Revealing Genetic Diversity and Population Structure in Türkiye’s Wheat Germplasm Using iPBS-Retrotransposon Markers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. DNA Extraction and PCR Amplification of Wheat Genotypes
2.3. iPBS Data Scoring and Analysis
3. Results
3.1. Polymorphism Disclosed by iPBS Primer
3.2. Genetic Distance and Cluster Analysis for Wheat Genotypes
3.3. Population Genetic Structure Analysis for Wheat Genotypes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shewry, P.R.; Hey, S.J. The contribution of wheat to human diet and health. Food Energy Secur. 2015, 4, 178–202. [Google Scholar] [CrossRef]
- Shewry, P.R. Wheat. J. Exp. Bot. 2009, 60, 1537–1553. [Google Scholar] [CrossRef]
- Adhikari, B.M.; Bajracharya, A.; Shrestha, A.K. Comparison of nutritional properties of Stinging nettle (Urtica dioica) flour with wheat and barley flours. Food Sci. Nutr. 2016, 4, 119–124. [Google Scholar] [CrossRef]
- Sharma, S.; Schulthess, A.W.; Bassi, F.M.; Badaeva, E.D.; Neumann, K.; Graner, A.; Özkan, H.; Werner, P.; Knüpffer, H.; Kilian, B. Introducing beneficial alleles from plant genetic resources into the wheat germplasm. Biology 2021, 10, 982. [Google Scholar] [CrossRef]
- Feldman, M.; Millet, E. The contribution of the discovery of wild emmer to an understanding of wheat evolution and domestication and to wheat improvement. Isr. J. Plant Sci. 2001, 49, 25–36. [Google Scholar] [CrossRef]
- Özkan, H.; Brandolini, A.; Schäfer-Pregl, R.; Salamini, F. AFLP analysis of a collection of tetraploid wheats indicates the origin of emmer and hard wheat domestication in southeast Turkey. Mol. Biol. Evol. 2002, 19, 1797–1801. [Google Scholar] [CrossRef] [PubMed]
- Luo, M.C.; Yang, Z.L.; You, F.; Kawahara, T.; Waines, J.; Dvorak, J. The structure of wild and domesticated emmer wheat populations, gene flow between them, and the site of emmer domestication. Theor. Appl. Genet. 2007, 114, 947–959. [Google Scholar] [CrossRef]
- Ren, J.; Sun, D.; Chen, L.; You, F.M.; Wang, J.; Peng, Y.; Nevo, E.; Sun, D.; Luo, M.C.; Peng, J. Genetic diversity revealed by single nucleotide polymorphism markers in a worldwide germplasm collection of durum wheat. Int. J. Mol. Sci. 2013, 14, 7061–7088. [Google Scholar] [CrossRef] [PubMed]
- Tadesse, W.; Amri, A.; Ogbonnaya, F.C.; Sanchez-Garcia, M.; Sohail, Q.; Baum, M. Wheat. In Genetic and Genomic Resources for Grain Cereals Improvement; Elsevier: Amsterdam, The Netherlands, 2016; pp. 81–124. [Google Scholar]
- Türkoğlu, A.; Haliloğlu, K.; Mohammadi, S.A.; Öztürk, A.; Bolouri, P.; Özkan, G.; Bocianowski, J.; Pour-Aboughadareh, A.; Jamshidi, B. Genetic Diversity and Population Structure in Türkiye Bread Wheat Genotypes Revealed by Simple Sequence Repeats (SSR) Markers. Genes 2023, 14, 1182. [Google Scholar] [CrossRef] [PubMed]
- Nadeem, M.A. Deciphering the genetic diversity and population structure of Turkish bread wheat germplasm using iPBS-retrotransposons markers. Mol. Biol. Rep. 2021, 48, 6739–6748. [Google Scholar] [CrossRef] [PubMed]
- Baloch, F.S.; Alsaleh, A.; Shahid, M.Q.; Çiftçi, V.; Sáenz de Miera, E.L.; Aasim, M.; Nadeem, M.A.; Aktaş, H.; Özkan, H.; Hatipoğlu, R. A whole genome DArTseq and SNP analysis for genetic diversity assessment in durum wheat from central fertile crescent. PLoS ONE 2017, 12, e0167821. [Google Scholar] [CrossRef] [PubMed]
- Benlioğlu, B.; Adak, M.S. Importance of crop wild relatives and landraces genetic resources in plant breeding programmes. J. Exp. Agric. Int. 2019, 37, 1–8. [Google Scholar] [CrossRef]
- Ali, F.; Nadeem, M.A.; Habyarimana, E.; Yılmaz, A.; Nawaz, M.A.; Khalil, I.H.; Ercişli, S.; Chung, G.; Chaudhary, H.J.; Baloch, F.S. Molecular characterization of genetic diversity and similarity centers of safflower accessions with ISSR markers. Braz. J. Bot. 2020, 43, 109–121. [Google Scholar] [CrossRef]
- Kocak, M.Z.; Kaysim, M.G.; Aydın, A.; Erdinc, C.; Kulak, M. Genetic diversity of flax genotypes (Linum usitatissimum L.) by using agro-morphological properties and molecular markers. Genet. Res. Crop Evol. 2023, 70, 2279–2306. [Google Scholar] [CrossRef]
- Çayır, M.E.; Sevindik, E. Determining the genetic difference of some world cotton genotypes using iPbs (Inter-Primer Binding Sequences) retrotransposon markers. J. Nat. Fibers 2022, 19, 15213–15224. [Google Scholar] [CrossRef]
- Demirel, S.; Demirel, F. Molecular identification and population structure of emmer and einkorn wheat lines with different ploidy levels using SSR markers. Genet. Resour. Crop Evol. 2023, 71, 363–372. [Google Scholar] [CrossRef]
- Haliloğlu, K.; Türkoğlu, A.; Öztürk, A.; Niedbała, G.; Niazian, M.; Wojciechowski, T.; Piekutowska, M. Genetic diversity and population structure in bread wheat germplasm from Türkiye using iPBS-retrotransposons-based markers. Agronomy 2023, 13, 255. [Google Scholar] [CrossRef]
- Karık, Ü.; Nadeem, M.A.; Habyarimana, E.; Ercişli, S.; Yildiz, M.; Yılmaz, A.; Yang, S.H.; Chung, G.; Baloch, F.S. Exploring the genetic diversity and population structure of Turkish laurel germplasm by the iPBS-retrotransposon marker system. Agronomy 2019, 9, 647. [Google Scholar] [CrossRef]
- Song, H.; Dong, T.; Yan, X.; Wang, W.; Tian, Z.; Sun, A.; Dong, Y.; Zhu, H.; Hu, H. Genomic selection and its research progress in aquaculture breeding. Rev. Aquac. 2023, 15, 274–291. [Google Scholar] [CrossRef]
- Vieira, E.A.; Carvalho, F.I.F.; Bertan, I.; Kopp, M.M.; Zimmer, P.D.; Benin, G.; Silva, J.A.G.; Hartwig, I.; Malone, G.; Oliveira, A.C. Association between genetic distances in wheat (Triticum aestivum L.) as estimated by AFLP and morphological markers. Genet. Mol. Biol. 2007, 30, 392–399. [Google Scholar] [CrossRef]
- Nazarzadeh, Z.; Onsori, H.; Akrami, S. Genetic diversity of bread wheat (Triticum aestivum L.) genotypes using RAPD and ISSR molecular markers. J. Genet. Res. 2020, 6, 69–76. [Google Scholar]
- Gurcan, K.; Demirel, F.; Tekin, M.; Demirel, S.; Akar, T. Molecular and agro-morphological characterization of ancient wheat landraces of turkey. BMC Plant Biol. 2017, 17, 171. [Google Scholar] [CrossRef]
- Marić, S.; Bolarić, S.; Martinčić, J.; Pejić, I.; Kozumplik, V. Genetic diversity of hexaploid wheat cultivars estimated by RAPD markers, morphological traits and coefficients of parentage. Plant Breed. 2004, 123, 366–369. [Google Scholar] [CrossRef]
- Heidari, P.; Etminan, A.; Azizinezhad, R.; Khosroshahli, M. Genomic variation studies in durum wheat (Triticum turgidum ssp. durum) using CBDP, SCoT and ISSR markers. Indian J. Genet. Plant Breed. 2017, 77, 379–386. [Google Scholar]
- Elshafei, A.A.; Afiah, S.A.E.A.; Al-Doss, A.A.; Ibrahim, E.I. Morphological variability and genetic diversity of wheat genotypes grown on saline soil and identification of new promising molecular markers associated with salinity tolerance. J. Plant Interact. 2019, 14, 564–571. [Google Scholar] [CrossRef]
- Wang, S.; Wong, D.; Forrest, K.; Allen, A.; Chao, S.; Huang, B.E.; Maccaferri, M.; Salvi, S.; Milner, S.G.; Cattivelli, L. Characterization of polyploid wheat genomic diversity using a high-density 90 000 single nucleotide polymorphism array. Plant Biotechnol. J. 2014, 12, 787–796. [Google Scholar] [CrossRef] [PubMed]
- Tehseen, M.M.; Tonk, F.A.; Tosun, M.; Amri, A.; Sansaloni, C.P.; Kurtulus, E.; Yazbek, M.; AlSham’aa, K.; Ozseven, I.; Safdar, L.B. Genome-wide association study of resistance to PstS2 and Warrior races of Puccinia striiformis f. sp. tritici (stripe rust) in bread wheat landraces. Plant Genome 2021, 14, e20066. [Google Scholar] [CrossRef] [PubMed]
- Nadeem, M.A.; Nawaz, M.A.; Shahid, M.Q.; Doğan, Y.; Comertpay, G.; Yıldız, M.; Hatipoğlu, R.; Ahmad, F.; Alsaleh, A.; Labhane, N. DNA molecular markers in plant breeding: Current status and recent advancements in genomic selection and genome editing. Biotechnol. Biotechnolog. Equip. 2018, 32, 261–285. [Google Scholar] [CrossRef]
- Bennetzen, J.L. Transposable element contributions to plant gene and genome evolution. Plant Mol. Biol. 2000, 42, 251–269. [Google Scholar] [CrossRef] [PubMed]
- Kalendar, R.; Antonius, K.; Smýkal, P.; Schulman, A.H. iPBS: A universal method for DNA fingerprinting and retrotransposon isolation. Theo. Appl. Genet. 2010, 121, 1419–1430. [Google Scholar] [CrossRef] [PubMed]
- Zeinalzadehtabrizi, H.; Hosseinpour, A.; Aydin, M.; Haliloglu, K. A modified genomic DNA extraction method from leaves of sunflower for PCR based analyzes. J. Biodivers. Environ. Sci. 2015, 7, 222–225. [Google Scholar]
- Yeh, F.C.; Yang, R.C.; Boyle, T. POPGENE Software Package Version 1.31 for Population Genetic Analysis; University of Alberta: Edmonton, AB, Canada, 1999. [Google Scholar]
- Liu, K.; Muse, S.V. PowerMarker: An integrated analysis environment for genetic marker analysis. Bioinformatics 2005, 21, 2128–2129. [Google Scholar] [CrossRef]
- Rohlf, F. NTSYS-pc: Numerical taxonomy (Vitis vinifera L.) varieties using morphological data and multivariate analysis system. Exeter Software and AFLP markers. Elect. J. Biotechnol. 2000, 6, 37–45. [Google Scholar]
- Mantel, N. The detection of disease clustering and a generalized regression approach. Cancer Res. 1967, 27, 209–220. [Google Scholar]
- Eren, B.; Keskin, B.; Demirel, F.; Demirel, S.; Türkoğlu, A.; Yilmaz, A.; Haliloğlu, K. Assessment of genetic diversity and population structure in local alfalfa genotypes using iPBS molecular markers. Genet. Resour. Crop Evol. 2023, 70, 617–628. [Google Scholar] [CrossRef]
- Pritchard, J.K.; Stephens, M.; Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 2000, 155, 945–959. [Google Scholar] [CrossRef]
- Evanno, G.; Regnaut, S.; Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 2005, 14, 2611–2620. [Google Scholar] [CrossRef]
- Earl, D.A.; VonHoldt, B.M. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conser. Genet. Res. 2012, 4, 359–361. [Google Scholar] [CrossRef]
- Abbasi Holasou, H.; Rahmati, F.; Rahmani, F.; Imani, M.; Talebzadeh, Z. Elucidate genetic diversity and population structure of bread wheat (Triticum aestivum L.) cultivars using IRAP and REMAP markers. J. Crop Sci. Biotechnol. 2019, 22, 139–151. [Google Scholar] [CrossRef]
- Amom, T.; Nongdam, P. The use of molecular marker methods in plants: A review. Int. J. Curr. Res. Rev. 2017, 9, 1–7. [Google Scholar]
- Kumar, P.; Sharma, V.; Sanger, R.; Kumar, P.; Yadav, M.K. Analysis of molecular variation among diverse background wheat (Triticum aestivum L.) genotypes with the help of ISSR markers. Int. J. Chem. Stud. 2020, 8, 271–276. [Google Scholar] [CrossRef]
- Alshehri, M.; Alzahrani, O.; Aziza, A.; Alasmari, A.; Ibrahim, S.; Bahattab, O.; Osman, G.; Alshamari, A.; Alduaydi, S. Correlation and genetic analyses of different characteristics in Saudi Arabian wheat reveal correlation networks and several trait-associated markers. J. Anim. Plant Sci. 2020, 30, 1486–1497. [Google Scholar]
- Çifçi, E.A.; Yağdi, K. Study of genetic diversity in wheat (Triticum aestivum) varities using random amplified polymorphic DNA (RAPD) analysis. Turk. J. Field Crop. 2012, 17, 91–95. [Google Scholar]
- Yirgu, M.; Kebede, M.; Feyissa, T.; Lakew, B.; Woldeyohannes, A.B.; Fikere, M. Single nucleotide polymorphism (SNP) markers for genetic diversity and population structure study in Ethiopian barley (Hordeum vulgare L.) germplasm. BMC Genom. Data 2023, 24, 7. [Google Scholar] [CrossRef]
- Najaphy, A.; Parchin, R.A.; Farshadfar, E. Evaluation of genetic diversity in wheat cultivars and breeding lines using inter simple sequence repeat markers. Biotechnol. Biotechnol. Equip. 2011, 25, 2634–2638. [Google Scholar] [CrossRef]
- Khalid, S.; Shahid, M.; Natasha Shah, A.H.; Saeed, F.; Ali, M.; Qaisrani, S.A.; Dumat, C. Heavy metal contamination and exposure risk assessment via drinking groundwater in Vehari, Pakistan. Environ. Sci. Pollut. Res. 2020, 27, 39852–39864. [Google Scholar] [CrossRef]
- Abo-Youssef, M.I.; Bahgt, M.M. Assessment of genetic diversity of diverse rice genotypes using Agro-Physiological and molecular characterization under water deficit conditions. EJSS 2023, 63, 503–524. [Google Scholar]
- Palaz, E.B.; Demirel, F.; Adali, S.; Demirel, S.; Yilmaz, A. Genetic relationships of salep Orchid species and gene flow among Serapias vomeracea × Anacamptis morio hybrids. Plant Biotechnol. Rep. 2023, 17, 315–327. [Google Scholar] [CrossRef]
- Mohammadi, S.A.; Prasanna, B. Analysis of genetic diversity in crop plants—Salient statistical tools and considerations. Crop Sci. 2003, 43, 1235–1248. [Google Scholar] [CrossRef]
- Nasri, S.; Abdollahi Mandoulakani, B.; Darvishzadeh, R.; Bernousi, I. Retrotransposon insertional polymorphism in Iranian bread wheat cultivars and breeding lines revealed by IRAP and REMAP markers. Biochem. Genet. 2013, 51, 927–943. [Google Scholar] [CrossRef]
- Saeidi, H.; Rahiminejad, M.R.; Heslop Harrison, J. Retroelement insertional polymorphisms, diversity and phylogeography within diploid, D-genome Aegilops tauschii (Triticeae, Poaceae) sub-taxa in Iran. Ann. Bot. 2008, 101, 855–861. [Google Scholar] [CrossRef] [PubMed]
- Beharav, A.; Maras, M.; Kitner, M.; Šuštar Vozlič, J.; Sun, G.; Doležalová, I.; Lebeda, A.; Meglič, V. Comparison of three genetic similarity coefficients based on dominant markers from predominantly self-pollinating species. Biol. Plant. 2010, 54, 54–60. [Google Scholar] [CrossRef]
- Shi, J.; Lai, J. Patterns of genomic changes with crop domestication and breeding. Curr. Opin. Plant Biol. 2015, 24, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Scheben, A.; Edwards, D. Towards a more predictable plant breeding pipeline with CRISPR/Cas-induced allelic series to optimize quantitative and qualitative traits. Curr. Opin. Plant Biol. 2018, 45, 218–225. [Google Scholar] [CrossRef]
- Borrelli, V.M.; Brambilla, V.; Rogowsky, P.; Marocco, A.; Lanubile, A. The enhancement of plant disease resistance using CRISPR/Cas9 technology. Front. Plant Sci. 2018, 9, 1245. [Google Scholar] [CrossRef]
No. | Province | Town | Species | No. | Province | Town | Species |
---|---|---|---|---|---|---|---|
1 | Diyarbakır | Center | T. durum | 30 | Kayseri | Epçe | T. aestivum |
2 | Kayseri | Epçe | T. dicoccum | 31 | Niğde | Center | T. aestivum |
3 | Kars | Kuyucuk | T. dicoccum | 32 | Kars | Geçit | T. durum |
4 | Kahramanmaraş | Elbistan | T. aestivum | 33 | Kars | Küçükçatma | T. dicoccum |
5 | Kastamonu | İhsangazi | T. monococcum | 34 | Kastamonu | İhsangazi | T. monococcum |
6 | Konya | Center | T. aestivum | 35 | Kars | Geçit | T. durum |
7 | Kastamonu | İhsangazi | T. dicoccum | 36 | Mardin | Center | T. aestivum |
8 | Aksaray | Center | T. aestivum | 37 | Yozgat | Center | T. aestivum |
9 | Van | Gedelova | T. aestivum | 38 | Kayseri | Yemliha | T. aestivum |
10 | Kastamonu | İhsangazi | T. monococcum | 39 | Sivas | Divriği | T. aestivum |
11 | Kayseri | Yeniköy | T. dicoccum | 40 | Konya | Merkez | T. aestivum |
12 | Kayseri | Pınarbaşı | T. aestivum | 41 | Adıyaman | Merkez | T. aestivum |
13 | Kastamonu | İhsangazi | T. dicoccum | 42 | Sivas | Merkez | T. aestivum |
14 | Kayseri | Hoşça | T. dicoccum | 43 | Sivas | Gemerek | T. durum |
15 | Mersin | Silifke | T. durum | 44 | Kastamonu | İhsangazi | T. dicoccum |
16 | Kayseri | Develi | T. dicoccum | 45 | Sivas | Gürün | T. aestivum |
17 | Iğdır | Center | T. durum | 46 | Kars | Güvercin | T. dicoccum |
18 | Kars | Geçit | T. aestivum | 47 | Mersin | Merkez | T. durum |
19 | Van | Center | T. aestivum | 48 | Kastamonu | İhsangazi | T. monococcum |
20 | Kastamonu | İhsangazi | T. dicoccum | 49 | Iğdır | Center | T. durum |
21 | Kars | Center | T. dicoccum | 50 | Şanlıurfa | Center | T. durum |
22 | Erzincan | Center | T. aestivum | 51 | Van | Gedelova | T. aestivum |
23 | Kars | Büyükçatma | T. dicoccum | 52 | Mersin | Çarkçılı | T. durum |
24 | Kayseri | Gümüşören | T. aestivum | 53 | Konya | Merkez | T. durum |
25 | Kars | Center | T. dicoccum | 54 | Kars | Duraklı | T. dicoccum |
26 | Kastamonu | Center | T. durum | 55 | Ahmetağa | Bahri Dagdas IARI 1 | T. aestivum |
27 | Kastamonu | İhsangazi | T. monococcum | 56 | Aydın-93 | GAP IARTC 2 | T. durum |
28 | Kars | Büyükçatma | T. dicoccum | 57 | Fırat-93 | GAP IARTC | T. durum |
29 | Çankırı | Center | T. durum | 58 | Cemre | GAP IARTC | T. aestivum |
Number | Marker Name | Primer Sequences (5′ → 3′) | Annealing Temperature (°C) |
---|---|---|---|
1 | IPBS-2219 | GAACTTATGCCGATACCA | 57 |
2 | IPBS-2270 | ACCTGGCGTGCCA | 60 |
3 | IPBS-2271 | GGCTCGGATGCCA | 57.5 |
4 | IPBS-2278 | GCTCATGATACCA | 44 |
5 | IPBS-2375 | TCGCATCAACCA | 44 |
6 | IPBS-2377 | ACGAAGGGACCA | 44 |
7 | IPBS-2378 | GGTCCTCATCCA | 44 |
8 | IPBS-2383 | GCATGGCCTCCA | 48 |
9 | IPBS-2386 | CTGATCAACCCA | 48 |
10 | IPBS-2390 | GCAACAACCCCA | 44 |
Marker Name | TNB 1 | NPB | PR (%) | H | PIC | I | Ne |
---|---|---|---|---|---|---|---|
IPBS-2219 | 29 | 29 | 100 | 0.23 | 0.20 | 0.29 | 1.39 |
IPBS-2270 | 19 | 18 | 94.7 | 0.28 | 0.23 | 0.31 | 1.61 |
IPBS-2271 | 21 | 20 | 95.2 | 0.25 | 0.21 | 0.38 | 1.40 |
IPBS-2278 | 18 | 18 | 100 | 0.30 | 0.24 | 0.32 | 1.54 |
IPBS-2375 | 10 | 9 | 90 | 0.23 | 0.19 | 0.24 | 1.38 |
IPBS-2377 | 19 | 19 | 100 | 0.31 | 0.25 | 0.42 | 1.52 |
IPBS-2378 | 20 | 20 | 100 | 0.24 | 0.20 | 0.18 | 1.41 |
IPBS-2383 | 16 | 16 | 100 | 0.28 | 0.23 | 0.34 | 1.46 |
IPBS-2386 | 5 | 4 | 80 | 0.36 | 0.29 | 0.48 | 1.74 |
IPBS-2390 | 11 | 10 | 90.9 | 0.15 | 0.13 | 0.11 | 1.35 |
Total | 168 | 163 | |||||
Mean | 16.8 | 16.3 | 95.08 | 0.26 | 0.22 | 0.31 | 1.48 |
Population | Expected Heterozygosity (He) | FST |
---|---|---|
P1 | 0.1501 | 0.5353 |
P2 | 0.1944 | 0.4416 |
P3 | 0.1639 | 0.6934 |
Mean | 0.1695 | 0.5567 |
Genotype Number | P1 | P2 | P3 | Genotype Number | P1 | P2 | P3 |
---|---|---|---|---|---|---|---|
1 | 0.486 | 0.428 | 0.086 | 30 | 0.996 | 0.004 | 0.001 |
2 | 0.003 | 0.746 | 0.251 | 31 | 0.999 | 0.000 | 0.000 |
3 | 0.001 | 0.782 | 0.217 | 32 | 0.969 | 0.028 | 0.003 |
4 | 0.997 | 0.002 | 0.000 | 33 | 0.005 | 0.995 | 0.000 |
5 | 0.001 | 0.001 | 0.998 | 34 | 0.093 | 0.848 | 0.059 |
6 | 0.997 | 0.001 | 0.002 | 35 | 0.997 | 0.003 | 0.001 |
7 | 0.004 | 0.996 | 0.001 | 36 | 0.997 | 0.002 | 0.001 |
8 | 0.953 | 0.046 | 0.001 | 37 | 0.964 | 0.033 | 0.003 |
9 | 0.996 | 0.002 | 0.001 | 38 | 0.998 | 0.002 | 0.000 |
10 | 0.001 | 0.000 | 0.999 | 39 | 0.978 | 0.021 | 0.001 |
11 | 0.002 | 0.966 | 0.032 | 40 | 0.863 | 0.102 | 0.035 |
12 | 0.994 | 0.005 | 0.000 | 41 | 0.980 | 0.018 | 0.002 |
13 | 0.002 | 0.997 | 0.001 | 42 | 0.999 | 0.001 | 0.000 |
14 | 0.004 | 0.995 | 0.001 | 43 | 0.998 | 0.001 | 0.002 |
15 | 0.998 | 0.001 | 0.000 | 44 | 0.001 | 0.999 | 0.001 |
16 | 0.003 | 0.996 | 0.000 | 45 | 0.001 | 0.000 | 0.998 |
17 | 0.999 | 0.001 | 0.001 | 46 | 0.002 | 0.997 | 0.001 |
18 | 0.995 | 0.001 | 0.003 | 47 | 0.968 | 0.032 | 0.001 |
19 | 0.998 | 0.001 | 0.001 | 48 | 0.001 | 0.000 | 0.999 |
20 | 0.016 | 0.983 | 0.001 | 49 | 0.990 | 0.009 | 0.000 |
21 | 0.003 | 0.996 | 0.001 | 50 | 0.005 | 0.994 | 0.000 |
22 | 0.985 | 0.014 | 0.001 | 51 | 0.992 | 0.002 | 0.006 |
23 | 0.008 | 0.991 | 0.001 | 52 | 0.003 | 0.927 | 0.071 |
24 | 0.997 | 0.003 | 0.001 | 53 | 0.920 | 0.002 | 0.079 |
25 | 0.010 | 0.990 | 0.000 | 54 | 0.037 | 0.676 | 0.287 |
26 | 0.991 | 0.004 | 0.005 | 55 | 0.949 | 0.048 | 0.003 |
27 | 0.001 | 0.001 | 0.998 | 56 | 0.017 | 0.884 | 0.099 |
28 | 0.003 | 0.924 | 0.073 | 57 | 0.037 | 0.845 | 0.119 |
29 | 0.009 | 0.990 | 0.001 | 58 | 0.496 | 0.159 | 0.345 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Demirel, F.; Yıldırım, B.; Eren, B.; Demirel, S.; Türkoğlu, A.; Haliloğlu, K.; Nowosad, K.; Bujak, H.; Bocianowski, J. Revealing Genetic Diversity and Population Structure in Türkiye’s Wheat Germplasm Using iPBS-Retrotransposon Markers. Agronomy 2024, 14, 300. https://doi.org/10.3390/agronomy14020300
Demirel F, Yıldırım B, Eren B, Demirel S, Türkoğlu A, Haliloğlu K, Nowosad K, Bujak H, Bocianowski J. Revealing Genetic Diversity and Population Structure in Türkiye’s Wheat Germplasm Using iPBS-Retrotransposon Markers. Agronomy. 2024; 14(2):300. https://doi.org/10.3390/agronomy14020300
Chicago/Turabian StyleDemirel, Fatih, Bünyamin Yıldırım, Barış Eren, Serap Demirel, Aras Türkoğlu, Kamil Haliloğlu, Kamila Nowosad, Henryk Bujak, and Jan Bocianowski. 2024. "Revealing Genetic Diversity and Population Structure in Türkiye’s Wheat Germplasm Using iPBS-Retrotransposon Markers" Agronomy 14, no. 2: 300. https://doi.org/10.3390/agronomy14020300
APA StyleDemirel, F., Yıldırım, B., Eren, B., Demirel, S., Türkoğlu, A., Haliloğlu, K., Nowosad, K., Bujak, H., & Bocianowski, J. (2024). Revealing Genetic Diversity and Population Structure in Türkiye’s Wheat Germplasm Using iPBS-Retrotransposon Markers. Agronomy, 14(2), 300. https://doi.org/10.3390/agronomy14020300