Environmental Impact of Various Rice Cultivation Methods in Northeast China through Life Cycle Assessment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data Sources
2.1.1. Study Area
2.1.2. Data Sources and Test Scheme
2.2. Life Cycle Assessment (LCA)
2.2.1. System Boundary and Functional Units
2.2.2. Inventory Analysis
2.2.3. Impact Assessment
3. Results
3.1. Characterization
3.2. Resource Consumption
3.3. Climate Change
3.4. Environmental Acidification
3.5. Eutrophication
3.6. Ecotoxicity
4. Discussion
4.1. Differences in Input-Output Lists of Different Rice Cultivation Methods
4.2. Variation in LCA Results across Different Rice Cultivation Methods
4.3. Methodological Discussion
4.4. Similarities and Differences of LCA Results in Rice Fields in Other Areas
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yuan, B.Z.; Sun, J. Research trend of rice and greenhouse gases based on Web of Science: A bibliometric analysis. All Earth 2023, 35, 16–30. [Google Scholar] [CrossRef]
- Zhang, Y.; Jiang, Y.; Tai, A.P.K.; Feng, J.F.; Li, Z.J.; Zhu, X.C.; Chen, J.; Zhang, J.; Song, Z.; Deng, A.; et al. Contribution of rice variety renewal and agronomic innovations to yield improvement and greenhouse gas mitigation in China. Environ. Res. Lett. 2019, 14, 114020. [Google Scholar] [CrossRef]
- Yao, Y.L.; Zhang, M.; Tian, Y.H.; Zhao, M.; Zhang, B.W.; Zhao, M.; Zeng, K.; Yin, B. Duckweed (Spirodela polyrhiza) as green manure for increasing yield and reducing nitrogen loss in rice production. Field Crops Res. 2017, 214, 273–282. [Google Scholar] [CrossRef]
- Lu, C.Q.; Tian, H.Q. Global nitrogen and phosphorus fertilizer use for agriculture production in the past half century: Shifted hot spots and nutrient imbalance. Earth Syst. Sci. Data 2017, 9, 181–192. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Huang, C.Y.; Zhao, L.; Feng, S.Y.; Zhao, Z.H.; Zhang, L. Effects of different colors of film mulch on soil temperature and rice growth in a non-flooded condition. J. Sci. Food Agric. 2023, 103, 6352–6361. [Google Scholar] [CrossRef]
- Song, J.; Han, J.; Liu, Y.; Shan, T.B.; Li, Y.D.; Qiu, F.L. Evaluation and benefit analysis of water saving performance of rice in drought direct seeding. Liaoning Agric. Sci. 2021, 2, 80–81. [Google Scholar]
- Farooq, M.; Siddique, K.H.M.; Rehman, H.; Aziz, T.; Lee, D.J.; Wahid, A. Rice direct seeding: Experiences, challenges and opportunities. Soil Tillage Res. 2011, 111, 87–98. [Google Scholar] [CrossRef]
- Singh, S.; Sharma, S.N.; Prasad, R. The effect of seeding and tillage methods on productivity of rice-wheat cropping system. Soil Tillage Res. 2001, 61, 125–131. [Google Scholar] [CrossRef]
- Tadeo, B.D.; Nagata, M.; Ishino, F.; Hiyoshi, K. Mechanizing the biodegradable film mulching cultivation system for early-season culture rice in Japan. In Proceedings of the ASAE/CSAE-SCGR Annual International Meeting, Toronto, ON, Canada, 18–21 July 1999. 11p. [Google Scholar]
- Kader, M.A.; Nakamura, K.; Senge, M.; Mojid, M.A.; Kawashima, S. Effects of coloured plastic mulch on soil hydrothermal characteristics, growth and water productivity of rainfed soybean. Irrig. Drain. 2020, 69, 483–494. [Google Scholar] [CrossRef]
- Lee, J.G.; Chae, H.G.; Hwang, H.Y.; Kim, P.J.; Cho, S.R. Effect of plastic film mulching on maize productivity and nitrogen use efficiency under organic farming in South Korea. Sci. Total Environ. 2021, 787, 147503. [Google Scholar] [CrossRef]
- Komariah; Ito, K.; Onishi, T.; Senge, M. Soil properties affected by combinations of soil solarization and organic amendment. Paddy Water Environ. 2011, 9, 357–366. [Google Scholar] [CrossRef]
- Guo, L.; Liu, M.J.; Zhang, Y.A.; Tao, Y.Y.; Zhang, F.; Li, G.Y.; Dittert, K.; Lin, S. Yield differences get large with ascendant altitude between traditional paddy and water-saving ground cover rice production system. Eur. J. Agron. 2018, 92, 9–16. [Google Scholar] [CrossRef]
- Liu, M.J. Assessment of Grain Yields and Soil Carbon and Nitrogen Stocks of Water—Saving Ground Cover Rice Production System at Regional Scale; China Agricultural University: Beijing, China, 2014. [Google Scholar]
- Yu, L.L.; Tang, S.N.; Ding, Y.F.; Chen, F.; Yang, Y.; Ding, Y.Y.; He, J. The situation and countermeasure of groundwater overdrawing in northeast China. Plan. Des. Water Resour. 2019, 4, 37–40+96. [Google Scholar]
- ISO 14040; Life Cycle Assessment (LCA)—Principles and Guidelines. ISO: Geneva, Switzerland, 2008; pp. 97–132.
- Haas, G.; Wetterich, F.; Köpke, U. Comparing intensive, extensified and organic grassland farming in southern Germany by process life cycle assessment. Agric. Ecosyst. Environ. 2001, 83, 43–53. [Google Scholar] [CrossRef]
- Liang, L.; Chen, Y.Q.; Gao, W.S. Framework study and application of agricultural life cycle assessment in China: A case study of winter wheat production in Luancheng of Hebei. China Popul. Resour. Environ. 2009, 19, 7. [Google Scholar]
- Wang, X.L. An Integrated Framework Based on Life Cycle Assessment and Emergy Evaluation for Circular Agriculture: Theories, Methods and Cases; China Agricultural University: Beijing, China, 2016. [Google Scholar]
- Zhang, Z.M. Study on Agricultural Carbon Footprint and Its Driving Factors in Jiangsu Province Based on Life Cycle Theory; Nanjing Agricultural University: Nanjing, China, 2020. [Google Scholar]
- Yang, J.X. Toward a product-orientated environmental management: Life cycle assessment. Environ. Sci. 1999, 1, 101–104. [Google Scholar]
- Chen, Z.H.; Chen, L.J.; Wu, Z.J.; Zhang, Y.L.; Juan, Y.H. Ammonia volatilization from rice fields under different water conditions in the lower reaches of the Liaohe River plain. Chin. J. Appl. Ecol. 2007, 18, 2771–2776. [Google Scholar]
- Chen, S.F.; Meng, F.Q.; Wu, W.L.; Wang, K. Study on the Characteristics of Nitrogen Runoff Loss in Rice Fields under Different Planting Patterns in Typical Rice Regions of Northeast China. Chin. J. Eco-Agric. 2012, 20, 728–733. [Google Scholar] [CrossRef]
- Shi, M.; Xiao, W.H.; Wang, C.M.; Hao, C.L. Effects of fertilization and irrigation on nitrogen leakage and leaching in rice fields in black soil areas. South-North Water Transf. Water Sci. Technol. 2016, 14, 42–49. [Google Scholar]
- Brentrup, F.; Küsters, J.; Kuhlmann, H.; Lammel, J. Environmental impact assessment of agricultural production systems using the life cycle assessment methodology. I. Theoretical concept of a LCA method tailored to crop production. Eur. J. Agron. 2004, 20, 247–264. [Google Scholar] [CrossRef]
- Mosier, A.; Kroeze, C.; Nevison, C.; Oenema, O.; Seitzinger, S.; van Cleemput, O. Closing the global N2O budget: Nitrous oxide emissions through the agricultural nitrogen cycle: OECD/IPCC/IEA phase II development of IPCC guidelines for national greenhouse gas inventory methodology. Nutr. Cycl. Agroecosyst. 1998, 52, 225–248. [Google Scholar] [CrossRef]
- Calker, K.J.V.; Berentsen, P.B.M.; Boer, I.M.J.D.; Giesen, G.W.J.; Huirne, R.B.M. An LP-model to analyse economic and ecological sustainability on Dutch dairy farms: Model presentation and application for experimental farm “de Marke”. Agric. Syst. 2004, 82, 160. [Google Scholar] [CrossRef]
- Liang, L. Environmental Impact Assessment of Circular Agriculture Based on Life Cycle Assessment: Methods and Case Studies; China Agricultural University: Beijing, China, 2009. [Google Scholar]
- Huijbregts, M.A.J.; Thissen, U.; Guinée, J.B.; Jager, T.; Kalf, D.; van de Meent, D.; Ragas, A.M.J.; Sleeswijk, A.W.; Reijnders, L. Priority assessment of toxic substances in life cycle assessment: Part I: Calculation of toxicity potentials for 181 substances with the nested multi-media fate exposure effects model, USES-LCA. Chemosphere 2000, 41, 541–573. [Google Scholar] [CrossRef] [PubMed]
- IPCC Climate Change 1995: The Science of Climate Change; Cambridge University Press: Cambridge, UK, 1996.
- Shang, Z.Y.; Abdalla, M.; Xia, L.L.; Zhou, F.; Sun, W.J.; Smith, P. Can cropland management practices lower net greenhouse emissions without compromising yield? Glob. Change Biol. 2021, 27, 4657–4670. [Google Scholar] [CrossRef] [PubMed]
- Johnson, J.M.F.; Franzluebbers, A.J.; Weyers, S.L.; Reicosky, D.C. Agricultural opportunities to mitigate greenhouse gas emissions. Environ. Pollut. 2007, 150, 107–124. [Google Scholar] [CrossRef] [PubMed]
- Huo, L.L.; Yao, Z.L.; Zhao, L.X.; Luo, J.; Zhang, P.Z. Contribution and Potential of Comprehensive Utilization of Straw in GHG Emission Reduction and Carbon Sequestration. Trans. Chin. Soc. Agric. Mach. 2022, 53, 349–359. [Google Scholar]
- Cordell, D.; Jackson, M.; White, S. Phosphorus flows through the Australian food system: Identifying intervention points as a roadmap to phosphorus security. Environ. Sci. Policy 2013, 29, 87–102. [Google Scholar] [CrossRef]
- Neset, T.S.S.; Bader, H.P.; Scheidegger, R.; Lohm, U. The flow of phosphorus in food production and consumption—Linkoping, Sweden, 1870–2000. Sci. Total Environ. 2008, 396, 111–120. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.J.; Gao, L.M.; Yuan, Z.W.; Wang, S. Life cycle assessment of phosphorus use efficiency in crop production system of three crops in Chaohu Watershed, China. J. Clean. Prod. 2016, 139, 1298–1307. [Google Scholar] [CrossRef]
- Blengini, G.A.; Busto, M. The life cycle of rice: LCA of alternative agri-food chain management systems in Vercelli (Italy). J. Environ. Manag. 2009, 90, 1512–1522. [Google Scholar] [CrossRef]
- Harun, S.N.; Hanafiah, M.M.; Aziz, N.I.H.A. An LCA-Based Environmental Performance of Rice Production for Developing a Sustainable Agri-Food System in Malaysia. Environ. Manag. 2021, 67, 146–161. [Google Scholar] [CrossRef] [PubMed]
- Abdul Rahman, M.H.; Chen, S.S.; Abdul Razak, P.R.; Abu Bakar, N.A.; Shahrun, M.S.; Zin Zawawi, N.; Mujab, A.A.M.; Abdullah, F.; Jumat, F.; Kamaruzaman, R.; et al. Life cycle assessment in conventional rice farming system: Estimation of greenhouse gas emissions using cradle-to-gate approach. J. Clean. Prod. 2019, 212, 1526–1535. [Google Scholar] [CrossRef]
- Brodt, S.; Kendall, A.; Mohammadi, Y.; Arslan, A.; Yuan, J.; Lee, I.-S.; Linquist, B. Life cycle greenhouse gas emissions in California rice production. Field Crops Res. 2014, 169, 89–98. [Google Scholar] [CrossRef]
Categorization | Material (ha−1) | Unit | Transplanting Rice | Dry Direct-Seeding Rice | Dry Direct-Seeding Rice with PE Film | Dry Direct-Seeding Rice with Biodegradable Film |
---|---|---|---|---|---|---|
Input | Machine | kg | 29.98 | 29.79 | 29.79 | 29.79 |
Diesel oil | kg | 137.00 | 98.75 | 98.75 | 98.75 | |
Gasoline | kg | 46.88 | 43.20 | 43.20 | 43.20 | |
N | kg | 120 | 120 | 120 | 120 | |
K2O | kg | 75 | 75 | 75 | 75 | |
P2O5 | kg | 50 | 50 | 50 | 50 | |
Pesticide | kg | 2.81 | 6.06 | 1.515 | 1.515 | |
Growth regulator | kg | 3 | 3 | 3 | 3 | |
Irrigation equipment | kg | 37.26 | 192.28 | 247.07 | 247.07 | |
Biodegradable film | kg | 0 | 0 | 0 | 93.495 | |
PE film | kg | 0 | 0 | 93.495 | 0 | |
Seedling | 10,000 plants | 117 | 0 | 0 | 0 | |
Seed | kg | 0 | 150 | 150 | 150 | |
Labor | h | 243.08 | 201.73 | 169.03 | 154.03 | |
Output | NH3 | kg | 11.87 | 11.87 | 11.87 | 11.87 |
NO3− | kg | 4.81 | 4.81 | 4.81 | 4.81 | |
NOX | kg | 0.15 | 0.15 | 0.15 | 0.15 | |
TP | kg | 0.78 | 0.78 | 0.78 | 0.78 | |
Pesticides (water) | kg | 0.3 | 0.06 | 0.02 | 0.02 | |
Pesticides (soil) | kg | 1.21 | 2.61 | 0.65 | 0.65 |
Categorization | Material (ha−1) | Unit | Transplanting Rice | Dry Direct- Seeding Rice | Dry Direct-Seeding Rice with PE Film | Dry Direct-Seeding Rice with Biodegradable Film | ||||
---|---|---|---|---|---|---|---|---|---|---|
2021 | 2022 | 2021 | 2022 | 2021 | 2022 | 2021 | 2022 | |||
Input | Irrigation water | m3 | 5721 | 8251 | 2252 | 4512 | 1641 | 3051 | 1641 | 3051 |
Electricity | kwh | 3132 | 4398 | 1126 | 2257 | 821 | 1526 | 821 | 1526 | |
Output | CH4 | kg | 511.87 | 471.83 | 180.68 | 171.64 | 124.16 | 117.95 | 136.31 | 126.29 |
N2O | kg | 1.43 | 1.52 | 2.1 | 2.3 | 2.22 | 2.43 | 2.22 | 2.46 |
Treatment | Grain Yield (kg ha−1) | |
---|---|---|
2021 | 2022 | |
Transplanting rice | 7988 a | 8048 a |
Dry direct-seeding rice | 6530 c | 6376 c |
Dry direct-seeding rice with PE film | 7514 b | 7336 b |
Dry direct-seeding rice with biodegradable film | 7826 a | 7778 a |
Environmental Impact Category | Emission | Equivalent Coefficient |
---|---|---|
Climate change acidification | CO2 | 1 |
SO2 | 1 | |
CH4 | 21 | |
N2O | 310 | |
Eutrophication | PO43− | 1 |
TP | 3.06 | |
NOX | 0.13 | |
NO3− | 0.42 | |
Environmental | SO2 | 1 |
NH3 | 1.88 | |
NOX | 0.7 | |
Water toxicity | 1,4-DCB | 1 |
Atrazine | 5000 | |
Soil toxicity | 1,4-DCB | 1 |
Atrazine | 6.6 |
Transplanting Rice (a) | Transplanting Rice (b) | |||||
Off-Farm Stage | On-Farm Stage | Total | Off-Farm Stage | On-Farm Stage | Total | |
Energy consumption (MJ·t−1) | 7713 | 2908 | 10,620 | 9484 | 3674 | 13,159 |
Water resource consumption (m3·t−1) | 5.05 | 729.86 | 734.91 | 5.42 | 1044.68 | 1050.10 |
Dry Direct-Seeding Rice (a) | Dry Direct-Seeding Rice (b) | |||||
Off-Farm Stage | On-Farm Stage | Total | Off-Farm Stage | On-Farm Stage | Total | |
Energy consumption (MJ·t−1) | 9147 | 1919 | 11,066 | 11,432 | 2855 | 14,286 |
Water resource consumption (m3·t−1) | 6.06 | 351.53 | 357.59 | 6.67 | 721.23 | 727.91 |
Dry Direct-Seeding Rice with PE Film (a) | Dry Direct-Seeding Rice with PE Film (b) | |||||
Off-Farm Stage | On-Farm Stage | Total | Off-Farm Stage | On-Farm Stage | Total | |
Energy consumption (MJ·t−1) | 10,196 | 1473 | 11,669 | 11,561 | 1991 | 13,552 |
Water resource consumption (m3·t−1) | 5.76 | 222.59 | 228.35 | 6.15 | 423.82 | 429.97 |
Dry Direct-Seeding Rice with Biodegradable Film (a) | Dry Direct-Seeding Rice with BIODEGRADABLE Film (b) | |||||
Off-Farm Stage | On-Farm Stage | Total | Off-Farm Stage | On-Farm Stage | Total | |
Energy consumption (MJ·t−1) | 9286 | 1405 | 10,694 | 10,402 | 1869 | 12,271 |
Water resource consumption (m3·t−1) | 5.17 | 213.70 | 218.87 | 5.44 | 399.76 | 405.19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; He, W.; Yan, C.; Gao, H.; Cui, J.; Liu, Q. Environmental Impact of Various Rice Cultivation Methods in Northeast China through Life Cycle Assessment. Agronomy 2024, 14, 267. https://doi.org/10.3390/agronomy14020267
Wang Y, He W, Yan C, Gao H, Cui J, Liu Q. Environmental Impact of Various Rice Cultivation Methods in Northeast China through Life Cycle Assessment. Agronomy. 2024; 14(2):267. https://doi.org/10.3390/agronomy14020267
Chicago/Turabian StyleWang, Yu, Wenqing He, Changrong Yan, Haihe Gao, Jixiao Cui, and Qin Liu. 2024. "Environmental Impact of Various Rice Cultivation Methods in Northeast China through Life Cycle Assessment" Agronomy 14, no. 2: 267. https://doi.org/10.3390/agronomy14020267