. Front. Sustain. Food Syst. 2024, 8, 1336810. [Google Scholar] [CrossRef]
- Boudreau, M. Diseases in intercropping systems. Annu. Rev. Phytopathol. 2013, 51, 499–519. [Google Scholar] [CrossRef]
- Avasiloaiei, D.I.; Calara, M.; Benchea, M.C. Review on the Positive Influence of Intercropping System for Organic Vegetable Growing. Horticulture 2022, 66, 397–408. [Google Scholar]
- Akther, M.A.; Parvin, S.; Mollah, R.A.; Akther, S. Intercropping of Pointed Gourd with Leafy Vegetable and Spices. J. Biosci. Agric. Res. 2019, 21, 1755–1761. [Google Scholar] [CrossRef]
- Adeniyi, O.R. Economic Aspects of Intercropping Systems of Vegetables (okra, tomato and cowpea). Afr. J. Agron. 2021, 9, 001–008. [Google Scholar]
- Widiwurjani, W.; Amir, I.T.; Pongki, D.; Guniatri, G. On Farm Application of Vegetable Intercropping System in Sidoarjo, East Java. In AIP Conference Proceedings, Proceedings of the 9th International Conference on Global Resource Conservation (ICGRC) and AJI from Ritsumeikan University, Malang City, Indonesia, 7–8 March 2018; AIP Publishing: New York, NY, USA, 2019; pp. 040001-1–040001-8. [Google Scholar] [CrossRef]
- Unlu, H.; Unlu, H.O.; Dasgan, H.Y.; Solmaz, I.; Sari, N.; Kartal, E.; Uzen, N. Effects of Intercropping on Plant Nutrient Uptake in Various Vegetable Species. Asian J. Chem. 2008, 20, 4781–4791. [Google Scholar]
- Błażewicz-Woźniak, M.; Wach, D. The Effect of Intercropping on Yielding of Root Vegetables of Apiaceae Family. Acta Sci. Pol. Hortorum Cultus 2011, 10, 233–243. [Google Scholar]
- Dikr, W. Role of Intercropping some Aromatic and Medicinal Plants with Fruit Vegetables Crops, a Review. Glob. Acad. J. Agri. Biosci. 2022, 4, 22–30. [Google Scholar] [CrossRef]
- Hammoudi Halat, D.; Krayem, M.; Khaled, S.; Younes, S.A. Focused Insight into Thyme: Biological, Chemical, and Therapeutic Properties of an Indigenous Mediterranean Herb. Nutrients 2022, 14, 2104. [Google Scholar] [CrossRef]
- Shahrajabian, M.H.; Sun, W.; Cheng, Q. Chemical Components and Pharmacological Benefits of Basil (Ocimum basilicum): A review. Int. J. Food Prop. 2020, 23, 1961–1970. [Google Scholar] [CrossRef]
- Moghtader, M. Antifungal effects of the essential oil from Thymus vulgaris L. and comparison with synthetic thymol on Aspergillus niger. J. Yeast Fungal Res. 2012, 3, 83–88. [Google Scholar]
- Samee, A.; Amir, R.M.; Ahmad, A.; Ali, M.; Malik, H.; Jamil, I.; Fatima, H.; Zahoor, Z. A Review on Health Effects of Thyme (Thymus vulgaris) on Human Lifestyle. Int. J. Biomol. Biomed. 2022, 15, 1–5. [Google Scholar]
- Iftikhar, T.; Majeed, H.; Zahra, S.S.; Waheed, M.; Niaz, M.; Bano, N. Thyme. In Essentials of Medicinal and Aromatic Crops; Zia-Ul-Haq, M., AL-Huqail, A.A., Riaz, M., Gohar, U.F., Eds.; Springer Nature: Cham, Switzerland, 2023. [Google Scholar] [CrossRef]
- Angelini, P.; Pagiotti, R.; Menghini, A.; Vianello, B. Antimicrobial Activities of Various Essential Oils against Foodborne Pathogenic or Spoilage Moulds. Ann. Microbiol. 2006, 56, 65–69. [Google Scholar] [CrossRef]
- Greff, B.; Sáhó, A.; Lakatos, E.; Varga, L. Biocontrol Activity of Aromatic and Medicinal Plants and their Bioactive Components against Soil-borne Pathogens. Plants 2023, 12, 706. [Google Scholar] [CrossRef]
- Ehlers, B.; Grøndahl, E.; Ronfort, J.; Batallion, T. “Menage a trois”: The Presence/absence of Thyme Shapes’ the Mutualistic Interaction between the Host Plant Medicago truncatula (Fabaceae) and its Symbiotic Bacterium Sinorhizobium meliloti. Ecol. Evol. 2012, 2, 1676–1681. [Google Scholar] [CrossRef]
- Dittrich, F.; Iserloh, T.; Treseler, C.-H.; Hüppi, R.; Ogan, S.; Seeger, M.; Thiele-Bruhn, S. Crop Diversification in Viticulture with Aromatic Plants: Effects of Intercropping on Grapevine Productivity in a Steep-slope Vineyard in the Mosel Area, Germany. Agriculture 2021, 11, 95. [Google Scholar] [CrossRef]
- Almagro, M.; Díaz-Pereira, E.; Boix-Fayos, C.; Zornoza, R.; Sanchez-Navarro, V.; Re, P.; Fernandez, C.; Martínez-Mena, M. The Combination of Crop Diversification and no Tillage Enhances Key Soil Quality Parameters Related to Soil Functioning without Compromising Crop Yields in a Low-input Rainfed Almond Orchard under Semiarid Mediterranean Conditions. Agric. Ecosyst. Environ. 2023, 345, 108320. [Google Scholar] [CrossRef]
- Mousaei Sanjerehei, M. Mixed Cropping with Companion Crops; Tafakkor Talaei: Yazd, Iran, 2023; Printed in Iran; p. 62. ISBN 978-622-8159-01-0. [Google Scholar]
- Elghobashy, R.M.; El-Darier, S.M.; Atia, A.M.; Zakaria, M. Allelopathic Potential of Aqueous Extracts and Essential Oils of Rosmarius oficinalis L. and Thymus vulgaris L. J. Soil Sci. Plant Nutr. 2023, 24, 700–715. [Google Scholar] [CrossRef]
- Ju, J.H.; Song, H.J.; Oh, D.K.; Park, S.Y.; Yoon, Y.H. Effect of Intercropping Ratio on the Cherry Tomato with Basil, on the Growth, Physiological, and Productivity Parameters on the Rooftop in Urban Agriculture. J. Environ. Sci. Int. 2021, 30, 709–717. [Google Scholar] [CrossRef]
- Raza, S.M.J.; Akhter, A.; Wahid, F.; Hashem, A.; Allah, E.F. Tomato-basil Companionship and its Influence on Fusarium wilt Disease Stress. Appl. Ecol. Environ. Res. 2022, 20, 235–249. [Google Scholar] [CrossRef]
- Ahmad, H.; Kobayashi, M.; Matsubara, Y. Changes in Secondary Metabolites and Free Amino Acid Content in Tomato with Lamiaceae Herbs Companion Planting. Am. J. Plant Sci. 2020, 11, 1878–1889. [Google Scholar] [CrossRef]
- Oskiera, M.; Szczech, M.; Bartoszewski, G. Molecular Identification of Trichoderma Strains Collected to Develop Plant Growth-Promoting and Biocontrol Agents. J. Hortic. Res. 2015, 23, 75–86. [Google Scholar] [CrossRef]
- Løvschall, K.B.; Velasquez, S.T.R.; Kowalska, B.; Ptaszek, M.; Jarecka, A.; Szczech, M.; Wurm, F.R. Enhancing Stability and Efficacy of Trichoderma Bio-control Agents Through Layer-by-layer Encapsulation for Sustainable Plant Protection. Adv. Sustain. Syst. 2024, 2300409. [Google Scholar] [CrossRef]
- Martin, P. Use of acid, rose Bengal and Streptomycin in the Plate Method for Estimating Soil Fungi. Soil Sci. 1950, 69, 215–232. [Google Scholar] [CrossRef]
- Alef, K.; Nannipieri, P. Enzyme activities. In Methods in Applied Soil Microbiology and Biochemistry; Alef, K., Nannipieri, P., Eds.; Academic Press: London, UK; New York, NY, USA; San Francisco, CA, USA, 1995. [Google Scholar]
- Brzezińska, M.; Włodarczyk, T. Enzymes of Interacellular Redox Tranformations (oxidoreductases). Acta Agrophys. 2005, 3, 11–26, (In Polish with English Summary). [Google Scholar]
- Gomez, E.; Ferreras, L.; Toresani, S. Soil Bacterial Functional Diversity as Influenced by Organic Amendment Application. Bioresour. Technol. 2006, 97, 1484–1489. [Google Scholar] [CrossRef]
- Tadesse, N.; Chala, M.; Degu, B. Intercropping of Sweet Basil (Ocimum basilicum L.) with Maize (Zea mays L.) as Supplementary Income Generation at Wondo Genet Agricultural Research Center, South Ethiopia. Int. J. Res. 2019, 5, 37–43. [Google Scholar] [CrossRef]
- Megersa, H.G.; Banjaw, D.T. Intercropping System: Enhancing Productivity and Sustainability in Hot Pepper (Capsicum annum L.) and Basil (Ocimum basilicum L.) Cultivation: A Review. Glob Acad. J. Agri. Biosci. 2024, 6, 40–47. [Google Scholar] [CrossRef]
- Jenkins, K. An Analysis of the Allelopathic Relationship Between Basil (Ocimum basilicum) and Tomatoes (Solanum lycopersicum) as an Alternative to Fertilizer. Student Writing 11. 2016. Available online: http://commons.vccs.edu/student_writing/11 (accessed on 24 January 2020).
- Salehi, Y.; Zarehaghi, D.; Dabbagh Mohammadi Nasab, A.; Neyshabouri, M.R. The Effect of Intercropping and Deficit Irrigation on the Water Use Efficiency and Yield of Tomato (Lycopersicon esculentum Mill) and Basil (Ocimum basilicum). J. Agric. Sci. Sustain. Prod. 2018, 28, 209–220. [Google Scholar]
- Tringovska, I.; Yankova, V.; Markova, D.; Mihov, M. Effect of Companion Plants on Tomato Greenhouse Production. Sci. Hort. 2015, 186, 31–37. [Google Scholar] [CrossRef]
- Nelson, S.C. Late Blight of Tomato Phytophthora infestans. Plant Dis. 2008, 45. Available online: https://www.ctahr.hawaii.edu/oc/freepubs/pdf/PD-45.pdf (accessed on 31 August 2008).
- Chala, M.; Nebiyu, A.; Lilie, B. Optimizing Basil (Ocimum basilicum L.) Planting Densities and Row Arrangements in Tomato-Basil Intercropping System. Cross Current Int. J. Agri. Vet. Sci. 2024, 6, 6–14. [Google Scholar] [CrossRef]
- Kazan, K.; Lyons, R. The Link Between Flowering Time and Stress Tolerance. J. Exp. Bot. 2016, 67, 47–60. [Google Scholar] [CrossRef]
- Ehlers, B.K. Soil Microorganisms Alleviate the Allelochemical Effects of a Thyme Monoterpene on the Performance of an Associated Grass Species. PLoS ONE 2011, 6, e26321. [Google Scholar] [CrossRef] [PubMed]
- Linhart, Y.B.; Gauthier, R.; Keefover-Ring, K.; Thompson, J.D. Variable Phytotoxic Effects of Thymus vulgaris (Lamieceae) Terpens on Associated Species. Int. J. Plant Sci. 2014, 176, 20–30. [Google Scholar]
- Ehlers, B.K.; Charpentier, A.; Grøndahl, E. An Allelopathic Plant Facilitates Species Richness in the Mediterranean Garrigue. J. Ecol. 2014, 102, 176–185. [Google Scholar] [CrossRef]
- Galovĭcová, L.; Borotová, P.; Valková, V.; Vukovic, N.L.; Vukic, M.; Štefániková, J.; Dúranová, H.; Kowalczewski, P.Ł.; Čmiková, N.; Kačániová, M. Thymus vulgaris Essential Oil and its Biological Activity. Plants 2021, 10, 1959. [Google Scholar] [CrossRef]
- Álvarez_García, S.; Moumi, M.; Romanazzi, G. Antifungal Activity of Volatile Organic Compounds from Essential Oils against the Postharvest Pathogens Botrytis cinerea, Monilinia fructicola, monilinia fructigena, and Monilinia laxa. Front. Plant Sci. 2023, 14, 1274770. [Google Scholar] [CrossRef]
- Soylu, E.M.; Soylu, S.; Kurt, S. Antimicrobial Activities of the Essential Oils of Various Plants against Tomato Late Blight Disease Agent Phytophthora infestans. Mycopathologia 2006, 161, 119–128. [Google Scholar] [CrossRef] [PubMed]
- Mirmajlessi, S.M.; Dewitte, K.; Landschoot, S.; Mänd, M.; Audenaert, K.; Ameye, M.; Haesaert, G. Biocidal Activity of Plant-derived Compounds against Phytophthora infestans: An Alternative Approach to Late Blight Management. Crop Prot. 2020, 138, 105315. [Google Scholar] [CrossRef]
- Saltos-Rezabala, L.A.; Silveira, P.R.D.; Tavares, D.G.; Moreira, S.I.; Magalhães, T.A.; Botelho, D.M.D.S.; Alves, E. Thyme Essential Oil Reduces Disease Severity and Induces Resistance against Alternaria linariae in Tomato Plants. Horticulturae 2022, 8, 919. [Google Scholar] [CrossRef]
- Martini, F.; Jijakli, M.H.; Gontier, E.; Muchembled, J.; Fauconnier, M.L. Harnessing Plant’s Arsenal: Essential Oils as Promising Tools for Sustainable Management of Potato Late Blight Disease Caused by Phytophthora infestans—A Comprehensive Review. Molecules 2023, 28, 7302. [Google Scholar] [CrossRef]
- Trabelsi, D.; Mhamdi, R. Microbial Inoculants and their Impact on Soil Microbial Communities: A review. BioMed Res. Int. 2013, 863240. [Google Scholar] [CrossRef]
- Erdel, E.; Şimșek, U.; Kesimci, T.G. Effects of Fungi on Soil Organic Carbon and Soil Enzyme Activity under Agricultural and Pasture Land of Eastern Türkiye. Sustainability 2023, 15, 1765. [Google Scholar] [CrossRef]
- Asghar, W.; Craven, K.D.; Kataoka, R.; Mahmood, A.; Asghar, N.; Raza, T.; Iftikhar, F. The Application of Trichoderma spp., an Old but New Useful Fungus, in Sustainable Soil Health Intensification: A Comprehensive Strategy for Addressing Challenges. Plant Stress 2024, 12, 100455. [Google Scholar] [CrossRef]
- Mao, T.; Jiang, X. Changes in Microbial Community and Enzyme Activity in Soil under Continuous Pepper Cropping in Response to Trichoderma hamatum MHT1134 Application. Sci. Rep. 2021, 11, 21585. [Google Scholar] [CrossRef]
- Jangir, M.; Sharma, S.; Sharma, S. Non-target Effects of Trichoderma on Plants and Soil Microbial Communities. In Plant Microbe Interface; Varma, A., Tripathi, S., Prasad, R., Eds.; Springer Nature: Cham, Switzerland, 2019; pp. 239–251. [Google Scholar] [CrossRef]
- Naseby, D.C.; Pascual, J.A.; Lynch, J.M. Effect of Biocontrol Strains of Trichoderma on Plant Growth, Pythium ultimum Populations, Soil Microbial Communities and Soil Enzyme Activities. J. Appl. Microbiol. 2000, 88, 161–169. [Google Scholar] [CrossRef]
Treatments | Intercrop | |||||
---|---|---|---|---|---|---|
No Herbs | Thyme | Basil | ||||
Total | Marketable | Total | Marketable | Total | Marketable | |
Control | 6.7 ± 1.2 | 2.0 ± 0.2 | 8.0 ± 0.2 | 2.2 ± 0.2 | 6.3 ± 0.3 | 1.0 ± 0.3 |
MIC14 | 6.0 ± 1.3 | 1.7 ± 0.2 | 8.0 ± 0.5 | 2.1 ± 0.4 | 6.4 ± 0.2 | 1.1 ± 0.2 |
TG | 7.5 ± 0.7 | 2.3 ± 0.5 | 7.9 ± 0.2 | 3.0 ± 0.6 | 5.9 ± 0.5 | 1.1 ± 0.2 |
Intercrop | Treatments | Observation I | Observation II | Observation III | ||
---|---|---|---|---|---|---|
Late Blight (%) | Treatment Efficacy (%) | Late Blight (%) | Treatment Efficacy (%) | Late Blight (%) | ||
No herbs | Control | 6.5 b | 0.0 | 14.5 a | 0.0 | 100.0 a |
MIC14 | 5.2 b | 20.0 | 13.8 a | 4.8 | 97.0 a | |
TG | 5.9 b | 9.2 | 14.8 a | −2.1 | 98.0 a | |
Thyme | Control | 7.5 a | −15.4 | 15.2 a | −4.8 | 100.0 a |
MIC14 | 5.8 b | 10.8 | 14.8 a | −4.8 | 98.0 a | |
TG | 6.7 ab | −3.1 | 14.8 a | −4.8 | 98.0 a | |
Basil | Control | 6.8 ab | −4.6 | 15.8 a | −9.0 | 100.0 a |
MIC14 | 5.8 b | 10.8 | 15.7 a | −8.3 | 98.0 a | |
TG | 6.1 b | 6.2 | 15.0 a | −3.4 | 99.0 a |
Intercrop | Treatments | Parameters of the Root Structure | |||||
---|---|---|---|---|---|---|---|
Dry Weight (g) | Length (m) | Area (cm2) | Diameter (mm) | Volume (cm3) | Tip Number | ||
No herbs | Control | 11.3 ± 2.3 ab | 7.0 ± 0.9 b | 350.0 ± 40.6 bc | 1.6 ± 0.1 a | 14.1 ± 1.7 c | 2383 ± 425 a |
MIC14 | 10.9 ± 2.7 ab | 10.8 ± 1.8 a | 424.8 ± 13.6 a | 1.3 ± 0.3 a | 14.2 ± 2.6 c | 3819 ± 624 a | |
TG | 13.8 ± 4.5 ab | 5.6 ± 0.4 bc | 327.3 ± 49.2 bc | 1.9 ± 0.2 a | 15.5 ± 3.4 bc | 2369 ± 183 a | |
Thyme | Control | 28.5 ± 7.2 a | 5.8 ± 0.8 bc | 421.8 ± 40.9 a | 2.4 ± 0.3 a | 25.3 ± 4.3 ab | 2110 ± 423 a |
MIC14 | 10.9 ± 1.1 ab | 7.1 ± 1.1 b | 381.7 ± 30.1 b | 1.8 ± 0.4 a | 17.8 ± 5.3 abc | 2205 ± 622 a | |
TG | 12.9 ± 1.2 ab | 3.5 ± 0.5 d | 340.4 ± 45.7 bc | 3.1 ± 0.2 a | 26.4 ± 3.9 a | 1690 ± 411 a | |
Basil | Control | 9.5 ± 0.8 b | 6.2 ± 0.6 bc | 353.0 ± 28.7 bc | 1.9 ± 0.1 a | 16.3 ± 1.1 bc | 1465 ± 105 a |
MIC14 | 9.2 ± 1.0 b | 4.3 ± 1.0 cd | 274.6 ± 25.9 d | 2.2 ± 0.3 a | 14.6 ± 1.9 c | 1291 ± 260 a | |
TG | 7.0 ± 1.1 b | 5.6 ± 1.4 bc | 297.9 ± 10.6 cd | 1.9 ± 0.4 a | 14.0 ± 2.7 c | 1526 ± 421 a |
Intercrop | Treatment | Measured Parameters | ||||
---|---|---|---|---|---|---|
Shoot Weight (kg) | Shoot Height (cm) | Fruit Number | Average Fruit Weight (g) | Flower Number | ||
No herbs | Control | 0.85 ± 0.14 a | 31.8 ± 0.7 d | 73.7 ± 14.3 a | 26.6 a | 49.0 ± 11.1 a |
MIC14 | 0.64 ± 0.16 a | 35.8 ± 1.8 abc | 56.0 ± 10.1 a | 33.2 a | 38.3 ± 5.5 a | |
TG | 0.86 ± 0.03 a | 32.1 ± 0.1 cd | 70.7 ± 27.4 a | 31.3 a | 59.7 ± 20.0 a | |
Thyme | Control | 1.29 ± 0.08 a | 37.6 ± 0.5 ab | 99.7 ± 3.8 a | 29.6 a | 60.7 ± 4.3 a |
MIC14 | 0.88 ± 0.15 a | 35.4 ± 0.9 abc | 74.7 ± 10.9 a | 30.7 a | 65.7 ± 3.2 a | |
TG | 1.25 ± 0.03 a | 37.1 ± 2.4 ab | 70.7 ± 9.6 a | 27.7 a | 64.0 ± 1.0 a | |
Basil | Control | 1.13 ± 0.08 a | 34.3 ± 0.2 bc | 73.7 ± 21.8 a | 29.2 a | 52.3 ± 9.8 a |
MIC14 | 0.84 ± 0.18 a | 38.2 ± 1.4 a | 57.0 ± 11.9 a | 29.5 a | 40.3 ± 2.9 a | |
TG | 0.94 ± 0.09 a | 30.3 ± 0.4 d | 59.3 ± 15.1 a | 26.2 a | 50.3 ± 12.7 a |
Treatments | Microbiological Parameters | |||||
---|---|---|---|---|---|---|
Trichoderma spp. cfu × 103/g of Dry Weight of Soil | Dehydrogenase Activity μ mol TPF/Dry Weight of Soil | Indices of Microbial Metabolic Potential (EcoPlateTM) | ||||
July | August | July | August | AWCD | H′ | |
Control | 0.00 ± 0.00 c | 0.00 ± 0.00 b | 18.29 ± 1.62 a | 18.30 ± 1.96 a | 0.72 ± 0.15 a | 3.06 ± 0.14 a |
MIC14 | 3.59 ± 0.76 a | 3.24 ± 0.79 a | 14.89 ± 1.04 ab | 15.41 ± 2.19 b | 0.77 ± 0.08 a | 3.20 ± 0.32 a |
TG | 1.64 ± 1.11 b | 4.25 ± 1.59 a | 13.38 ± 1.50 b | 18.64 ± 5.15 a | 0.74 ± 0.18 a | 2.60 ± 0.16 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szczech, M.; Kowalska, B.; Wurm, F.R.; Ptaszek, M.; Jarecka-Boncela, A.; Trzciński, P.; Borup Løvschall, K.; Roldan Velasquez, S.T.; Maciorowski, R. The Effects of Tomato Intercropping with Medicinal Aromatic Plants Combined with Trichoderma Applications in Organic Cultivation. Agronomy 2024, 14, 2572. https://doi.org/10.3390/agronomy14112572
Szczech M, Kowalska B, Wurm FR, Ptaszek M, Jarecka-Boncela A, Trzciński P, Borup Løvschall K, Roldan Velasquez ST, Maciorowski R. The Effects of Tomato Intercropping with Medicinal Aromatic Plants Combined with Trichoderma Applications in Organic Cultivation. Agronomy. 2024; 14(11):2572. https://doi.org/10.3390/agronomy14112572
Chicago/Turabian StyleSzczech, Magdalena, Beata Kowalska, Frederik R. Wurm, Magdalena Ptaszek, Anna Jarecka-Boncela, Paweł Trzciński, Kaja Borup Løvschall, Sara T. Roldan Velasquez, and Robert Maciorowski. 2024. "The Effects of Tomato Intercropping with Medicinal Aromatic Plants Combined with Trichoderma Applications in Organic Cultivation" Agronomy 14, no. 11: 2572. https://doi.org/10.3390/agronomy14112572
APA StyleSzczech, M., Kowalska, B., Wurm, F. R., Ptaszek, M., Jarecka-Boncela, A., Trzciński, P., Borup Løvschall, K., Roldan Velasquez, S. T., & Maciorowski, R. (2024). The Effects of Tomato Intercropping with Medicinal Aromatic Plants Combined with Trichoderma Applications in Organic Cultivation. Agronomy, 14(11), 2572. https://doi.org/10.3390/agronomy14112572