Estimation of the Net Primary Productivity of Grasslands in the Qinghai Tibet Plateau Based on a Machine Learning Model and Sensitivity Analysis to Climate Change
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the Study Area
2.2. Data and Processing
2.2.1. Meteorological Data
2.2.2. Vegetation Type Data and Soil Data
2.2.3. NPP Data
2.3. Research Methods
2.3.1. Data Preprocessing and Evaluation Metrics
2.3.2. Random Forest
2.3.3. Multilayer Perceptron Neural Network
2.3.4. Sensitivity Analysis Design
3. Results
3.1. The Performance of Estimation of the NPP Using the RF and MLP
3.2. Single-Factor Sensitivity Analysis of the NPP in Different Grassland Types
3.2.1. Trend Analysis of the NPP of Different Grassland Types Under Changes in Single Climate Factors
3.2.2. Spatial Analysis of the NPP of Different Grassland Types with Climate Factors
3.3. Sensitivity Analysis of the NPP in Different Grassland Types
3.3.1. Two-Factor Sensitivity Analysis of the NPP in Different Grassland Types
3.3.2. Multi-Factor Sensitivity Analysis of the NPP in Different Grassland Types
4. Discussion
4.1. Model Performance and Limitations in Data Processing
4.2. Diverse Responses of the NPP to Climatic Factors
4.3. Spatial Variability and Multi-Factor Interactions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Scurlock, J.M.O.; Hall, D.O. The Global Carbon Sink: A Grassland Perspective. Glob. Change Biol. 1998, 4, 229–233. [Google Scholar] [CrossRef]
- Sun, J.; Wang, Y.; Lee, T.M.; Nie, X.; Wang, T.; Liang, E.; Wang, Y.; Zhang, L.; Wang, J.; Piao, S.; et al. Nature-Based Solutions Can Help Restore Degraded Grasslands and Increase Carbon Sequestration in the Tibetan Plateau. Commun. Earth Environ. 2024, 5, 1–12. [Google Scholar] [CrossRef]
- Luo, Z.; Wu, W.; Yu, X.; Song, Q.; Yang, J.; Wu, J.; Zhang, H. Variation of Net Primary Production and Its Correlation with Climate Change and Anthropogenic Activities over the Tibetan Plateau. Remote Sens. 2018, 10, 1352. [Google Scholar] [CrossRef]
- Zhou, W.; Li, J.; Yue, T. Grassland Degradation Remote Sensing Monitoring and Driving Factors Quantitative Assessment in China from 1982 to 2010. In Remote Sensing Monitoring and Evaluation of Degraded Grassland in China: Accounting of Grassland Carbon Source and Carbon Sink; Zhou, W., Li, J., Yue, T., Eds.; Springer: Singapore, 2020; pp. 105–123. ISBN 978-981-329-382-3. [Google Scholar]
- Montibeller, B.; Marshall, M.; Mander, Ü.; Uuemaa, E. Increased Carbon Assimilation and Efficient Water Usage May Not Compensate for Carbon Loss in European Forests. Commun. Earth Environ. 2022, 3, 1–11. [Google Scholar] [CrossRef]
- Perolo, P.; Escoffier, N.; Chmiel, H.E.; Many, G.; Bouffard, D.; Perga, M.-E. Alkalinity Contributes at Least a Third of Annual Gross Primary Production in a Deep Stratified Hardwater Lake. Limnol. Oceanogr. Lett. 2023, 8, 359–367. [Google Scholar] [CrossRef]
- Bhattarai, P.; Timilsina, B.; Parajuli, R.; Chen, Y.; Gao, J.; Zhang, Y. Distinct Response of High-Latitude Ecosystem and High-Altitude Alpine Ecosystem to Temperature and Precipitation Dynamics: A Meta-Analysis of Experimental Manipulation Studies. Prog. Phys. Geogr. Earth Environ. 2022, 46, 909–921. [Google Scholar] [CrossRef]
- Jiang, Y.; Wang, P.; Xu, X.; Zhang, J. Dynamics of Carbon Fluxes with Responses to Vegetation, Meteorological and Terrain Factors in the South-Eastern Tibetan Plateau. Environ. Earth Sci. 2014, 72, 4551–4565. [Google Scholar] [CrossRef]
- Chen, H.; Zhu, Q.; Peng, C.; Wu, N.; Wang, Y.; Fang, X.; Gao, Y.; Zhu, D.; Yang, G.; Tian, J.; et al. The Impacts of Climate Change and Human Activities on Biogeochemical Cycles on the Qinghai-Tibetan Plateau. Glob. Change Biol. 2013, 19, 2940–2955. [Google Scholar] [CrossRef]
- Zhou, W.; Wang, T.; Xiao, J.; Wang, K.; Yu, W.; Du, Z.; Huang, L.; Yue, T. Grassland Productivity Increase Was Dominated by Climate in Qinghai-Tibet Plateau from 1982 to 2020. J. Clean. Prod. 2024, 434, 140144. [Google Scholar] [CrossRef]
- Guo, B.; Zang, W.; Yang, F.; Han, B.; Chen, S.; Liu, Y.; Yang, X.; He, T.; Chen, X.; Liu, C.; et al. Spatial and Temporal Change Patterns of Net Primary Productivity and Its Response to Climate Change in the Qinghai-Tibet Plateau of China from 2000 to 2015. J. Arid Land 2020, 12, 1–17. [Google Scholar] [CrossRef]
- Wang, Y.; Yue, H.; Peng, Q.; He, C.; Hong, S.; Bryan, B.A. Recent Responses of Grassland Net Primary Productivity to Climatic and Anthropogenic Factors in Kyrgyzstan. Land Degrad. Dev. 2020, 31, 2490–2506. [Google Scholar] [CrossRef]
- Pichler, M.; Hartig, F. Machine Learning and Deep Learning—A Review for Ecologists. Methods Ecol. Evol. 2023, 14, 994–1016. [Google Scholar] [CrossRef]
- Cai, J.; Xu, K.; Zhu, Y.; Hu, F.; Li, L. Prediction and Analysis of Net Ecosystem Carbon Exchange Based on Gradient Boosting Regression and Random Forest. Appl. Energy 2020, 262, 114566. [Google Scholar] [CrossRef]
- Song, L.; Li, M.; Xu, H.; Guo, Y.; Wang, Z.; Li, Y.; Wu, X.; Feng, L.; Chen, J.; Lu, X.; et al. Spatiotemporal Variation and Driving Factors of Vegetation Net Primary Productivity in a Typical Karst Area in China from 2000 to 2010. Ecol. Indic. 2021, 132, 108280. [Google Scholar] [CrossRef]
- Bulut, S.; Günlü, A.; Şatır, O. Estimating Net Primary Productivity of Semi-Arid Crimean Pine Stands Using Biogeochemical Modelling, Remote Sensing, and Machine Learning. Ecol. Inform. 2023, 76, 102137. [Google Scholar] [CrossRef]
- Tramontana, G.; Ichii, K.; Camps-Valls, G.; Tomelleri, E.; Papale, D. Uncertainty Analysis of Gross Primary Production Upscaling Using Random Forests, Remote Sensing and Eddy Covariance Data. Remote Sens. Environ. 2015, 168, 360–373. [Google Scholar] [CrossRef]
- Xia, J.; Ma, M.; Liang, T.; Wu, C.; Yang, Y.; Zhang, L.; Zhang, Y.; Yuan, W. Estimates of Grassland Biomass and Turnover Time on the Tibetan Plateau. Environ. Res. Lett. 2018, 13, 014020. [Google Scholar] [CrossRef]
- Yu, B.; Chen, F.; Chen, H. NPP Estimation Using Random Forest and Impact Feature Variable Importance Analysis. J. Spat. Sci. 2019, 64, 173–192. [Google Scholar] [CrossRef]
- Park, Y.-S.; Lek, S. Chapter 7—Artificial Neural Networks: Multilayer Perceptron for Ecological Modeling. In Developments in Environmental Modelling; Jørgensen, S.E., Ed.; Ecological Model Types; Elsevier: Amsterdam, The Netherlands, 2016; Volume 28, pp. 123–140. [Google Scholar]
- Abbasi, N.A.; Hamrani, A.; Madramootoo, C.A.; Zhang, T.; Tan, C.S.; Goyal, M.K. Modelling Carbon Dioxide Emissions under a Maize-Soy Rotation Using Machine Learning. Biosyst. Eng. 2021, 212, 1–18. [Google Scholar] [CrossRef]
- Chen, S.; Xu, D.; Li, S.; Ji, W.; Yang, M.; Zhou, Y.; Hu, B.; Xu, H.; Shi, Z. Monitoring Soil Organic Carbon in Alpine Soils Using in Situ vis-NIR Spectroscopy and a Multilayer Perceptron. Land Degrad. Dev. 2020, 31, 1026–1038. [Google Scholar] [CrossRef]
- Liu, J.; Ji, Y.-H.; Zhou, G.-S.; Zhou, L.; Lyu, X.-M.; Zhou, M.-Z. Temporal and Spatial Variations of Net Primary Productivity (NPP) and Its Climate Driving Effect in the Qinghai-Tibet Plateau, China from 2000 to 2020. Ying Yong Sheng Tai Xue Bao = J. Appl. Ecol./Zhongguo Sheng Tai Xue Xue Hui Zhongguo Ke Xue Yuan Shenyang Ying Yong Sheng Tai Yan Jiu Suo Zhu Ban 2022, 33, 1533–1538. [Google Scholar] [CrossRef]
- Cutler, D.R.; Edwards, T.C., Jr.; Beard, K.H.; Cutler, A.; Hess, K.T.; Gibson, J.; Lawler, J.J. Random Forests for Classification in Ecology. Ecology 2007, 88, 2783–2792. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Nicholson, D.; Huang, B.; Cassar, N. Global Estimates of Marine Gross Primary Production Based on Machine Learning Upscaling of Field Observations. Glob. Biogeochem. Cycles 2021, 35, e2020GB006718. [Google Scholar] [CrossRef]
- Zeng, J.; Matsunaga, T.; Tan, Z.-H.; Saigusa, N.; Shirai, T.; Tang, Y.; Peng, S.; Fukuda, Y. Global Terrestrial Carbon Fluxes of 1999–2019 Estimated by Upscaling Eddy Covariance Data with a Random Forest. Sci. Data 2020, 7, 313. [Google Scholar] [CrossRef]
- Guliyev, N.J.; Ismailov, V.E. On the Approximation by Single Hidden Layer Feedforward Neural Networks with Fixed Weights. Neural Netw. 2018, 98, 296–304. [Google Scholar] [CrossRef]
- Chen, B. The Impact of Climate Change and Anthropogenic Activities on Alpine Grassland over the Qinghai-Tibet Plateau. Agric. For. Meteorol. 2014, 189–190, 11–18. [Google Scholar] [CrossRef]
- Zhang, X. Spatial-Temporal Changes in NPP and Its Relationship with Climate Factors Based on Sensitivity Analysis in the Shiyang River Basin. J. Earth Syst. Sci. 2020, 129, 24. [Google Scholar] [CrossRef]
- Cheshmberah, F.; Fathizad, H.; Parad, G.A.; Shojaeifar, S. Comparison of RBF and MLP Neural Network Performance and Regression Analysis to Estimate Carbon Sequestration. Int. J. Environ. Sci. Technol. 2020, 17, 3891–3900. [Google Scholar] [CrossRef]
- Mirici, M.E. Land use/cover change modelling in a mediterranean rural landscape using multi-layer perceptron and markov chain (MLP-MC). Appl. Ecol. Environ. Res. 2018, 16, 467–486. [Google Scholar] [CrossRef]
- Guo, Y.; Li, Y.; Xu, Y. Study on the Application of LSTM-LightGBM Model in Stock Rise and Fall Prediction. MATEC Web Conf. 2021, 336, 05011. [Google Scholar] [CrossRef]
- Li, M.; Li, Q.; Xue, M. Spatio-Temporal Changes of Vegetation Net Primary Productivity and Its Driving Factors on the Tibetan Plateau from 1979 to 2018. Atmosphere 2024, 15, 579. [Google Scholar] [CrossRef]
- Zheng, Z.; Zhu, W.; Zhang, Y. Seasonally and Spatially Varied Controls of Climatic Factors on Net Primary Productivity in Alpine Grasslands on the Tibetan Plateau. Glob. Ecol. Conserv. 2020, 21, e00814. [Google Scholar] [CrossRef]
- Yan, W.; Sun, G.; Zhang, C.; He, J.; Zhang, N. Impacts of Experimental Warming and Moderate Grazing on Ecosystem Carbon Exchange and Its Compositions in an Alpine Meadow on the Eastern Qinghai-Tibetan Plateau. Chin. J. Appl. Environ. Biol. 2018, 24, 132–139. [Google Scholar] [CrossRef]
- Ren, Y.; Yang, K.; Wang, H.; Zhao, L.; Chen, Y.; Zhou, X.; La, Z. The South Asia Monsoon Break Promotes Grass Growth on the Tibetan Plateau. J. Geophys. Res. (Biogeosciences) 2021, 126, e2020JG005951. [Google Scholar] [CrossRef]
- Wang, S.; Liu, F.; Zhou, Q.; Chen, Q.; Liu, F. Simulation and Estimation of Future Ecological Risk on the Qinghai-Tibet Plateau. Sci. Rep. 2021, 11, 17603. [Google Scholar] [CrossRef]
- Jin, H.; Wang, S.; Yan, P.; Qiao, L.; Sun, L.; Zhang, L. Spatial and Temporal Characteristics of Surface Solar Radiation in China and Its Influencing Factors. Front. Environ. Sci. 2022, 10, 916748. [Google Scholar] [CrossRef]
- Hao, A.; Xue, X.; Duan, H.; Peng, F.; You, Q. Different Spatiotemporal Variations in Seasonal NDVI and Their Climatic Driving Forces of a Typical Grassland on the Qinghai-Tibetan Plateau. Acta Ecol. Sin. 2022, 43, 352–363. [Google Scholar] [CrossRef]
Data Types | Variables | Temporal Range | Sources |
---|---|---|---|
Meteorological data | maximum temperature | 1992–2020 | National Meteorological Science Data Center (http://data.cma.cn/) |
minimum temperature | 1992–2020 | ||
average precipitation | 1992–2020 | ||
solar radiation | 1992–2020 | ||
relative humidity | 1992–2020 | ||
wind speed | 1992–2020 | ||
CO2 concentration | 1992–2020 | Global tropospheric CO2 concentration satellite (AIRS, AIR×3C2M005) | |
Vegetation type data | alpine grassland | / | Resource and Environment Science and Data Center of the Chinese Academy of Sciences (https://www.resdc.cn/) |
alpine meadow | / | ||
Soil data | soil thickness | 1992–2020 | World Soil Database V1.2 (http://www.fao.org/) |
soil gravel content | 1992–2020 | ||
soil clay content | 1992–2020 | ||
soil chalk content | 1992–2020 | ||
pH | 1992–2020 | ||
soil organic matter | 1992–2020 | ||
wilting point | 1992–2020 | ||
field capacity | 1992–2020 | ||
saturated hydraulic conductivity | 1992–2020 | ||
bulk density | 1992–2020 | ||
NPP Data | remote sensing data | 1992–2000 | University of Maryland’s Global Land Cover Facility (GLCF) website (http://glcf.umd.edu/data/glopem/) |
2001–2020 | National Aeronautics and Space Administration (NASA)’s Earth Observing System (https://www.nasa.gov/) | ||
ground truth data | 1992–2020 | National Tibetan Plateau Science Data Center (https://data.tpdc.ac.cn/zh-hans/) |
Hottest Scenario | Change Range | Solar Radiation Scenarios | Change Range | Wind Speed Scenario | Change Range |
---|---|---|---|---|---|
T1S0W0 | ↑1 °C | T0S10W0 | ↑10% | T0S0W10 | ↑10% |
T2S0W0 | ↑2 °C | T0S20W0 | ↑20% | T0S0W20 | ↑20% |
T3S0W0 | ↑3 °C | T0S30W0 | ↑30% | T0S0W30 | ↑30% |
T4S0W0 | ↑4 °C | T0S40W0 | ↑40% | T0S0W40 | ↑40% |
T−1S0W0 | ↓1 °C | T0S−10W0 | ↓10% | T0S0W−10 | ↓10% |
T−2S0W0 | ↓2 °C | T0S−20W0 | ↓20% | T0S0W−20 | ↓20% |
T−3S0W0 | ↓3 °C | T0S−30W0 | ↓30% | T0S0W−30 | ↓30% |
T−4S0W0 | ↓4 °C | T0S−40W0 | ↓40% | T0S0W−40 | ↓40% |
Multi-Factor Scenario (Alpine Grassland) | Magnitude of Change (in Terms of Maximum Temperature) | Multi-Factor Scenario (Alpine Meadow) | Magnitude of Change (in Terms of Maximum Temperature) |
---|---|---|---|
T1S−10W10 | ↑1 °C | T1S−10W−10 | ↑1 °C |
T2S−20W20 | ↑2 °C | T2S−20W−20 | ↑2 °C |
T3S−30W30 | ↑3 °C | T3S−30W−30 | ↑3 °C |
T4S−40W40 | ↑4 °C | T4S−40W−40 | ↑4 °C |
T−1S10W−10 | ↓1 °C | T−1S10W10 | ↓1 °C |
T−2S20W−20 | ↓2 °C | T−2S20W20 | ↓2 °C |
T−3S30W−30 | ↓3 °C | T−3S30W30 | ↓3 °C |
T−4S40W−40 | ↓4 °C | T−4S40W40 | ↓4 °C |
Model | Best Parameters | Independent Validation | Cross Validation | ||||
---|---|---|---|---|---|---|---|
R2 | RMSE | MAE | R2 | RMSE | MAE | ||
RF | Max_depth: 15 Max_features: sqrt Min_sample_leaf: 1 Min_sample_split: 2 N_estimators: 300 | 0.95 | 39.99 | 27.60 | 0.90 | 46.73 | 27.89 |
MLP | Hidden_layer_sizes: (8, 8, 4, 1) Max_iter: 1000 Activation: ReLU | 0.98 | 16.24 | 9.04 | 0.98 | 24.11 | 13.59 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Zhao, Y.; Zhang, M.; Su, M. Estimation of the Net Primary Productivity of Grasslands in the Qinghai Tibet Plateau Based on a Machine Learning Model and Sensitivity Analysis to Climate Change. Agronomy 2024, 14, 2997. https://doi.org/10.3390/agronomy14122997
Liu X, Zhao Y, Zhang M, Su M. Estimation of the Net Primary Productivity of Grasslands in the Qinghai Tibet Plateau Based on a Machine Learning Model and Sensitivity Analysis to Climate Change. Agronomy. 2024; 14(12):2997. https://doi.org/10.3390/agronomy14122997
Chicago/Turabian StyleLiu, Xingyu, Youyi Zhao, Meiling Zhang, and Maoxin Su. 2024. "Estimation of the Net Primary Productivity of Grasslands in the Qinghai Tibet Plateau Based on a Machine Learning Model and Sensitivity Analysis to Climate Change" Agronomy 14, no. 12: 2997. https://doi.org/10.3390/agronomy14122997
APA StyleLiu, X., Zhao, Y., Zhang, M., & Su, M. (2024). Estimation of the Net Primary Productivity of Grasslands in the Qinghai Tibet Plateau Based on a Machine Learning Model and Sensitivity Analysis to Climate Change. Agronomy, 14(12), 2997. https://doi.org/10.3390/agronomy14122997