Impact of Ridge Tillage and Mulching on Water Dynamics of Summer Maize Fields Under Climate Change in the Semi-Arid Region of Northwestern Liaoning, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area Overview
2.2. Field Experiment and Measurements
2.3. Simulation of Future Climate Scenarios
2.3.1. Downloading CMIP6 Data
2.3.2. Selection of Global Climate Models (GCMs)
2.3.3. Future Climate Correction
2.4. Hydrus-2D Model Construction
2.4.1. Model Equations
- (1)
- Water Flow Control Equation
- (2)
- Soil Water Retention Curve Model
- (3)
- Root Water Uptake Model
- (4)
- Calculation of Evapotranspiration
2.4.2. Geometric Domain and Boundary Conditions
2.4.3. Parameter Calibration and Validation
2.4.4. Hydrus-2D Model Simulation
2.5. Statistical Analysis
3. Results
3.1. GCM Model Selection and Trend Analysis of Future Climate Changes
3.2. Calibration of the Hydrus-2D Model
3.3. Water Balance and Soil Water Content Changes Under Future Climate Conditions
3.4. Future Meteorological Drivers of Water Balance Dynamics
4. Discussion
4.1. Advantages of the Hydrus-2D Model in Soil Water Prediction
4.2. Impact of Climate Change on Water Balance
4.3. Optimization Effects of the M-RT Treatment on SWC and Water Balance
4.4. Research Limitations and Future Directions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Models Name | Country | Spatial Resolution | Historical Period | Projection Period |
---|---|---|---|---|
CNRM-ESM | France | 1.4° × 1.4° | 1850–2014 | 2015–2100 |
FGOALS-g3 | China | 2.8° × 2.8° | 1850–2014 | 2015–2100 |
GFDL-ESM4 | United States | 1.25° × 1° | 1850–2014 | 2015–2100 |
MIROC-ES2L | Japan | 2.8° × 2.8° | 1850–2014 | 2015–2100 |
GFDL-CM4 | United States | 1° × 1° | 1850–2014 | 2015–2100 |
INM-CM5-0 | Russia | 2° × 1.5° | 1850–2014 | 2015–2100 |
CanESM5-CanOE | Canada | 2.8° × 2.8° | 1850–2014 | 2015–2100 |
GISS-E2-1-G | United States | 2° × 2° | 1850–2014 | 2015–2100 |
BCC-CSM2-MR | China | 1.1° × 1.1° | 1850–2014 | 2015–2100 |
IPSL-CM | France | 2.5° × 1.3° | 1850–2014 | 2015–2100 |
MRI-ESM | Japan | 1.1° × 1.1° | 1850–2014 | 2015–2100 |
INM-CM4-8 | Russia | 2° × 1.5° | 1850–2014 | 2015–2100 |
NESM | China | 2° × 2° | 1850–2014 | 2015–2100 |
CIESM | China | 2.8° × 2.8° | 1850–2014 | 2015–2100 |
CNRM-CM | France | 1.4° × 1.4° | 1850–2014 | 2015–2100 |
EC-Earth3 | Europe | 0.7° × 0.7° | 1850–2014 | 2015–2100 |
MPI-ESM1-2-LR | Germany | 1.9° × 1.9° | 1850–2014 | 2015–2100 |
EC-Earth3-Veg | Europe | 0.7° × 0.7° | 1850–2014 | 2015–2100 |
ACCESS-CM2 | Australia | 1.25° × 0.9° | 1850–2014 | 2015–2100 |
CanESM5 | Canada | 2.8° × 2.8° | 1850–2014 | 2015–2100 |
MIROC6 | Japan | 1.4° × 1.4° | 1850–2014 | 2015–2100 |
MPI-ESM1-2-HR | Germany | 0.9° × 0.9° | 1850–2014 | 2015–2100 |
UKESM1-0-LL | United Kingdom | 1.9° × 1.3° | 1850–2014 | 2015–2100 |
ACCESS-ESM1-5 | Australia | 1.25° × 0.9° | 1850–2014 | 2015–2100 |
CNRM-CM6-1-HR | France | 0.9° × 0.9° | 1850–2014 | 2015–2100 |
Parameter Name | Symbol/Abbreviation | Unit | Full Name |
---|---|---|---|
Soil water content | SWC | cm3/cm3 | Soil water content |
Precipitation | PRE | mm | Precipitation |
Evapotranspiration | ET | mm | Evapotranspiration |
Net radiation | Rn | MJ/m2 | Net radiation |
Air temperature | Tair | °C | Air temperature |
Hydraulic conductivity | K | cm | Hydraulic conductivity |
Root water uptake | S(h) | cm3/cm3 | Root water uptake |
Residual soil volumetric water content | Qr | cm3/cm3 | Residual soil volumetric water content |
Saturated soil volumetric water content | Qs | cm3/cm3 | Saturated soil volumetric water content |
Soil matric potential | h | cm | Soil matric potential |
Potential Evapotranspiration | ETp | mm | Potential evapotranspiration |
Actual evaporation | E | mm | Actual evaporation |
Actual transpiration | T | mm | Actual transpiration |
Leakage | Leakage | mm | Leakage |
Crop coefficient | Kc | / | Crop coefficient |
Saturated hydraulic conductivity | Ks | cm | Saturated hydraulic conductivity |
Soil retention curvepParameters | α, n | / | Soil retention curve parameters |
Extinction coefficient | Ke | / | Extinction coefficient |
Soil water storage capacity | SWSC | mm | Soil water storage capacity |
References
- Rossato, L.; Alvalá, R.C.d.S.; Marengo, J.A.; Zeri, M.; Cunha, A.P.M.D.A.; Pires, L.B.M.; Barbosa, H.A. Impact of Soil Moisture on Crop Yields over Brazilian Semiarid. Front. Environ. Sci. 2017, 5, 73. [Google Scholar] [CrossRef]
- Zhang, K.; Zhao, F.; Zhang, B. Soil Water Content at Planting Affects Determining Agricultural Drought for Rainfed Spring Wheat. Atmosphere 2023, 14, 665. [Google Scholar] [CrossRef]
- Rani, A.; Sinha, N.K.; Jyoti, B.; Kumar, J.; Kumar, D.; Mishra, R.; Singh, P.; Mohanty, M.; Jayaraman, S.; Chaudhary, R.S. Spatiotemporal Variations in Near-Surface Soil Water Content across Agroecological Regions of Mainland India: 1979–2022 (44 Years). Remote Sens. 2024, 16, 3108. [Google Scholar] [CrossRef]
- Li, J.; Lei, H. Impacts of climate change on winter wheat and summer maize dual-cropping system in the North China Plain. Environ. Res. Commun. 2022, 4, 075014. [Google Scholar] [CrossRef]
- Wang, H.-F.; Chen, X.-P.; Cui, Z.-L.; Meng, Q.-F. Impacts of climate change on summer maize production and adaptive selection of varieties in Xingtai County, Hebei, China. Ying Yong Sheng Tai Xue Bao = J. Appl. Ecol. 2014, 25, 155–161. [Google Scholar]
- Blanchy, G.; Bragato, G.; Di Bene, C.; Jarvis, N.; Larsbo, M.; Meurer, K.; Garré, S. Soil and crop management practices and the water regulation functions of soils: A qualitative synthesis of meta-analyses relevant to European agriculture. Soil 2023, 9, 1–20. [Google Scholar] [CrossRef]
- Huang, Y.; Tao, B.; Xiaochen, Z.; Yang, Y.; Liang, L.; Wang, L.; Jacinthe, P.-A.; Tian, H.; Ren, W. Conservation tillage increases corn and soybean water productivity across the Ohio River Basin. Agric. Water Manag. 2021, 254, 106962. [Google Scholar] [CrossRef]
- Wang, C.; Zhao, J.; Feng, Y.; Shang, M.; Bo, X.; Gao, Z.; Chen, F.; Chu, Q. Optimizing tillage method and irrigation schedule for greenhouse gas mitigation, yield improvement, and water conservation in wheat–maize cropping systems. Agric. Water Manag. 2021, 248, 106762. [Google Scholar] [CrossRef]
- Guo, Y.; Yin, W.; Chai, Q.; Yu, A.; Zhao, C.; Fan, Z.; Fan, H.; Coulter, J.A. No tillage and previous residual plastic mulching with reduced water and nitrogen supply reduces soil carbon emission and enhances productivity of following wheat in arid irrigation areas. Field Crops Res. 2021, 262, 108028. [Google Scholar] [CrossRef]
- Li, C.; Wen, X.; Wan, X.; Liu, Y.; Han, J.; Liao, Y.; Wu, W. Towards the highly effective use of precipitation by ridge-furrow with plastic film mulching instead of relying on irrigation resources in a dry semi-humid area. Field Crops Res. 2016, 188, 62–73. [Google Scholar] [CrossRef]
- Li, R.; Hou, X.; Jia, Z.; Han, Q.; Ren, X.; Yang, B. Effects on soil temperature, moisture, and maize yield of cultivation with ridge and furrow mulching in the rainfed area of the Loess Plateau, China. Agric. Water Manag. 2013, 116, 101–109. [Google Scholar] [CrossRef]
- Mak-Mensah, E.; Obour, P.B.; Essel, E.; Wang, Q.; Ahiakpa, J.K. Influence of plastic film mulch with biochar application on crop yield, evapotranspiration, and water use efficiency in northern China: A meta-analysis. PeerJ 2021, 9, e10967. [Google Scholar] [CrossRef]
- He, Q.; Li, S.; Kang, S.; Yang, H.; Qin, S. Simulation of water balance in a maize field under film-mulching drip irrigation. Agric. Water Manag. 2018, 210, 252–260. [Google Scholar] [CrossRef]
- Xu, X.; Kalhoro, S.A.; Chen, W.; Raza, S. The evaluation/application of Hydrus-2D model for simulating macro-pores flow in loess soil. Int. Soil Water Conserv. Res. 2017, 5, 196–201. [Google Scholar] [CrossRef]
- Shan, G.; Sun, Y.; Zhou, H.; Lammers, P.S.; Grantz, D.A.; Xue, X.; Wang, Z. A horizontal mobile dielectric sensor to assess dynamic soil water content and flows: Direct measurements under drip irrigation compared with HYDRUS-2D model simulation. Biosyst. Eng. 2019, 179, 13–21. [Google Scholar] [CrossRef]
- Singh, M.C.; Jain, A.K.; Garg, S. Simulation of soil moisture movement under rice field using Hydrus-2D. Crop Res. 2013, 45, 45–53. [Google Scholar]
- Kader, M.A.; Nakamura, K.; Senge, M.; Mojid, M.A. Two-dimensional numerical simulations of soil-water and heat flow in a rainfed soybean field under plastic mulching. Water Supply 2021, 21, 2615–2632. [Google Scholar] [CrossRef]
- Kang, Y.; Ma, X.; Khan, S. Predicting climate change impacts on maize crop productivity and water use efficiency in the loess plateau. Irrig. Drain. 2014, 63, 394–404. [Google Scholar] [CrossRef]
- Liu, M.; Xu, X.; Jiang, Y.; Huang, Q.; Huo, Z.; Liu, L.; Huang, G. Responses of crop growth and water productivity to climate change and agricultural water-saving in arid region. Sci. Total Environ. 2020, 703, 134621. [Google Scholar] [CrossRef] [PubMed]
- Sultan, B.; Ahmed, A.I.; Faye, B.; Tramblay, Y. Less negative impacts of climate change on crop yields in West Africa in the new CMIP6 climate simulations ensemble. PLoS Clim. 2023, 2, e0000263. [Google Scholar] [CrossRef]
- Zhang, H.; Zhou, G.; Li Liu, D.; Wang, B.; Xiao, D.; He, L. Climate-associated rice yield change in the Northeast China Plain: A simulation analysis based on CMIP5 multi-model ensemble projection. Sci. Total Environ. 2019, 666, 126–138. [Google Scholar] [CrossRef] [PubMed]
- Kusumastuti, C.; Jiang, Z.; Mehrotra, R.; Sharma, A. A signal processing approach to correct systematic bias in trend and variability in climate model simulations. Geophys. Res. Lett. 2021, 48, e2021GL092953. [Google Scholar] [CrossRef]
- Cannon, A.J. Multivariate quantile mapping bias correction: An N-dimensional probability density function transform for climate model simulations of multiple variables. Clim. Dyn. 2018, 50, 31–49. [Google Scholar] [CrossRef]
- Kadyampakeni, D.M.; Morgan, K.T.; Nkedi-Kizza, P.; Schumann, A.W.; Jawitz, J.W. Modeling Water and Nutrient Movement in Sandy Soils Using HYDRUS-2D. J. Environ. Qual. 2018, 47, 1546–1553. [Google Scholar] [CrossRef]
- Kandelous, M.M.; Šimůnek, J. Numerical simulations of water movement in a subsurface drip irrigation system under field and laboratory conditions using HYDRUS-2D. Agric. Water Manag. 2010, 97, 1070–1076. [Google Scholar] [CrossRef]
- Richards, L.A. Capillary conduction of liquids through porous mediums. Physics 1931, 1, 318–333. [Google Scholar] [CrossRef]
- Van Genuchten, M.T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 1980, 44, 892–898. [Google Scholar] [CrossRef]
- Wesseling, J.G.; Brandyk, T. Introduction of the Occurrence of High Groundwater Levels and Surface Water Storage in Computer Program SWATRE; Institute for Land and Water Management Research: Petzenkirchen, Austria, 1985. [Google Scholar]
- Allen, R.G.; Pruitt, W.O.; Wright, J.L.; Howell, T.A.; Ventura, F.; Snyder, R.; Itenfisu, D.; Steduto, P.; Berengena, J.; Yrisarry, J.B. A recommendation on standardized surface resistance for hourly calculation of reference ETo by the FAO56 Penman-Monteith method. Agric. Water Manag. 2006, 81, 1–22. [Google Scholar] [CrossRef]
- Bolte, K.; Hartmann, P.; Fleige, H.; Horn, R. Determination of critical soil water content and matric potential for wind erosion. J. Soils Sediments 2011, 11, 209–220. [Google Scholar] [CrossRef]
- Hu, Z.; Liu, S.-g.; Zhong, G.-h.; Lin, H.; Zhou, Z. Modified Mann-Kendall trend test for hydrological time series under the scaling hypothesis and its application. Hydrol. Sci. J. 2020, 65, 2419–2438. [Google Scholar] [CrossRef]
- Peng, X.; Ma, J.; Cai, H.; Wang, Y. Carbon balance and controlling factors in a summer maize agroecosystem in the Guanzhong Plain, China. J. Sci. Food Agric. 2022, 103, 1761–1774. [Google Scholar] [CrossRef] [PubMed]
- Morianou, G.G.; Kourgialas, N.N.; Karatzas, G.P. A Review of HYDRUS 2D/3D Applications for Simulations of Water Dynamics, Root Uptake and Solute Transport in Tree Crops under Drip Irrigation. Water 2023, 15, 741. [Google Scholar] [CrossRef]
- Hausfather, Z.; Drake, H.F.; Abbott, T.H.; Schmidt, G.A. Evaluating the Performance of Past Climate Model Projections. Geophys. Res. Lett. 2020, 47, e2019GL085378. [Google Scholar] [CrossRef]
- Jiang, S.; Liang, C.; Cui, N.; Zhao, L.; Du, T.; Hu, X.; Feng, Y.; Guan, J.; Feng, Y. Impacts of climatic variables on reference evapotranspiration during growing season in Southwest China. Agric. Water Manag. 2019, 216, 365–378. [Google Scholar] [CrossRef]
- Zhang, H.; Zhao, T.; Ji, R.; Chang, S.; Gao, Q.; Zhang, G. The Decreased Availability of Soil Moisture and Canopy Conductance Dominate Evapotranspiration in a Rain-Fed Maize Ecosystem in Northeastern China. Agronomy 2023, 13, 2941. [Google Scholar] [CrossRef]
- Saha, A.; Joseph, J.; Ghosh, S. Climate controls on the terrestrial water balance: Influence of aridity on the basin characteristics parameter in the Budyko framework. Sci. Total Environ. 2020, 739, 139863. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.; Cao, H.-X.; Liu, X.; Li, H.-T.; Hu, Q.; Xue, W.-K. By increasing infiltration and reducing evaporation, mulching can improve the soil water environment and apple yield of orchards in semiarid areas. Agric. Water Manag. 2021, 253, 106936. [Google Scholar] [CrossRef]
- Shen, Q.; Ding, R.; Du, T.; Tong, L.; Li, S. Water Use Effectiveness Is Enhanced Using Film Mulch Through Increasing Transpiration and Decreasing Evapotranspiration. Water 2019, 11, 1153. [Google Scholar] [CrossRef]
- Li, W.; Wen, X.-x.; Han, J.; Liu, Y.; Wu, W.; Liao, Y. Optimum ridge-to-furrow ratio in ridge-furrow mulching systems for improving water conservation in maize (Zea may L.) production. Environ. Sci. Pollut. Res. 2017, 24, 23168–23179. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, J.; Yang, L.; Kamran, M.; Xue, X.; Dong, Z.; Jia, Z.; Han, Q. Ridge-furrow mulching system regulates diurnal temperature amplitude and wetting-drying alternation behavior in soil to promote maize growth and water use in a semiarid region. Field Crops Res. 2019, 233, 121–130. [Google Scholar] [CrossRef]
- Dong, Q.G.; Yang, Y.; Zhang, T.; Zhou, L.; He, J.; Chau, H.W.; Zou, Y.; Feng, H. Impacts of ridge with plastic mulch-furrow irrigation on soil salinity, spring maize yield and water use efficiency in an arid saline area. Agric. Water Manag. 2018, 201, 268–277. [Google Scholar] [CrossRef]
- Zhang, F.; Zhang, W.; Li, M.; Zhang, Y.; Li, F.; Li, C.-B. Is crop biomass and soil carbon storage sustainable with long-term application of full plastic film mulching under future climate change? Agric. Syst. 2017, 150, 67–77. [Google Scholar] [CrossRef]
- Zizong, M.; Zhang, X.; Zheng, B.; Yue, S.; Zhang, X.; Zhai, B.; Wang, Z.; Zheng, W.; Li, Z.Y.; Zamanian, K.; et al. Effects of plastic and straw mulching on soil microbial P limitations in maize fields: Dependency on soil organic carbon demonstrated by ecoenzymatic stoichiometry. Geoderma 2021, 388, 114928. [Google Scholar]
Growth Stage | Seedling Stage | Jointing Stage | Tasseling Stage | Grain Fillings Stage | Maturity Stage |
---|---|---|---|---|---|
Days after sowing (days) | 0–38 | 39–64 | 65–80 | 81–101 | 102–127 |
Date | 27 April–3 June | 4 June–29 June | 30 June–15 July | 16 July–5 August | 6 August–31 August |
Soil Depth/ cm | Residual Soil Moisture/ (cm3·cm−3) | Saturated Soil Moisture/ (cm3·cm−3) | Shape Parameter α/cm−1 | Empirical Parameter n | Saturated Hydraulic Conductivity/ (cm·d−1) |
---|---|---|---|---|---|
0~10 | 0.04 | 0.4 | 0.004 | 1.94 | 70 |
>10~20 | 0.07 | 0.31 | 0.06 | 1.66 | 200 |
>20~30 | 0.07 | 0.35 | 0.057 | 1.66 | 118 |
>30~40 | 0.15 | 0.27 | 0.022 | 1.78 | 46 |
>40~50 | 0.15 | 0.28 | 0.022 | 1.35 | 200 |
>50~60 | 0.1 | 0.35 | 0.015 | 1.69 | 300 |
>60~90 | 0.1 | 0.28 | 0.03 | 1.32 | 297 |
GCMs | Standard Deviation | Correlation Coefficient | S-Score | Rank |
---|---|---|---|---|
FGOALS-g3 | 63.2220 | 0.3625 | 0.9763 | 1 |
CNRM-ESM | 67.7674 | 0.3641 | 0.9546 | 2 |
GFD1 | 63.7069 | 0.3480 | 0.9535 | 3 |
MIROC-ES2L | 63.4250 | 0.3439 | 0.9490 | 4 |
GFDL-ESM4 | 67.0276 | 0.3560 | 0.9475 | 5 |
INM-CM5-0 | 59.9377 | 0.3294 | 0.9415 | 6 |
CanESM5-CanOE | 64.4235 | 0.3369 | 0.9346 | 7 |
GISS-E2-1-G | 65.6423 | 0.3205 | 0.9059 | 8 |
BCC-CSM2-MR | 62.7893 | 0.3084 | 0.9021 | 9 |
IPSL-CM | 60.3684 | 0.2981 | 0.8965 | 10 |
MRI-ESM | 63.0389 | 0.3049 | 0.8963 | 11 |
INM-CM4-8 | 73.9883 | 0.3258 | 0.8624 | 12 |
NESM | 63.9819 | 0.2766 | 0.8540 | 13 |
CIES | 66.5008 | 0.2832 | 0.8512 | 14 |
CNRM-CM | 64.1820 | 0.2693 | 0.8435 | 15 |
EC-Earth3 | 70.5684 | 0.2847 | 0.8309 | 16 |
MPI-ESM1-2-LR | 71.4264 | 0.2817 | 0.8219 | 17 |
EC-Earth3-Veg | 64.5060 | 0.2461 | 0.8116 | 18 |
ACCESS-CM2 | 74.0808 | 0.2824 | 0.8062 | 19 |
CanESM5 | 60.1614 | 0.2205 | 0.7930 | 20 |
MIROC6 | 67.0592 | 0.2404 | 0.7927 | 21 |
MPI-ESM1-2-HR | 63.0056 | 0.2253 | 0.7904 | 22 |
UKESM1-0-LL | 65.8018 | 0.2263 | 0.7806 | 23 |
ACCESS-ESM1-5 | 69.3125 | 0.2182 | 0.7536 | 24 |
CNRM-CM6-1-HR | 73.4126 | 0.2162 | 0.7290 | 25 |
GCM Models | Standard Deviation | Correlation Coefficient | S-Score | Rank |
---|---|---|---|---|
NESM | 49.5664 | 0.8558 | 0.8155 | 1 |
FGOALS-g3 | 49.0040 | 0.8344 | 0.8046 | 2 |
CNRM-ESM | 50.0559 | 0.8453 | 0.7995 | 3 |
MIROC-ES2L | 51.3162 | 0.8445 | 0.7812 | 4 |
MRI-ESM | 49.3661 | 0.8088 | 0.7774 | 5 |
CanESM5-CanOE | 50.7948 | 0.8274 | 0.7739 | 6 |
CNRM-CM | 50.4940 | 0.8185 | 0.7705 | 7 |
CanESM5 | 51.0557 | 0.8221 | 0.7658 | 8 |
EC-Earth3-Veg | 51.3956 | 0.8200 | 0.7595 | 9 |
GISS-E2-1-G | 50.9920 | 0.8129 | 0.7590 | 10 |
BCC-CSM2-MR | 51.4908 | 0.8209 | 0.7590 | 11 |
GFD1 | 50.4271 | 0.8017 | 0.7572 | 12 |
ACCESS-CM2 | 51.5280 | 0.8177 | 0.7557 | 13 |
MPI-ESM1-2-HR | 51.4193 | 0.8152 | 0.7552 | 14 |
IPSL-CM | 51.3427 | 0.8136 | 0.7549 | 15 |
EC-Earth3 | 51.3570 | 0.7961 | 0.7402 | 16 |
GFDL-ESM4 | 50.0356 | 0.7704 | 0.7361 | 17 |
MIROC6 | 51.1452 | 0.7839 | 0.7329 | 18 |
CNRM-CM6-1-HR | 52.1181 | 0.7910 | 0.7260 | 19 |
UKESM1-0-LL | 51.2728 | 0.7767 | 0.7254 | 20 |
ACCESS-ESM1-5 | 50.5096 | 0.7554 | 0.7178 | 21 |
CIES | 53.7903 | 0.7965 | 0.7086 | 22 |
INM-CM4-8 | 52.2404 | 0.7456 | 0.6882 | 23 |
MPI-ESM1-2-LR | 53.3444 | 0.7562 | 0.6827 | 24 |
INM-CM5-0 | 55.3927 | 0.7696 | 0.6674 | 25 |
Emission Scenario | Meteorological Data | Z-Value | Significance |
---|---|---|---|
SSP2-4.5 | PRE | −0.66 | / |
Tair | 6.47 | *** | |
RH | −0.41 | / | |
Rn | 2.38 | *** | |
SSP5-8.5 | PRE | −0.23 | / |
Tair | 8.90 | *** | |
RH | 0.69 | / | |
Rn | 1.26 | / |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Zhang, W.; Bai, M.; Wu, J.; Zhu, C.; Fu, Y. Impact of Ridge Tillage and Mulching on Water Dynamics of Summer Maize Fields Under Climate Change in the Semi-Arid Region of Northwestern Liaoning, China. Agronomy 2024, 14, 3032. https://doi.org/10.3390/agronomy14123032
Li Y, Zhang W, Bai M, Wu J, Zhu C, Fu Y. Impact of Ridge Tillage and Mulching on Water Dynamics of Summer Maize Fields Under Climate Change in the Semi-Arid Region of Northwestern Liaoning, China. Agronomy. 2024; 14(12):3032. https://doi.org/10.3390/agronomy14123032
Chicago/Turabian StyleLi, Yao, Wanting Zhang, Mengxi Bai, Jiayu Wu, Chenmengyuan Zhu, and Yujuan Fu. 2024. "Impact of Ridge Tillage and Mulching on Water Dynamics of Summer Maize Fields Under Climate Change in the Semi-Arid Region of Northwestern Liaoning, China" Agronomy 14, no. 12: 3032. https://doi.org/10.3390/agronomy14123032
APA StyleLi, Y., Zhang, W., Bai, M., Wu, J., Zhu, C., & Fu, Y. (2024). Impact of Ridge Tillage and Mulching on Water Dynamics of Summer Maize Fields Under Climate Change in the Semi-Arid Region of Northwestern Liaoning, China. Agronomy, 14(12), 3032. https://doi.org/10.3390/agronomy14123032