Evaluating the Topographic Factors for Land Suitability Mapping of Specialty Crops in Southern Ontario
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Annual Crop Inventory Assessment
2.3. Features
2.4. Presence/Absence Data Sampling
2.5. Random Forest Models
3. Results
3.1. Model Accuracies
3.2. Feature Importance
3.3. Crop Suitability
4. Discussion
4.1. Suitable Areas for Specialty Crops
4.2. Influence of Topography on Specialty Crop Suitability
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Altieri, M.A.; Nicholls, C.I. The Adaptation and Mitigation Potential of Traditional Agriculture in a Changing Climate. Clim. Chang. 2017, 140, 33–45. [Google Scholar] [CrossRef]
- Aydinalp, C.; Cresser, M. The Effects of Global Climate Change on Agriculture. Am. Eurasian J. Agric. Environ. Sci. 2008, 3, 672–676. [Google Scholar]
- Cui, X.; Xie, W. Adapting Agriculture to Climate Change through Growing Season Adjustments: Evidence from Corn in China. Am. J. Agric. Econ. 2022, 104, 249–272. [Google Scholar] [CrossRef]
- Malhi, G.S.; Kaur, M.; Kaushik, P. Impact of Climate Change on Agriculture and Its Mitigation Strategies: A Review. Sustainability 2021, 13, 1318. [Google Scholar] [CrossRef]
- Rosenzweig, C.; Iglesius, A.; Yang, X.B.; Epstein, P.; Chivian, E. Climate Change and Extreme Weather Events—Implications for Food Production, Plant Diseases, and Pests. NASA Publ. 2001, 2, 90–104. [Google Scholar]
- Rosenzweig, C.; Elliott, J.; Deryng, D.; Ruane, A.C.; Müller, C.; Arneth, A.; Boote, K.J.; Folberth, C.; Glotter, M.; Khabarov, N.; et al. Assessing Agricultural Risks of Climate Change in the 21st Century in a Global Gridded Crop Model Intercomparison. Proc. Natl. Acad. Sci. USA 2014, 111, 3268–3273. [Google Scholar] [CrossRef] [PubMed]
- Abah, R.; Petja, B. Crop Suitability Mapping for Rice, Cassava, and Yam in North Central Nigeria. J. Agric. Sci. 2016, 9, 96. [Google Scholar] [CrossRef]
- Borlu, Y.; Glenna, L. Environmental Concern in a Capitalist Economy: Climate Change Perception among U.S. Specialty-Crop Producers. Organ. Environ. 2021, 34, 198–218. [Google Scholar] [CrossRef]
- Elias, E.H.; Flynn, R.; Omololu, J.I.; Reyes, J.; Sanogo, S.; Schutte, B.J.; Smith, R.; Steele, C.; Sutherland, C. Crop Vulnerability to Weather and Climate Risk: Analysis of Interacting Systems and Adaptation Efficacy for Sustainable Crop Production. Sustainability 2019, 11, 6619. [Google Scholar] [CrossRef]
- Lee, W.S.; Alchanatis, V.; Yang, C.; Hirafuji, M.; Moshou, D.; Li, C. Sensing Technologies for Precision Specialty Crop Production. Comput. Electron. Agric. 2010, 74, 2–33. [Google Scholar] [CrossRef]
- Møller, A.B.; Mulder, V.L.; Heuvelink, G.B.M.; Jacobsen, N.M.; Greve, M.H.; Greve, M.H. Can We Use Machine Learning for Agricultural Land Suitability Assessment? Agronomy 2021, 11, 703. [Google Scholar] [CrossRef]
- Neill, C.L.; Morgan, K.L. Beyond Scale and Scope: Exploring Economic Drivers of U.S. Specialty Crop Production with an Application to Edamame. Front. Sustain. Food Syst. 2021, 4, 284. [Google Scholar] [CrossRef]
- Zhao, S.; Yue, C. Risk Preferences of Commodity Crop Producers and Specialty Crop Producers: An Application of Prospect Theory. Agric. Econ. 2020, 51, 359–372. [Google Scholar] [CrossRef]
- Bramley, R.g.v.; Ouzman, J.; Boss, P.k. Variation in Vine Vigour, Grape Yield and Vineyard Soils and Topography as Indicators of Variation in the Chemical Composition of Grapes, Wine and Wine Sensory Attributes. Aust. J. Grape Wine Res. 2011, 17, 217–229. [Google Scholar] [CrossRef]
- Yang, M.; Li, Z.; Liu, L.; Bo, A.; Zhang, C.; Li, M. Ecological Niche Modeling of Astragalus Membranaceus Var. Mongholicus Medicinal Plants in Inner Mongolia, China. Sci. Rep. 2020, 10, 12482. [Google Scholar] [CrossRef] [PubMed]
- Fissore, C.; Dalzell, B.J.; Berhe, A.A.; Voegtle, M.; Evans, M.; Wu, A. Influence of Topography on Soil Organic Carbon Dynamics in a Southern California Grassland. CATENA 2017, 149, 140–149. [Google Scholar] [CrossRef]
- Khormali, F.; Ajami, M.; Ayoubi, S.; Srinivasarao, C.; Wani, S.P. Role of Deforestation and Hillslope Position on Soil Quality Attributes of Loess-Derived Soils in Golestan Province, Iran. Agric. Ecosyst. Environ. 2009, 134, 178–189. [Google Scholar] [CrossRef]
- Kravchenko, A.N.; Bullock, D.G. Correlation of Corn and Soybean Grain Yield with Topography and Soil Properties. Agron. J. 2000, 92, 75–83. [Google Scholar] [CrossRef]
- Ladoni, M.; Basir, A.; Robertson, P.G.; Kravchenko, A.N. Scaling-up: Cover Crops Differentially Influence Soil Carbon in Agricultural Fields with Diverse Topography. Agric. Ecosyst. Environ. 2016, 225, 93–103. [Google Scholar] [CrossRef]
- Zeraatpisheh, M.; Ayoubi, S.; Sulieman, M.; Rodrigo-Comino, J. Determining the Spatial Distribution of Soil Properties Using the Environmental Covariates and Multivariate Statistical Analysis: A Case Study in Semi-Arid Regions of Iran. J. Arid Land 2019, 11, 551–566. [Google Scholar] [CrossRef]
- Eyre, R.; Lindsay, J.; Laamrani, A.; Berg, A. Within-Field Yield Prediction in Cereal Crops Using LiDAR-Derived Topographic Attributes with Geographically Weighted Regression Models. Remote Sens. 2021, 13, 4152. [Google Scholar] [CrossRef]
- Olaya, V. Chapter 6 Basic Land-Surface Parameters. In Developments in Soil Science; Hengl, T., Reuter, H.I., Eds.; Geomorphometry; Elsevier: Amsterdam, The Netherlands, 2009; Volume 33, pp. 141–169. [Google Scholar] [CrossRef]
- Pike, R.J.; Evans, I.S.; Hengl, T. Chapter 1 Geomorphometry: A Brief Guide. In Developments in Soil Science; Hengl, T., Reuter, H.I., Eds.; Geomorphometry; Elsevier: Amsterdam, The Netherlands, 2009; Volume 33, pp. 3–30. [Google Scholar] [CrossRef]
- Wilson, J.P. Environmental Applications of Digital Terrain Modeling; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2018. [Google Scholar]
- Hurskainen, P.; Adhikari, H.; Siljander, M.; Pellikka, P.K.E.; Hemp, A. Auxiliary Datasets Improve Accuracy of Object-Based Land Use/Land Cover Classification in Heterogeneous Savanna Landscapes. Remote Sens. Environ. 2019, 233, 111354. [Google Scholar] [CrossRef]
- Lecours, V.; Devillers, R.; Simms, A.E.; Lucieer, V.L.; Brown, C.J. Towards a Framework for Terrain Attribute Selection in Environmental Studies. Environ. Model. Softw. 2017, 89, 19–30. [Google Scholar] [CrossRef]
- Palo, A.; Aunap, R.; Mander, Ü. Predictive Vegetation Mapping Based on Soil and Topographical Data: A Case Study from Saare County, Estonia. J. Nat. Conserv. 2005, 13, 197–211. [Google Scholar] [CrossRef]
- Wei, Y.; Tong, X.; Chen, G.; Liu, D.; Han, Z. Remote Detection of Large-Area Crop Types: The Role of Plant Phenology and Topography. Agriculture 2019, 9, 150. [Google Scholar] [CrossRef]
- Akpoti, K.; Kabo-bah, A.T.; Dossou-Yovo, E.R.; Groen, T.A.; Zwart, S.J. Mapping Suitability for Rice Production in Inland Valley Landscapes in Benin and Togo Using Environmental Niche Modeling. Sci. Total Environ. 2020, 709, 136–165. [Google Scholar] [CrossRef]
- Croitoru, A.-E.; Titus, C.M.; Vâtcă, S.D.; Kobulniczky, B.; Stoian, V. Refining the Spatial Scale for Maize Crop Agro-Climatological Suitability Conditions in a Region with Complex Topography towards a Smart and Sustainable Agriculture. Case Study: Central Romania (Cluj County). Sustainability 2020, 12, 2783. [Google Scholar] [CrossRef]
- Cronin, J.; Zabel, F.; Dessens, O.; Anandarajah, G. Land Suitability for Energy Crops under Scenarios of Climate Change and Land-Use. GCB Bioenergy 2020, 12, 648–665. [Google Scholar] [CrossRef]
- Forkuor, G.; Conrad, C.; Thiel, M.; Ullmann, T.; Zoungrana, E. Integration of Optical and Synthetic Aperture Radar Imagery for Improving Crop Mapping in Northwestern Benin, West Africa. Remote Sens. 2014, 6, 6472–6499. [Google Scholar] [CrossRef]
- Kogo, B.K.; Kumar, L.; Koech, R.; Kariyawasam, C.S. Modelling Climate Suitability for Rainfed Maize Cultivation in Kenya Using a Maximum Entropy (MaxENT) Approach. Agronomy 2019, 9, 727. [Google Scholar] [CrossRef]
- Läderach, P.; Martinez-Valle, A.; Schroth, G.; Castro, N. Predicting the Future Climatic Suitability for Cocoa Farming of the World’s Leading Producer Countries, Ghana and Côte d’Ivoire. Clim. Chang. 2013, 119, 841–854. [Google Scholar] [CrossRef]
- Pareeth, S.; Karimi, P.; Shafiei, M.; De Fraiture, C. Mapping Agricultural Landuse Patterns from Time Series of Landsat 8 Using Random Forest Based Hierarchial Approach. Remote Sens. 2019, 11, 601. [Google Scholar] [CrossRef]
- Radočaj, D.; Jurišić, M.; Gašparović, M.; Plaščak, I.; Antonić, O. Cropland Suitability Assessment Using Satellite-Based Biophysical Vegetation Properties and Machine Learning. Agronomy 2021, 11, 1620. [Google Scholar] [CrossRef]
- Tufail, R.; Ahmad, A.; Javed, M.A.; Ahmad, S.R. A Machine Learning Approach for Accurate Crop Type Mapping Using Combined SAR and Optical Time Series Data. Adv. Space Res. 2021, 69, 331–346. [Google Scholar] [CrossRef]
- Austin, M.P.; Nicholls, A.O.; Margules, C.R. Measurement of the Realized Qualitative Niche: Environmental Niches of Five Eucalyptus Species. Ecol. Monogr. 1990, 60, 161–177. [Google Scholar] [CrossRef]
- Franklin, J. Predictive Vegetation Mapping: Geographic Modelling of Biospatial Patterns in Relation to Environmental Gradients. Prog. Phys. Geogr. Earth Environ. 1995, 19, 474–499. [Google Scholar] [CrossRef]
- Fang, P.; Zhang, X.; Wei, P.; Wang, Y.; Zhang, H.; Liu, F.; Zhao, J. The Classification Performance and Mechanism of Machine Learning Algorithms in Winter Wheat Mapping Using Sentinel-2 10 m Resolution Imagery. Appl. Sci. 2020, 10, 5075. [Google Scholar] [CrossRef]
- Taghizadeh-Mehrjardi, R.; Nabiollahi, K.; Rasoli, L.; Kerry, R.; Scholten, T. Land Suitability Assessment and Agricultural Production Sustainability Using Machine Learning Models. Agronomy 2020, 10, 573. [Google Scholar] [CrossRef]
- Statistics Canada. Census of Agriculture. Available online: https://www.statcan.gc.ca/en/census-agriculture (accessed on 7 March 2023).
- Agriculture and Agri-Food Canada. Annual Crop Inventory 2021. 2021. Available online: https://open.canada.ca/data/en/dataset/199e4ab6-832b-4434-ac39-e4887d7cc4e5 (accessed on 2 November 2022).
- Natural Resources Canada. Canada’s Plant Hardiness Zones. Available online: http://planthardiness.gc.ca/?m=1 (accessed on 7 March 2023).
- Baldwin, D.; Desloges, J.; Band, L. Chapter 2: Physical Geography of Ontario; UBC Press: Vancouver, BC, Canada, 2000. [Google Scholar]
- Fisette, T.; Davidson, A.; Daneshfar, B.; Rollin, P.; Aly, Z.; Campbell, L. Annual Space-Based Crop Inventory for Canada: 2009–2014. In Proceedings of the 2014 IEEE Geoscience and Remote Sensing Symposium, Quebec City, QC, Canada, 6 November 2014; pp. 5095–5098. [Google Scholar] [CrossRef]
- Agriculture and Agri-Food Canada. Annual Crop Inventory 2014. 2014. Available online: https://open.canada.ca/data/en/dataset/ae61f47e-8bcb-47c1-b438-8081601fa8fe (accessed on 2 November 2022).
- Agriculture and Agri-Food Canada. Annual Crop Inventory 2015. 2015. Available online: https://open.canada.ca/data/en/dataset/3688e7d9-7520-42bd-a3eb-8854b685fef3 (accessed on 2 November 2022).
- Agriculture and Agri-Food Canada. Annual Crop Inventory 2016. 2016. Available online: https://open.canada.ca/data/en/dataset/b8e4da73-fb5f-4e6e-93a4-8b1f40d95b51 (accessed on 2 November 2022).
- Agriculture and Agri-Food Canada. Annual Crop Inventory 2017. 2017. Available online: https://open.canada.ca/data/en/dataset/cb3d7dec-ecc6-498b-ac17-949e03f29549 (accessed on 2 November 2022).
- Agriculture and Agri-Food Canada. Annual Crop Inventory 2018. 2018. Available online: https://open.canada.ca/data/en/dataset/1f2ad87e-6103-4ead-bdd5-147c33fa11e6 (accessed on 2 November 2022).
- Agriculture and Agri-Food Canada. Annual Crop Inventory 2019. 2019. Available online: https://open.canada.ca/data/en/dataset/d90a56e8-de27-4354-b8ee-33e08546b4fc (accessed on 2 November 2022).
- Agriculture and Agri-Food Canada. Annual Crop Inventory 2020. 2020. Available online: https://open.canada.ca/data/en/dataset/32546f7b-55c2-481e-b300-83fc16054b95 (accessed on 2 November 2022).
- Ontario Ministry of Natural Resources and Forestry, Provincial Digital Elevation Model (PDEM). 2022. Available online: https://geohub.lio.gov.on.ca/maps/mnrf::provincial-digital-elevation-model-pdem/about (accessed on 2 November 2022).
- Lindsay, J.B. Efficient Hybrid Breaching-Filling Sink Removal Methods for Flow Path Enforcement in Digital Elevation Models. Hydrol. Process. 2016, 30, 846–857. [Google Scholar] [CrossRef]
- Ontario Ministry of Agriculture, Food and Rural Affairs, Soil Survey Complex. 2019. Available online: https://geohub.lio.gov.on.ca/maps/ontarioca11::soil-survey-complex (accessed on 2 November 2022).
- Agriculture and Agri-Food Canada. Detailed Soil Survey (DSS) Ontario. 2013. Available online: https://sis.agr.gc.ca/cansis/nsdb/dss/v3/index.html (accessed on 2 November 2022).
- Wilson, J.P.; Gallant, J.C. Terrain Analysis: Principles and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2000. [Google Scholar]
- Böhner, J.; Antonić, O. Chapter 8 Land-Surface Parameters Specific to Topo-Climatology. In Developments in Soil Science; Hengl, T., Reuter, H.I., Eds.; Geomorphometry; Elsevier: Amsterdam, The Netherlands, 2009; Volume 33, pp. 195–226. [Google Scholar] [CrossRef]
- Jasiewicz, J.; Stepinski, T.F. Geomorphons—A Pattern Recognition Approach to Classification and Mapping of Landforms. Geomorphology 2013, 182, 147–156. [Google Scholar] [CrossRef]
- Koenderink, J.J.; van Doorn, A.J. Surface Shape and Curvature Scales. Image Vis. Comput. 1992, 10, 557–564. [Google Scholar] [CrossRef]
- Mitášová, H.; Hofierka, J. Interpolation by Regularized Spline with Tension: II. Application to Terrain Modeling and Surface Geometry Analysis. Math. Geol. 1993, 25, 657–669. [Google Scholar] [CrossRef]
- Shary, P.A.; Stepanov, I.N. On the Second Derivative Method in Geology. Dokl. Acad. Nauk SSSR 1991, 319, 456–460. [Google Scholar]
- Shary, P.A.; Sharaya, L.S.; Mitusov, A.V. Fundamental Quantitative Methods of Land Surface Analysis. Geoderma 2002, 107, 1–32. [Google Scholar] [CrossRef]
- Zevenbergen, L.W.; Thorne, C.R. Quantitative Analysis of Land Surface Topography. Earth Surf. Process. Landf. 1987, 12, 47–56. [Google Scholar] [CrossRef]
- Likens, G.E. Biogeochemistry of a Forested Ecosystem; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Lindsay, J.B.; Newman, D.R.; Francioni, A. Scale-Optimized Surface Roughness for Topographic Analysis. Geosciences 2019, 9, 322. [Google Scholar] [CrossRef]
- Beven, K.J.; Kirkby, M.J. A Physically Based, Variable Contributing Area Model of Basin Hydrology. Hydrol. Sci. Bull. 1979, 24, 43–69. [Google Scholar] [CrossRef]
- Lane, S.N.; Brookes, C.J.; Kirkby, M.J.; Holden, J. A Network-Index-Based Version of TOPMODEL for Use with High-Resolution Digital Topographic Data. Hydrol. Process. 2004, 18, 191–201. [Google Scholar] [CrossRef]
- Lindsay, J.B.; Creed, I.F. Removal of artifact depressions from digital elevation models: Towards a minimum impact approach. Hydrol. Process. 2005, 19, 3113–3126. [Google Scholar] [CrossRef]
- Qin, C.; Zhu, A.-X.; Pei, T.; Li, B.; Zhou, C.; Yang, L. An Adaptive Approach to Selecting a Flow-partition Exponent for a Multiple-flow-direction Algorithm. Int. J. Geogr. Inf. Sci. 2007, 21, 443–458. [Google Scholar] [CrossRef]
- Strahler, A.N. Quantitative Analysis of Watershed Geomorphology. Eos Trans. Am. Geophys. Union 1957, 38, 913–920. [Google Scholar] [CrossRef]
- Lindsay, J.B. Chapter 16 Geomorphometry in TAS GIS. In Developments in Soil Science; Hengl, T., Reuter, H.I., Eds.; Geomorphometry; Elsevier: Amsterdam, The Netherlands, 2009; Volume 33, pp. 367–386. [Google Scholar] [CrossRef]
- Newman, D.R.; Lindsay, J.B.; Cockburn, J.M.H. Evaluating Metrics of Local Topographic Position for Multiscale Geomorphometric Analysis. Geomorphology 2018, 312, 40–50. [Google Scholar] [CrossRef]
- Yokoyama, R.; Shirasawa, M.; Pike, R.J. Visualizing Topography by Openness: A New Application of Image Processing to Digital Elevation Models. Photogramm. Eng. Remote Sens. 2002, 68, 257–265. [Google Scholar]
- Hofierka, J.; Šúri, M. The Solar Radiation Model for Open Source GIS: Implementation and Applications. In Proceedings of the Open source GIS–GRASS Users Conference, Trento, Italy, 11–13 September 2002. [Google Scholar]
- Richens, P. Image Processing for Urban Scale Environmental Modelling. 1997. Available online: https://core.ac.uk/download/pdf/161910556.pdf (accessed on 1 July 2022).
- Lindsay, J.B.; Francioni, A.; Cockburn, J.M.H. LiDAR DEM Smoothing and the Preservation of Drainage Features. Remote Sens. 2019, 11, 1926. [Google Scholar] [CrossRef]
- Reuter, H.I.; Hengl, T.; Gessler, P.; Soille, P. Chapter 4 Preparation of DEMs for Geomorphometric Analysis. In Developments in Soil Science; Hengl, T., Reuter, H.I., Eds.; Geomorphometry; Elsevier: Amsterdam, The Netherlands, 2009; Volume 33, pp. 87–120. [Google Scholar] [CrossRef]
- Van Nieuwenhuizen, N.; Lindsay, J.B.; DeVries, B. Smoothing of Digital Elevation Models and the Alteration of Overland Flow Path Length Distributions. Hydrol. Process. 2021, 35, e14271. [Google Scholar] [CrossRef]
- Lindsay, J.B.; Dhun, K. Modelling Surface Drainage Patterns in Altered Landscapes Using LiDAR. Int. J. Geogr. Inf. Sci. 2015, 29, 397–411. [Google Scholar] [CrossRef]
- Minasny, B.; McBratney, A.B. A Conditioned Latin Hypercube Method for Sampling in the Presence of Ancillary Information. Comput. Geosci. 2006, 32, 1378–1388. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Bengio, Y.; Grandvalet, Y. Bias in Estimating the Variance of K-Fold Cross-Validation. In Statistical Modeling and Analysis for Complex Data Problems; Duchesne, P., RÉMillard, B., Eds.; Springer: Boston, MA, USA, 2005; pp. 75–95. [Google Scholar] [CrossRef]
- Xiong, Z.; Cui, Y.; Liu, Z.; Zhao, Y.; Hu, M.; Hu, J. Evaluating Explorative Prediction Power of Machine Learning Algorithms for Materials Discovery Using K-Fold Forward Cross-Validation. Comput. Mater. Sci. 2020, 171, 109203. [Google Scholar] [CrossRef]
- Chicco, D.; Tötsch, N.; Jurman, G. The Matthews Correlation Coefficient (MCC) Is More Reliable than Balanced Accuracy, Bookmaker Informedness, and Markedness in Two-Class Confusion Matrix Evaluation. BioData Min. 2021, 14, 13. [Google Scholar] [CrossRef] [PubMed]
- Saito, T.; Rehmsmeier, M. The Precision-Recall Plot Is More Informative than the ROC Plot When Evaluating Binary Classifiers on Imbalanced Datasets. PLoS ONE 2015, 10, e0118432. [Google Scholar] [CrossRef]
- Lisso, L. Examining the Relationships Between Topography and Suitable Agricultural Land for Specialty Crops. Master’s Thesis, University of Guelph, Guelph, ON, Canada, 2023. [Google Scholar]
- Mahaut, L.; Pironon, S.; Barnagaud, J.-Y.; Bretagnolle, F.; Khoury, C.K.; Mehrabi, Z.; Milla, R.; Phillips, C.; Rieseberg, L.H.; Violle, C.; et al. Matches and Mismatches between the Global Distribution of Major Food Crops and Climate Suitability. Proc. R. Soc. B Biol. Sci. 2022, 289, 20221542. [Google Scholar] [CrossRef]
- Waha, K.; Dietrich, J.P.; Portmann, F.T.; Siebert, S.; Thornton, P.K.; Bondeau, A.; Herrero, M. Multiple Cropping Systems of the World and the Potential for Increasing Cropping Intensity. Glob. Environ. Chang. 2020, 64, 102131. [Google Scholar] [CrossRef] [PubMed]
- Alganci, U.; Kuru, G.N.; Yay Algan, I.; Sertel, E. Vineyard Site Suitability Analysis by Use of Multicriteria Approach Applied on Geo-Spatial Data. Geocarto Int. 2019, 34, 1286–1299. [Google Scholar] [CrossRef]
- Struik, P.C. Chapter 18—Responses of the Potato Plant to Temperature. In Potato Biology and Biotechnology; Vreugdenhil, D., Bradshaw, J., Gebhardt, C., Govers, F., Mackerron, D.K.L., Taylor, M.A., Ross, H.A., Eds.; Elsevier Science B.V.: Amsterdam, The Netherlands, 2007; pp. 367–393. [Google Scholar] [CrossRef]
- Segovia-Cardozo, D.A.; Franco, L.; Provenzano, G. Detecting Crop Water Requirement Indicators in Irrigated Agroecosystems from Soil Water Content Profiles: An Application for a Citrus Orchard. Sci. Total Environ. 2022, 806, 150492. [Google Scholar] [CrossRef]
- Bramley RG, V.; Siebert, T.E.; Herderich, M.J.; Krstic, M.P. Patterns of Within-Vineyard Spatial Variation in the ‘Pepper’ Compound Rotundone Are Temporally Stable from Year to Year. Aust. J. Grape Wine Res. 2017, 23, 42–47. [Google Scholar] [CrossRef]
- Bramley, R.G.V.; Hamilton, R.P. Terroir and Precision Viticulture: Are They Compatible? OENO One 2007, 41, 1–8. [Google Scholar] [CrossRef]
- Petry, H.B.; Mazurana, M.; Marodin, G.A.B.; Levien, R.; Anghinoni, I.; Gianello, C.; Schwarz, S.F. Root Distribution of Peach Rootstocks Affected by Soil Compaction and Acidity. Rev. Bras. Ciênc. Solo 2016, 40, 1–11. [Google Scholar] [CrossRef]
- Salata, S.; Ozkavaf-Senalp, S.; Velibeyoğlu, K.; Elburz, Z. Land Suitability Analysis for Vineyard Cultivation in the Izmir Metropolitan Area. Land 2022, 11, 416. [Google Scholar] [CrossRef]
- Garcia-Vila, M.; Morillo-Velarde, R.; Fereres, E. Modeling Sugar Beet Responses to Irrigation with AquaCrop for Optimizing Water Allocation. Water 2019, 11, 1918. [Google Scholar] [CrossRef]
- Appels, W.M.; Bogaart, P.W.; van der Zee, S.E.A.T.M. Surface Runoff in Flat Terrain: How Field Topography and Runoff Generating Processes Control Hydrological Connectivity. J. Hydrol. 2016, 534, 493–504. [Google Scholar] [CrossRef]
- Reinsdorf, E.; Koch, H.-J.; Märländer, B. Phenotype Related Differences in Frost Tolerance of Winter Sugar Beet (Beta vulgaris L.). Field Crops Res. 2013, 151, 27–34. [Google Scholar] [CrossRef]
- Tisseyre, B.; Ojeda, H.; Taylor, J. New Technologies and Methodologies for Site-Specific Viticulture. OENO One 2007, 41, 63–76. [Google Scholar] [CrossRef]
- Lal, R.; Delgado, J.A.; Groffman, P.M.; Millar, N.; Dell, C.; Rotz, A. Management to Mitigate and Adapt to Climate Change. J. Soil Water Conserv. 2011, 66, 276–285. [Google Scholar] [CrossRef]
- Smith, P.; Olesen, J.E. Synergies between the Mitigation of, and Adaptation to, Climate Change in Agriculture. J. Agric. Sci. 2010, 148, 543–552. [Google Scholar] [CrossRef]
Specialty Crop | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | Number of Layers >60% | Number of Layers >70% | Number of Layers >80% |
---|---|---|---|---|---|---|---|---|---|---|---|
Vegetables | |||||||||||
Tomatoes | 100.0 | 31.0 | 60.1 | 56.5 | 61.0 | 89.7 | 43.2 | 38.6 | 4 | 2 | 2 |
Potatoes | 68.4 | 89.4 | 59.3 | 74.9 | 88.5 | 68.7 | 75.7 | 66.2 | 7 | 4 | 2 |
Beets | 100.0 | 100.0 | 0.0 | 32.2 | 88.4 | 83.4 | 79.9 | 73.0 | 6 | 6 | 4 |
Other Vegetables | 86.4 | 52.9 | 56.2 | 73.1 | 74.9 | 76.6 | 58.5 | 71.7 | 5 | 5 | 1 |
Fruit | |||||||||||
Orchards | 75.0 | 74.8 | 92.8 | 76.9 | 84.1 | 83.4 | 73.3 | 75.9 | 8 | 8 | 3 |
Vineyards | 85.9 | 76.8 | 91.8 | 81.8 | 86.2 | 85.5 | 87.8 | 94.0 | 8 | 8 | 7 |
Berries and Other Fruit | 12 | 10 | 10 | ||||||||
Berries | 100.0 | 50.0 | 96.7 | 89.4 | - | - | - | - | 3 | 3 | 3 |
Blueberries | - | - | - | - | 0.0 | 94.4 | 98.6 | 100.0 | 3 | 3 | 3 |
Cranberries | - | - | - | - | - | 100.0 | 0.0 | - | 1 | 1 | 1 |
Other Berries | - | - | - | - | 31.6 | 26.1 | 67.4 | 90.3 | 2 | 1 | 1 |
Other Fruit | 90.8 | 19.0 | 0.0 | 0.0 | 67.2 | 0.0 | 100 | - | 3 | 2 | 2 |
Feature Type | Category | Pre-Processing Method | Feature | Description |
---|---|---|---|---|
Topographic | Surface Shape | FPDEMS (9 × 9) | Northness a | Cosine of aspect |
Eastness a | Sine of aspect | |||
Slope b | Slope gradient | |||
Geomorphons c | Landform classification | |||
FPDEMS (11 × 11) | Curvedness d | Size of surface bend | ||
Generating Function e | Deflection of tangential curvature from points of extreme curvature | |||
Shape Index d | Shape of surface bend | |||
Profile Curvature b | Curvature parallel to slope | |||
Tangential Curvature f | Curvature in an inclined plane perpendicular to slope | |||
Maximal Curvature g | Highest value of curvature at a point | |||
Minimal Curvature g | Lowest value of curvature at a point | |||
Total Curvature h | Curvature of surface | |||
Topographic Roughness and Complexity | Gaussian Filter (Sigma: 0.75) | Standard Deviation of Elevation h | Standard deviation of elevation (surface roughness) | |
Spherical Standard Deviation of Normals i | Angular dispersion of surface normal vectors | |||
Upslope Area/Flow Accumulation | Hydrologically Conditioned—FPDEMS (5 × 5), Breach Depressions Least Cost | Specific Contributing Area j | Contributing area per unit contour width (multi-flow accumulation) | |
Topographic Wetness Index k | Propensity for a cell to be saturated | |||
Strahler-Order Basins l | Catchment areas of Horton-Strahler stream order links | |||
Downslope Unsaturated Length m | Disconnected, non-contributing saturated cells | |||
Upslope Disconnected Saturated Area m | Upslope saturated cells disconnected from flow paths | |||
Topographic Position/ Elevation Residuals | FPDEMS (9 × 9) | Elevation Percentile n | Ranked elevation of cell relative to surrounding cells | |
Elevation Relative to Watershed Min/Max h | Elevation of cell relative to watershed minimum and maximum elevation | |||
Elevation Above Pit o | Elevation of cell relative to pit cell | |||
FPDEMS (5 × 5) | Stochastic Depression Analysis p | Probability of cell belonging to depression | ||
Visual Exposure/Landscape Visibility | FDEMS (7 × 7) | Positive Openness q | Measure of openness above surface | |
Negative Openness q | Inverse measure of openness below surface | |||
Insolation (Solar Radiation) | FPDEMS (7 × 7) | Direct Radiation (Day 172) r | Radiation at cell without scattering and absorption | |
Time-in-Daylight s | Proportion of time cell is in daylight | |||
Soil | Drainage Type t | How well the soil drains | ||
Drainage Depth t | Drainage design, characteristics, and depth | |||
Soil Infiltration Potential t | Soil infiltration/runoff potential | |||
Percent Organic Carbon u | Percent of organic carbon by weight | |||
Soil Texture | Percent Silt u | Percent of silt by weight | ||
Percent Sand u | Percent of sand by weight | |||
Percent Clay u | Percent of clay by weight |
Specialty Crop Model | MCC | AUC-PR |
---|---|---|
beet_70 | 0.90 | 0.96 |
beet_80 | 0.85 | 0.93 |
orchard_70 | 0.79 | 0.88 |
orchard_80 | 0.80 | 0.89 |
other_veg_70 | 0.84 | 0.86 |
potato_60 | 0.88 | 0.88 |
potato_70 | 0.87 | 0.91 |
potato_80 | 0.79 | 0.89 |
tomato_60 | 0.91 | 0.91 |
tomato_80 | 0.89 | 0.91 |
vineyard_70 | 0.92 | 0.98 |
vineyard_80 | 0.94 | 0.98 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lisso, L.; Lindsay, J.B.; Berg, A. Evaluating the Topographic Factors for Land Suitability Mapping of Specialty Crops in Southern Ontario. Agronomy 2024, 14, 319. https://doi.org/10.3390/agronomy14020319
Lisso L, Lindsay JB, Berg A. Evaluating the Topographic Factors for Land Suitability Mapping of Specialty Crops in Southern Ontario. Agronomy. 2024; 14(2):319. https://doi.org/10.3390/agronomy14020319
Chicago/Turabian StyleLisso, Laura, John B. Lindsay, and Aaron Berg. 2024. "Evaluating the Topographic Factors for Land Suitability Mapping of Specialty Crops in Southern Ontario" Agronomy 14, no. 2: 319. https://doi.org/10.3390/agronomy14020319