Identification of Indica–Japonica Attributes and Analysis of Heterosis Using InDel Markers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Field Trials
2.3. Agronomic Trait Measurement
2.4. Identification of Indica–Japonica Attributes Using InDel Molecular Markers
2.4.1. DNA Extraction
2.4.2. PCR Amplification and Electrophoresis
2.4.3. Calculation of Gene Frequency and Determination of Indica–Japonica Attributes
2.5. GD and Cluster Analysis
3. Results
3.1. Identification of Indica–Japonica Attributes in Parents and Hybrid Combinations
3.2. Cluster Analysis and PCA
3.3. Better-Parent Heterosis of Yield-Related Traits in F1 Combinations
3.4. Over-Control Heterosis of Yield-Related Traits in F1 Combinations
3.5. Correlation Between InDel GD of Parents and Heterosis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, C.; Yu, X.; Wang, J.; Zhao, Z.; Wan, J. Genetic and molecular mechanisms of reproductive isolation in the utilization of heterosis for breeding hybrid rice. J. Genet. Genom. 2024, 51, 583–593. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, A.; Ashikari, M.; Ueguchi-Tanaka, M.; Itoh, H.; Nishimura, A.; Swapan, D.; Ishiyama, K.; Saito, T.; Kobayashi, M.; Khush, G.S.; et al. Green revolution: A mutant gibberellin-synthesis gene in rice. Nature 2002, 416, 701–702. [Google Scholar] [CrossRef] [PubMed]
- Qian, Q.; Guo, L.; Smith, S.M.; Li, J. Breeding high-yield superior quality hybrid super rice by rational design. Natl. Sci. Rev. 2016, 3, 283–294. [Google Scholar] [CrossRef]
- Gou, Y.; Heng, Y.; Ding, W.; Xu, C.; Tan, Q.; Li, Y.; Fang, Y.; Li, X.; Zhou, D.; Zhu, X.; et al. Natural variation in OsMYB8 confers diurnal floret opening time divergence between indica and japonica subspecies. Nat. Commun. 2024, 15, 2262. [Google Scholar] [CrossRef]
- Gu, Z.; Gong, J.; Zhu, Z.; Li, Z.; Feng, Q.; Wang, C.; Zhao, Y.; Zhan, Q.; Zhou, C.; Wang, A.; et al. Structure and function of rice hybrid genomes reveal genetic basis and optimal performance of heterosis. Nat. Genet. 2023, 55, 1745–1756. [Google Scholar] [CrossRef] [PubMed]
- Fu, D.; Xiao, M.; Hayward, A.; Fu, Y.; Liu, G.; Jiang, G.; Zhang, H. Utilization of crop heterosis: A review. Euphytica 2014, 197, 161–173. [Google Scholar] [CrossRef]
- Bhandari, H.R.; Bhanu, A.N.; Srivastava, K.; Singh, M.N.; Shreya, H.A. Assessment of genetic diversity in crop plants-an overview. Adv. Plants Agric. Res. 2017, 7, 00255. [Google Scholar]
- Peringottillam, M.; Vasumathy, S.K.; Selvakumar, H.K.K.; Alagu, M. Genetic diversity and population structure of rice (Oryza sativa L.) landraces from Kerala, India analyzed through genotyping-by-sequencing. Mol. Genet. Genomics 2022, 297, 169–182. [Google Scholar] [CrossRef]
- Dan, Z.; Chen, Y.; Li, H.; Zeng, Y.; Xu, W.; Zhao, W.; He, R.; Huang, W. The metabolomic landscape of rice heterosis highlights pathway biomarkers for predicting complex phenotypes. Plant Physiol. 2021, 187, 1011–1025. [Google Scholar] [CrossRef]
- Lin, Z.; Qin, P.; Zhang, X.; Fu, C.; Deng, H.; Fu, X.; Huang, Z.; Jiang, S.; Li, C.; Tang, X.; et al. Divergent selection and genetic introgression shape the genome landscape of heterosis in hybrid rice. Proc. Natl. Acad. Sci. USA 2020, 117, 4623–4631. [Google Scholar] [CrossRef]
- Civáň, P.; Ali, S.; Batista-Navarro, R.; Drosou, K.; Ihejieto, C.; Chakraborty, D.; Ray, A.; Gladieux, P.; Brown, T.A. Origin of the aromatic group of cultivated rice (Oryza sativa L.) traced to the Indian subcontinent. Genome Biol. Evol. 2019, 11, 832–843. [Google Scholar] [CrossRef]
- Wang, M.; Chen, J.; Zhou, F.; Yuan, J.; Chen, L.; Wu, R.; Liu, Y.; Zhang, Q. The ties of brotherhood between japonica and indica rice for regional adaptation. Sci. China Life Sci. 2022, 65, 1369–1379. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.Q. The Next Generation of Rice: Inter-Subspecific Indica-Japonica Hybrid Rice. Front. Plant Sci. 2022, 13, 857896. [Google Scholar] [CrossRef]
- Huang, X.; Kurata, N.; Wei, X.; Wang, Z.X.; Wang, A.; Zhao, Q.; Zhao, Y.; Liu, K.; Lu, H.; Li, W.; et al. A map of rice genome variation reveals the origin of cultivated rice. Nature 2012, 490, 497–501. [Google Scholar] [CrossRef]
- Wang, M.; Huang, L.; Kou, Y.; Li, D.; Hu, W.; Fan, D.; Cheng, S.; Yang, Y.; Zhang, Z. Differentiation of Morphological Traits and Genome-Wide Expression Patterns between Rice Subspecies Indica and Japonica. Genes 2023, 14, 1971. [Google Scholar] [CrossRef]
- Xie, F.; Zhang, J. Shanyou 63: An elite mega rice hybrid in China. Rice 2018, 11, 17. [Google Scholar] [CrossRef]
- Huang, Z.; Ye, J.; Zhai, R.; Wu, M.; Yu, F.; Zhu, G.; Wang, Z.; Zhang, X.; Ye, S. Comparative Transcriptome Analysis of the Heterosis of Salt Tolerance in Inter-Subspecific Hybrid Rice. Int. J. Mol. Sci. 2023, 24, 2212. [Google Scholar] [CrossRef]
- Nadir, S.; Khan, S.; Zhu, Q.; Henry, D.; Wei, L.; Lee, D.S.; Chen, L. An overview on reproductive isolation in Oryza sativa complex. AoB Plants 2018, 10, ply060. [Google Scholar] [CrossRef]
- Ouyang, Y.; Liu, Y.G.; Zhang, Q. Hybrid sterility in plant: Stories from rice. Curr. Opin. Plant Biol. 2010, 13, 186–192. [Google Scholar] [CrossRef]
- Li, J.; Zhou, J.; Zhang, Y.; Yang, Y.; Pu, Q.; Tao, D. New Insights into the Nature of Interspecific Hybrid Sterility in Rice. Front. Plant Sci. 2020, 11, 555572. [Google Scholar] [CrossRef]
- Xiong, Z.; Zhang, S.; Wang, Y.; Brian, V.F.L.; Tu, M.; Jin, X.; Wu, Y.; Yan, H.; Yang, X.; Liu, P.; et al. Differentiation and distribution of indica and japonica rice varieties along the altitude gradients in Yunnan Province of China as revealed by InDel molecular markers. Genet. Resour. Crop Evol. 2010, 57, 891–902. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, J.; Pu, Q.; Yang, Y.; Lv, Y.; Zhou, J.; Li, J.; Deng, X.; Wang, M.; Tao, D. Understanding the Nature of Hybrid Sterility and Divergence of Asian Cultivated Rice. Front. Plant Sci. 2022, 13, 908342. [Google Scholar] [CrossRef] [PubMed]
- Kato, S.; Kosaka, H.; Hara, S. On the affinity of rice varieties as shown by the fertility of rice plants. J. Fac. Agric. Kyushu Univ. 1928, 2, 241–276. [Google Scholar]
- Matsuo, T. Genecological studies on cultivated rice. Bull. Nat. Inst. Agric. Sci. 1952, 3, 1–29. [Google Scholar]
- Oka, H. Intervarietal variation and classification of cultivated rice. Indian J. Genet. Plant Breed. 1958, 18, 79–89. [Google Scholar]
- Morinaga, T.; Kuriyama, H. Intermediate type of rice in the subcontinent of India and Java. Japan J. Breed. 1958, 7, 53–59. [Google Scholar]
- Glaszmann, J.C. Isozymes and classification of Asian rice varieties. Theor. Appl. Genet. 1987, 74, 21–30. [Google Scholar] [CrossRef]
- Chang, T.T. The origin, evolution, cultivation, dissemination and diversification of Asian and African rices. Euphytica 1976, 25, 435–441. [Google Scholar] [CrossRef]
- Cheng, K.S. A statistical evaluation of the classification of rice cultivars into hsien and keng subspecies. Rice Genet. Newsl. 1985, 2, 46–48. [Google Scholar]
- Xu, Z.J.; Chen, W.F.; Zhang, L.B.; Peng, Y.C.; Zhang, J.G. Differences and Inheritance of Neck Vascular Bundles between Different Rice Types. Acta Agron. Sin. 1996, 22, 167–172. [Google Scholar]
- Tang, W.; Lin, J.; Wang, Y.; An, H.; Chen, H.; Pan, G.; Zhang, S.; Guo, B.; Yu, K.; Li, H.; et al. Selection and Validation of 48 KASP Markers for Variety Identification and Breeding Guidance in Conventional and Hybrid Rice (Oryza sativa L.). Rice 2022, 15, 48. [Google Scholar] [CrossRef]
- Pan, C.H.; Li, A.H.; Dai, Z.Y.; Zhang, H.X.; Liu, G.Q.; Wang, Z.B.; Yin, Y.J.; Zhang, Y.F.; Zuo, S.M.; Chen, Z.X. InDel and SNP markers and their applications in map-based cloning of rice genes. Rice Sci. 2008, 15, 251–258. [Google Scholar] [CrossRef]
- García-Lor, A.; Luro, F.; Navarro, L.; Ollitrault, P. Comparative use of InDel and SSR markers in deciphering the interspecific structure of cultivated citrus genetic diversity: A perspective for genetic association studies. Mol. Genet. Genom. 2011, 287, 77–94. [Google Scholar] [CrossRef]
- Sahu, P.K.; Mondal, S.; Sharma, D.; Vishwakarma, G.; Kumar, V.; Das, B.K. InDel marker based genetic differentiation and genetic diversity in traditional rice (Oryza sativa L.) landraces of Chhattisgarh, India. PLoS ONE 2017, 12, e0188864. [Google Scholar] [CrossRef] [PubMed]
- Long, W.; Li, Y.; Yuan, Z.; Luo, L.; Luo, L.; Xu, W.; Cai, Y.; Xie, H. Development of InDel markers for Oryza sativa ssp. javanica based on whole-genome resequencing. PLoS ONE 2022, 17, e0274418. [Google Scholar]
- Yuan, H.; Yang, W.; Zou, J.; Cheng, M.; Fan, F.; Liang, T.; Yu, Y.; Qiu, R.; Li, S.; Hu, J. InDel Markers Based on 3K Whole-Genome Re-Sequencing Data Characterise the Subspecies of Rice (Oryza sativa L.). Agriculture 2021, 11, 655. [Google Scholar] [CrossRef]
- Hechanova, S.L.; Bhattarai, K.; Simon, E.V.; Clave, G.; Karunarathne, P.; Ahn, E.K.; Li, C.P.; Lee, J.S.; Kohli, A.; Hamilton, N.R.S.; et al. Development of a genome-wide InDel marker set for allele discrimination between rice (Oryza sativa) and the other seven AA-genome Oryza species. Sci. Rep. 2021, 11, 8962. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Zhou, T.; Wang, P.; Wang, B.; Song, J.; Han, Z.; Chen, L.; Liu, K.; Xing, Y. Development of Whole-Genome Agarose-Resolvable LInDel Markers in Rice. Rice 2020, 13, 1. [Google Scholar] [CrossRef]
- Lu, B.R.; Cai, X.X.; Jin, X. Efficient indica and japonica rice identification based on the InDel molecular method: Its implication in rice breeding and evolutionary research. Prog. Nat. Sci. 2009, 19, 1241–1252. [Google Scholar] [CrossRef]
- Nei, M.; Li, W.H. Mathematical model for studying genetic variation interms of restriction endonuclease. Proc. Natl. Acad. Sci. USA 1979, 76, 5269–5273. [Google Scholar] [CrossRef]
- Shen, Y.J.; Jiang, H.; Jin, J.P.; Zhang, Z.B.; Xi, B.; He, Y.Y.; Wang, G.; Wang, C.; Qian, L.; Li, X.; et al. Development of genome-wide DNA polymorphism database for map-based cloning of rice genes. Plant Physiol. 2004, 135, 1198–1205. [Google Scholar] [CrossRef] [PubMed]
- Yonemaru, J.; Choi, S.H.; Sakai, H.; Ando, T.; Shomura, A.; Yano, M.; Wu, J.; Fukuoka, S. Genome-wide indel markers shared by diverse Asian rice cultivars compared to Japanese rice cultivar ‘Koshihikari’. Breed. Sci. 2015, 65, 249–256. [Google Scholar] [CrossRef] [PubMed]
- Yamaki, S.; Ohyanagi, H.; Yamasaki, M.; Eiguchi, M.; Miyabayashi, T.; Kubo, T.; Kurata, N.; Nonomura, K. Development of InDel markers to discriminate all genome types rapidly in the genus Oryza. Breed. Sci. 2013, 63, 246–254. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.H.; Wu, H.P.; Wang, C.S.; Tseng, Y.H.; Hwu, K.K. Genome-wide InDel marker system for application in rice breeding and mapping studies. Euphytica 2013, 192, 131–143. [Google Scholar] [CrossRef]
- Yang, W.; Zhang, F.; Zafar, S.; Wang, J.; Lu, H.; Naveed, S.; Lou, J.; Xu, J. Genetic dissection of heterosis of indica-japonica by introgression line, recombinant inbred line and their testcross populations. Sci. Rep. 2021, 11, 10265. [Google Scholar] [CrossRef]
- Gong, X.; Zhu, L.; Wang, A.; Xi, H.; Nie, M.; Chen, Z.; He, Y.; Tian, Y.; Wang, F.; Tong, L. Understanding the Palatability, Flavor, Starch Functional Properties and Storability of Indica-Japonica Hybrid Rice. Molecules 2022, 27, 4009. [Google Scholar] [CrossRef]
- Zhou, Q.; Yuan, R.; Zhang, W.; Gu, J.; Liu, L.; Zhang, H.; Wang, Z.; Yang, J. Grain yield, nitrogen use efficiency and physiological performance of indica/japonica hybrid rice in response to various nitrogen rates. J. Integr. Agr. 2023, 22, 63–79. [Google Scholar] [CrossRef]
- Ikehashi, H.; Araki, H. Varietal screening of compatibility types revealed in F1 fertility of distant crosses in rice. Jpn. J. Breed. 1984, 34, 304–313. [Google Scholar] [CrossRef]
- Tang, H.; Luo, D.; Zhou, D.; Zhang, Q.; Tian, D.; Zheng, X.; Chen, L.; Liu, Y.G. The rice restorer Rf4 for wild-abortive cytoplasmic male sterility encodes a mitochondrial-localized PPR protein that functions in reduction of WA352 transcripts. Mol. Plant. 2014, 7, 1497–1500. [Google Scholar] [CrossRef]
- Cai, J.; Liao, Q.P.; Dai, Z.J.; Zhu, H.T.; Zeng, R.Z.; Zhang, Z.M.; Zhang, G.Q. Allelic differentiations and effects of the Rf3 and Rf4 genes on fertility restoration in rice with wild abortive cytoplasmic male sterility. Biol. Plant. 2013, 57, 274–280. [Google Scholar] [CrossRef]
- Chen, J.; Ding, J.; Ouyang, Y.; Du, H.; Yang, J.; Cheng, K.; Zhao, J.; Qiu, S.; Zhang, X.; Yao, J.; et al. A triallelic system of S5 is a major regulator of the reproductive barrier and compatibility of indica-japonica hybrids in rice. Proc. Natl. Acad. Sci. USA 2008, 105, 11436–11441. [Google Scholar] [CrossRef] [PubMed]
- Long, Y.; Zhao, L.; Niu, B.; Su, J.; Wu, H.; Chen, Y.; Zhang, Q.; Guo, J.; Zhuang, C.; Mei, M.; et al. Hybrid male sterility in rice controlled by interaction between divergent alleles of two adjacent genes. Proc. Natl. Acad. Sci. USA 2008, 105, 18871–18876. [Google Scholar] [CrossRef] [PubMed]
- Miller, M.; Song, Q.; Shi, X.; Juenger, T.E.; Chen, Z.J. Natural variation in timing of stress-responsive gene expression predicts heterosis in intraspecific hybrids of Arabidopsis. Nat. Commun. 2015, 6, 7453–7455. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.; Gu, X.; Zhang, S.; Dong, S.; Miao, H.; Gebretsadik, K.; Bo, K. Molecular basis of heterosis and related breeding strategies reveal its importance in vegetable breeding. Hortic. Res. 2021, 8, 120. [Google Scholar] [CrossRef]
- Würschum, T.; Zhu, X.T.; Zhao, Y.S.; Jiang, Y.; Reif, C.J.; Maurer, P.H. Maximization through optimization? On the relationship between hybrid performance and parental genetic distance. Theor. Appl. Genet. 2023, 136, 186. [Google Scholar] [CrossRef]
- Tanee, S.; Prapa, S.; Weerachai, M. Parental genetic distance and combining ability analyses in relation to heterosis in various rice origins. J. Crop Sci. Biotechnol. 2021, 24, 327–336. [Google Scholar]
- Reif, J.C.; Melchinger, A.E.; Xia, X.C.; Warburton, M.L.; Hoisington, D.A.; Vasal, S.K.; Srinivasan, G.; Bohn, M.; Frisch, M. Genetic distance based on simple sequence repeats and heterosis in tropical maize populations. Crop Sci. 2003, 43, 1275–1282. [Google Scholar] [CrossRef]
- Jain, A.; Bhatia, S.; Banga, S.S.; Prakash, S.; Lakshmikumaran, M. Potential use of random amplified polymorphic DNA (RAPD) technique to study the genetic diversity in Indian mustard (Brassica juncea) and its relationship to heterosis. Theor. Appl. Genet. 1994, 88, 116–122. [Google Scholar] [CrossRef]
- Zhang, Q.; Gao, Y.J.; Maroof, M.A.; Yang, S.H.; Li, J.X. Molecular divergence and hybrid performance in rice. Mol. Breed. 1995, 1, 133–142. [Google Scholar] [CrossRef]
- Xiao, J.; Li, J.; Yuan, L.; McCouch, S.R.; Tanksley, S.D. Genetic diversity and its relationship to hybrid performance and heterosis in rice as revealed by PCR-based markers. Theor. Appl. Genet. 1996, 92, 637–643. [Google Scholar] [CrossRef]
- Cheres, M.T.; Miller, J.F.; Crane, J.M.; Knapp, S.J. Genetic distance as a predictor of heterosis and hybrid performance within and between heterotic groups in sunflower. Theor. Appl. Genet. 2000, 100, 889–894. [Google Scholar] [CrossRef]
- Riaz, A.; Li, G.; Quresh, Z.; Swati, M.S.; Quiros, C.F. Genetic diversity of oilseed Brassica napus inbred lines based on sequence-related amplified polymorphism and its relation to hybrid performance. Plant Breed. 2001, 120, 411–415. [Google Scholar] [CrossRef]
- Betrán, F.J.; Ribaut, J.M.; Beck, D.; de León, D.G. Genetic diversity, specific combining ability, and heterosis in tropical maize under stress and nonstress environments. Crop Sci. 2003, 43, 797–806. [Google Scholar] [CrossRef]
Number | Material | Type | Number | Material | Type | Number | Material | Type |
---|---|---|---|---|---|---|---|---|
1 | Nipponbare | Control | 42 | RA3 | Sterile line | 83 | XJ53 | Hybrid rice |
2 | 9311 | Control | 43 | RA4 | Sterile line | 84 | XJ54 | Hybrid rice |
3 | R1 | Restorer line | 44 | RA5 | Sterile line | 85 | XJ55 | Hybrid rice |
4 | R2 | Restorer line | 45 | RA6 | Sterile line | 86 | XJ56s | Hybrid rice |
5 | R3 | Restorer line | 46 | XJ12 | Hybrid rice | 87 | XJ57 | Hybrid rice |
6 | R4 | Restorer line | 47 | XJ13 | Hybrid rice | 88 | XJ58 | Hybrid rice |
7 | R5 | Restorer line | 48 | XJ14 | Hybrid rice | 89 | XJ59 | Hybrid rice |
8 | R6 | Restorer line | 49 | XJ15 | Hybrid rice | 90 | XJ60 | Hybrid rice |
9 | R7 | Restorer line | 50 | XJ16 | Hybrid rice | 91 | XJ62 | Hybrid rice |
10 | R8 | Restorer line | 51 | XJ17 | Hybrid rice | 92 | XJ63 | Hybrid rice |
11 | R9 | Restorer line | 52 | XJ18 | Hybrid rice | 93 | XJ64 | Hybrid rice |
12 | R10 | Restorer line | 53 | XJ19 | Hybrid rice | 94 | XJ65 | Hybrid rice |
13 | R11 | Restorer line | 54 | XJ20 | Hybrid rice | 95 | XJ66 | Hybrid rice |
14 | R12 | Restorer line | 55 | XJ22 | Hybrid rice | 96 | XJ67 | Hybrid rice |
15 | R13 | Restorer line | 56 | XJ23 | Hybrid rice | 97 | XJ68 | Hybrid rice |
16 | R14 | Restorer line | 57 | XJ24 | Hybrid rice | 98 | XJ69 | Hybrid rice |
17 | R15 | Restorer line | 58 | XJ25 | Hybrid rice | 99 | XJ70 | Hybrid rice |
18 | R16 | Restorer line | 59 | XJ26 | Hybrid rice | 100 | XJ72 | Hybrid rice |
19 | R17 | Restorer line | 60 | XJ27 | Hybrid rice | 101 | XJ73 | Hybrid rice |
20 | R18 | Restorer line | 61 | XJ28 | Hybrid rice | 102 | XJ74 | Hybrid rice |
21 | R19 | Restorer line | 62 | XJ29 | Hybrid rice | 103 | XJ75 | Hybrid rice |
22 | R20 | Restorer line | 63 | XJ30 | Hybrid rice | 104 | XJ76 | Hybrid rice |
23 | R21 | Restorer line | 64 | XJ32 | Hybrid rice | 105 | XJ77 | Hybrid rice |
24 | R22 | Restorer line | 65 | XJ33 | Hybrid rice | 106 | XJ78 | Hybrid rice |
25 | R23 | Restorer line | 66 | XJ34 | Hybrid rice | 107 | XJ79 | Hybrid rice |
26 | R24 | Restorer line | 67 | XJ35 | Hybrid rice | 108 | XJ80 | Hybrid rice |
27 | R25 | Restorer line | 68 | XJ36 | Hybrid rice | 109 | XJ82 | Hybrid rice |
28 | R26 | Restorer line | 69 | XJ37 | Hybrid rice | 110 | XJ83 | Hybrid rice |
29 | R27 | Restorer line | 70 | XJ38 | Hybrid rice | 111 | XJ84 | Hybrid rice |
30 | R28 | Restorer line | 71 | XJ39 | Hybrid rice | 112 | XJ85 | Hybrid rice |
31 | R29 | Restorer line | 72 | XJ40 | Hybrid rice | 113 | XJ86 | Hybrid rice |
32 | R30 | Restorer line | 73 | XJ42 | Hybrid rice | 114 | XJ87 | Hybrid rice |
33 | R31 | Restorer line | 74 | XJ43 | Hybrid rice | 115 | XJ88 | Hybrid rice |
34 | R32 | Restorer line | 75 | XJ44 | Hybrid rice | 116 | XJ89 | Hybrid rice |
35 | R33 | Restorer line | 76 | XJ45 | Hybrid rice | 117 | XJ90 | Hybrid rice |
36 | R34 | Restorer line | 77 | XJ46 | Hybrid rice | 118 | XJ92 | Hybrid rice |
37 | R35 | Restorer line | 78 | XJ47 | Hybrid rice | 119 | XJ93 | Hybrid rice |
38 | R36 | Restorer line | 79 | XJ48 | Hybrid rice | 120 | XJ94 | Hybrid rice |
39 | R37 | Restorer line | 80 | XJ49 | Hybrid rice | 121 | XJ95 | Hybrid rice |
40 | RA1 | Sterile line | 81 | XJ50 | Hybrid rice | 122 | XJ96 | Hybrid rice |
41 | RA2 | Sterile line | 82 | XJ52 | Hybrid rice | 123 | Yongyou1540 | Control |
Traits | Details |
---|---|
PH | Measured from ground to glume tip, 3 plants. |
EP | Number of panicles per plant with more than 5 filled grains, 3 plants. |
PL | Measured from neck to tip, 3 panicles/plant, 3 plants. |
FG | Total filled grains/Number of effective panicles, 3 plants. |
Seed-setting rate | (Number of filled grains/Total number of grains) × 100%, 3 plants. |
TGW | The weight of 1000 grains per plant, 3 reps/plant, 3 plants. |
YPP | (Thousand-grain weight × Total number of grains)/1000, 3 plants. |
Indica–Japonica Attributes | Gene Frequency | |
---|---|---|
Indica Gene Frequency Fi | Japonica Gene Frequency Fj | |
Typical indica | >0.90 | <0.1 |
indica | 0.75~0.89 | 0.11~0.25 |
indica cline | 0.61~0.74 | 0.26~0.39 |
Intermediate | 0.4~0.6 | 0.4~0.6 |
japonica cline | 0.26~0.39 | 0.61~0.74 |
Japonica | 0.11~0.25 | 0.75~0.89 |
Typical japonica | <0.1 | >0.9 |
Indica–Japonica Attributes | Gene Frequency | Material | |
---|---|---|---|
Indica Gene Frequency Fi | Japonica Gene Frequency Fj | ||
Typical indica | >0.90 | <0.1 | 9311, R3, R5, R9, R19, R23, R24, R25, R27, R28, R29, R31, R32, R35, R37 |
indica | 0.75~0.89 | 0.11~0.25 | R1, R2, R4, R6, R7, R8, R10, R11, R12, R13, R14, R16, R17, R18, R20, R21, R22, R26, R30, R34, R36 |
indica cline | 0.61~0.74 | 0.26~0.39 | R33, R15 |
Intermediate | 0.4~0.6 | 0.4~0.6 | All hybrid combinations except XJ13, XJ18, XJ65 and XJ96 |
japonica cline | 0.26~0.39 | 0.61~0.74 | XJ13, XJ18, XJ65, XJ96 |
japonica | 0.11~0.25 | 0.75~0.89 | / |
Typical japonica | <0.1 | >0.9 | Nipponbare, RA1, RA2, RA3, RA4, RA5, RA6 |
Statistical Values | PH | EP | PL | FG | Seed-Setting Rate | TGW | YPP |
---|---|---|---|---|---|---|---|
Mean | 1.10% | 48.80% | −10.75% | −26.30% | −8.10% | 6.10% | 15.80% |
Range | 36.60 | 206.60 | 49.00 | 88.80 | 65.10 | 52.00 | 201.30 |
Max | 22.40% | 178.60% | 15.80% | 30.20% | 23.90% | 41.40% | 140.00% |
Min | −14.20% | −28.00% | −33.20% | −58.60% | −41.20 | −10.60% | −61.30% |
PDC | 37.00 | 67.00 | 12.00 | 5.00 | 24.00 | 58.00 | 47.00 |
NDC | 39.00 | 5.00 | 65.00 | 72.00 | 52.00 | 19.00 | 30.00 |
ZDC | 1.00 | 5.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 |
Statistical Values | PH | EP | PL | FG | Seed-Setting Rate | TGW | YPP |
---|---|---|---|---|---|---|---|
Mean | 6.20% | 19.80% | 2.45% | −33.10% | −12.80% | 6.20% | −15.10% |
Range | 29.90 | 104.70 | 25.80 | 43.50 | 47.80 | 37.40 | 124.70 |
Max | 22.90% | 85.70% | 15.90% | −10.10% | 3.70% | 31.30% | 67.40% |
Min | −7.00% | −19.00% | −9.90% | −53.60% | −44.10% | −6.10% | −57.30% |
PDC | 61.00 | 52.00 | 47.00 | 0.00 | 16.00 | 63.00 | 18.00 |
NDC | 16.00 | 19.00 | 30.00 | 77.00 | 61.00 | 13.00 | 59.00 |
ZDC | 0.00 | 6.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 |
Material | Male | Female | GD | Material | Male | Female | GD |
---|---|---|---|---|---|---|---|
XJ12 | R36 | RA1 | 0.794 | XJ55 | R28 | RA4 | 0.853 |
XJ13 | R16 | RA2 | 0.735 | XJ56 | R34 | RA4 | 0.765 |
XJ14 | R17 | RA2 | 0.853 | XJ57 | R35 | RA4 | 0.882 |
XJ15 | R30 | RA2 | 0.853 | XJ58 | R36 | RA4 | 0.794 |
XJ16 | R31 | RA2 | 0.882 | XJ59 | R13 | RA5 | 0.853 |
XJ17 | R32 | RA2 | 0.882 | XJ60 | R18 | RA5 | 0.765 |
XJ18 | R33 | RA2 | 0.706 | XJ62 | R19 | RA5 | 0.882 |
XJ19 | R34 | RA2 | 0.824 | XJ63 | R20 | RA5 | 0.853 |
XJ20 | R35 | RA2 | 0.941 | XJ64 | R21 | RA5 | 0.882 |
XJ22 | R36 | RA2 | 0.853 | XJ65 | R22 | RA5 | 0.765 |
XJ23 | R1 | RA3 | 0.824 | XJ66 | R23 | RA5 | 0.853 |
XJ24 | R2 | RA3 | 0.768 | XJ67 | R24 | RA5 | 0.824 |
XJ25 | R3 | RA3 | 0.853 | XJ68 | R25 | RA5 | 0.824 |
XJ26 | R4 | RA3 | 0.855 | XJ69 | R26 | RA5 | 0.912 |
XJ27 | R5 | RA3 | 0.853 | XJ70 | R27 | RA5 | 0.853 |
XJ28 | R6 | RA3 | 0.882 | XJ72 | R28 | RA5 | 0.853 |
XJ29 | R7 | RA3 | 0.824 | XJ73 | R29 | RA5 | 0.853 |
XJ30 | R8 | RA3 | 0.853 | XJ74 | R30 | RA5 | 0.912 |
XJ32 | R9 | RA3 | 0.853 | XJ75 | R34 | RA5 | 0.765 |
XJ33 | R10 | RA3 | 0.853 | XJ76 | R2 | RA6 | 0.750 |
XJ34 | R11 | RA3 | 0.765 | XJ77 | R3 | RA6 | 0.831 |
XJ35 | R12 | RA3 | 0.768 | XJ78 | R4 | RA6 | 0.778 |
XJ36 | R13 | RA3 | 0.853 | XJ79 | R5 | RA6 | 0.831 |
XJ37 | R14 | RA3 | 0.853 | XJ80 | R6 | RA6 | 0.803 |
XJ38 | R15 | RA3 | 0.765 | XJ82 | R7 | RA6 | 0.746 |
XJ39 | R18 | RA3 | 0.765 | XJ83 | R8 | RA6 | 0.775 |
XJ40 | R19 | RA3 | 0.882 | XJ84 | R9 | RA6 | 0.831 |
XJ42 | R20 | RA3 | 0.853 | XJ85 | R10 | RA6 | 0.775 |
XJ43 | R21 | RA3 | 0.882 | XJ86 | R11 | RA6 | 0.746 |
XJ44 | R13 | RA4 | 0.735 | XJ87 | R12 | RA6 | 0.750 |
XJ45 | R14 | RA4 | 0.735 | XJ88 | R14 | RA6 | 0.775 |
XJ46 | R18 | RA4 | 0.824 | XJ89 | R27 | RA6 | 0.831 |
XJ47 | R21 | RA4 | 0.765 | XJ90 | R28 | RA6 | 0.831 |
XJ48 | R22 | RA4 | 0.765 | XJ92 | R29 | RA6 | 0.831 |
XJ49 | R23 | RA4 | 0.853 | XJ93 | R30 | RA6 | 0.831 |
XJ50 | R24 | RA4 | 0.824 | XJ94 | R31 | RA6 | 0.803 |
XJ52 | R25 | RA4 | 0.824 | XJ95 | R32 | RA6 | 0.803 |
XJ53 | R26 | RA4 | 0.794 | XJ96 | R33 | RA6 | 0.718 |
XJ54 | R27 | RA4 | 0.853 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, L.; Ye, J.; Zhai, R.; Wu, M.; Yu, F.; Zhang, X.; Zhu, G.; Han, J.; Ye, S. Identification of Indica–Japonica Attributes and Analysis of Heterosis Using InDel Markers. Agronomy 2024, 14, 2832. https://doi.org/10.3390/agronomy14122832
Huang L, Ye J, Zhai R, Wu M, Yu F, Zhang X, Zhu G, Han J, Ye S. Identification of Indica–Japonica Attributes and Analysis of Heterosis Using InDel Markers. Agronomy. 2024; 14(12):2832. https://doi.org/10.3390/agronomy14122832
Chicago/Turabian StyleHuang, Lingling, Jing Ye, Rongrong Zhai, Mingming Wu, Faming Yu, Xiaoming Zhang, Guofu Zhu, Jinling Han, and Shenghai Ye. 2024. "Identification of Indica–Japonica Attributes and Analysis of Heterosis Using InDel Markers" Agronomy 14, no. 12: 2832. https://doi.org/10.3390/agronomy14122832
APA StyleHuang, L., Ye, J., Zhai, R., Wu, M., Yu, F., Zhang, X., Zhu, G., Han, J., & Ye, S. (2024). Identification of Indica–Japonica Attributes and Analysis of Heterosis Using InDel Markers. Agronomy, 14(12), 2832. https://doi.org/10.3390/agronomy14122832