Exploring the Impact of Alternate Wetting and Drying and the System of Rice Intensification on Greenhouse Gas Emissions: A Review of Rice Cultivation Practices
Abstract
:1. Introduction
2. Impacts of Rice Production Methods on Greenhouse Gas Emissions
3. Identification of Studies for Analysis
3.1. Definitions
3.2. Eligibility
3.3. Exclusion
- (a)
- Research on life cycle emissions for conventional rice cultivation, AWD, or SRI were excluded unless they contained separated data for field-level emissions.
- (b)
- Studies based only on models were excluded, although some studies include both modeled and observed data, in which case the latter were included.
- (c)
- Studies were excluded if they did not include CH4 and N2O, i.e., they investigated only CH4 or N2O emissions.
- (d)
- Studies comparing CRC and AWD were excluded if changes were made other than to water management, such as the fertilizer regime.
- (e)
- Studies that included crop rotations were excluded if there was not segregated emissions data for the rice period.
- (f)
- Studies were excluded if they used non-original data.
3.4. Searches
- (a)
- Science Direct [22] with the following search terms and no filters applied:
- (b)
- SRI-Rice Cornell Zotero database [23]. Papers were found using the tag ‘Climate change and GHG’.
- (c)
- The journal Soil Science and Plant Nutrition Special Issue ‘Frontline Research in Mitigating Greenhouse Gas Emissions from Paddy Fields’ [24].
- (d)
- Citation searching identified 11 additional papers.
3.5. Identification of Studies
4. Methodology
5. Results
6. Carbon Emissions and Sequestration
7. Synergies between AWD and SRI in Farmer Transitions
8. Water Management and Yield
9. Limitations and Recommendations
- Standardize the definitions of AWD, SRI, and CRC and make these explicit.
- Conduct baseline trials of CRC, AWD, and SRI alongside trials to test the effects of other practices (such as organic vs. inorganic fertilization).
- Include CH4 and N2O and CO2 emissions together as the standard for evaluation.
- Include changes in soil organic carbon where possible to build the evidence base on carbon sequestration.
- State the GWPs explicitly as these have changed in the past and may change again.
- Apply GWP20 as well as GWP100 values as the time factor in emissions reductions becomes more pressing.
- Provide the raw data along with percentage changes.
- Include yields for each cultivation method so that emissions intensity can be calculated. This allows for a comparison between farmers with different seasonal practices with respect, for example, to crop rotations or multiple rice harvests.
10. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- FAO. Dimensions of Need—Staple Foods: What Do People Eat? Available online: https://www.fao.org/3/u8480e/u8480e07.htm (accessed on 24 October 2023).
- FAO. FAOStat: Crops and Livestock Products. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 20 December 2022).
- Directorate of Economics and Statistics (India). Agriculture Statistics at a Glance. Available online: https://desagri.gov.in/document-report-category/agriculture-statistics-at-a-glance/ (accessed on 24 October 2023).
- Sauter, M. Root responses to flooding. Curr. Opin. Plant Biol. 2013, 16, 282–286. [Google Scholar] [CrossRef] [PubMed]
- Buan, N.R. Methanogens: Pushing the boundaries of biology. Emerg. Top. Life Sci. 2018, 2, 629–646. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Nayak, A.; Mohanty, S.; Das, B. Greenhouse gas emission from direct seeded paddy fields under different soil water potentials in Eastern India. Agric. Ecosyst. Environ. 2016, 228, 111–123. [Google Scholar] [CrossRef]
- Forster, P.; Storelvmo, T.; Armour, K.; Collins, W.; Dufresne, J.-L.; Frame, D.; Lunt, D.J.; Mauritsen, T.; Palmer, M.D.; Watanabe, M.; et al. The Earth’s Energy Budget, Climate Feedbacks and Climate Sensitivity. In Climate Change 2021—The Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Intergovernmental Panel on Climate Change (IPCC), Ed.; Cambridge University Press: Cambridge, UK, 2021; pp. 923–1054. [Google Scholar]
- De Laulanié, H. Le Riz à Madagascar: Un Développement en Dialogue avec les Paysans; Editions Ambozontany, Editions Karthala: Antanarivo, Madagascar; Paris, France, 2003; ISBN 978-2-84586-415-3. [Google Scholar]
- De Laulanié, H. Le système de riziculture intensive malgache. Tropicultura 1993, 11, 110–114. [Google Scholar]
- Uphoff, N. SRI 2.0 and Beyond: Sequencing the protean evolution of the System of Rice Intensification. Agronomy 2023, 13, 1253. [Google Scholar] [CrossRef]
- Zhang, Z.; Macedo, I.; Linquist, B.A.; Sander, B.O.; Pittelkow, C.M. Opportunities for mitigating net system greenhouse gas emissions in Southeast Asian rice production: A systematic review. Agric. Ecosyst. Environ. 2024, 361, 108812. [Google Scholar] [CrossRef]
- Roe, S.; Streck, C.; Beach, R.; Busch, J.; Chapman, M.; Daioglou, V.; Deppermann, A.; Doelman, J.; Emmet-Booth, J.; Engelmann, J.; et al. Land-based measures to mitigate climate change: Potential and feasibility by country. Glob. Change Biol. 2021, 27, 6025–6058. [Google Scholar] [CrossRef]
- Fletcher, S.E.M.; Schaefer, H. Rising methane: A new climate challenge. Science 2019, 364, 932–933. [Google Scholar] [CrossRef]
- Ocko, I.B.; Sun, T.; Shindell, D.; Oppenheimer, M.; Hristov, A.N.; Pacala, S.W.; Mauzerall, D.L.; Xu, Y.; Hamburg, S.P. Acting rapidly to deploy readily available methane mitigation measures by sector can immediately slow global warming. Environ. Res. Lett. 2021, 16, 054042. [Google Scholar] [CrossRef]
- UNEP & CCAC. Global Methane Assessment: Benefits and Costs of Mitigating Methane Emissions; United Nations Environment Programme and Climate and Clean Air Coalition: Paris, France, 2021; Available online: http://www.unep.org/resources/report/global-methane-assessment-benefits-and-costs-mitigating-methane-emissions (accessed on 23 October 2023).
- Emissions Trends and Drivers. In Climate Change 2022—Mitigation of Climate Change: Working Group III Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC (Ed.) Cambridge University Press: Cambridge, UK, 2023; pp. 215–294. [Google Scholar] [CrossRef]
- Trang, V.H.; Nelson, K.M.; Rose, S.; Khatri-Chhetri, A.; Wollenberg, E.; Sander, B.O. Rice Cultivation Ambition in the New and Updated Nationally Determined Contributions: 2020–2022; Climate Change, Agriculture and Food Security: Wageningen, The Netherlands, 2022. [Google Scholar]
- McCallum, J. Exploring the Role of SRI and Nationally Determined Contributions for Climate Action 2023; SRI-2030: Oxford, UK, 2023. [Google Scholar]
- Thakur, A.K.; Uphoff, N.T. How the System of Rice Intensification can contribute to climate-smart agriculture. Agron. J. 2017, 109, 1163–1182. [Google Scholar] [CrossRef]
- Kimura, S.D. Methane and Nitrous Oxide Emissions From Paddy Rice Fields in Indonesia: Comparison of SRI and Surrounding Conventional Fields. Presentation to Ministry of Public Works (June 2008). Available online: https://www.slideshare.net/SRI.CORNELL/0890-dorotheamethane-and-nitrous-oxide-emissions-from-paddy-rice-fields-in-indonesia-comparison-of-sri-and-surrounding-conventional-fields (accessed on 22 October 2023).
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Science, Health and Medical Journals, Full Text Articles and Books. Available online: https://www.sciencedirect.com/ (accessed on 5 January 2024).
- SRI-Rice System of Rice Intensification Research Database. Available online: https://www.zotero.org/groups/344232/sri_-_system_of_rice_intensification_research_network (accessed on 8 September 2023).
- Yagi, K. Frontline research in mitigating greenhouse gas emissions from paddy fields. Soil Sci. Plant Nutr. 2018, 64, 1418719. [Google Scholar] [CrossRef]
- Martínez-Eixarch, M.; Alcaraz, C.; Guàrdia, M.; Català-Forner, M.; Bertomeu, A.; Monaco, S.; Cochrane, N.; Oliver, V.; Teh, Y.A.; Courtois, B.; et al. Multiple environmental benefits of alternate wetting and drying irrigation system with limited yield impact on European rice cultivation: The Ebre Delta case. Agric. Water Manag. 2021, 258, 107164. [Google Scholar] [CrossRef]
- Linquist, B.A.; Anders, M.M.; Adviento-Borbe, M.A.A.; Chaney, R.L.; Nalley, L.L.; da Rosa, E.F.F.; van Kessel, C. Reducing greenhouse gas emissions, water use, and grain arsenic levels in rice systems. Glob. Change Biol. 2015, 21, 407–417. [Google Scholar] [CrossRef]
- LaHue, G.T.; Chaney, R.L.; Adviento-Borbe, M.A.; Linquist, B.A. Alternate wetting and drying in high yielding direct-seeded rice systems accomplishes multiple environmental and agronomic objectives. Agric. Ecosyst. Environ. 2016, 229, 30–39. [Google Scholar] [CrossRef]
- Pandey, A.; Mai, V.T.; Vu, D.Q.; Bui, T.P.L.; Mai, T.L.A.; Jensen, L.S.; de Neergaard, A. Organic matter and water management strategies to reduce methane and nitrous oxide emissions from rice paddies in Vietnam. Agric. Ecosyst. Environ. 2014, 196, 137–146. [Google Scholar] [CrossRef]
- Islam, S.F.; de Neergaard, A.; Sander, B.O.; Jensen, L.S.; Wassmann, R.; van Groenigen, J.W. Reducing greenhouse gas emissions and grain arsenic and lead levels without compromising yield in organically produced rice. Agric. Ecosyst. Environ. 2020, 295, 106922. [Google Scholar] [CrossRef]
- Xu, Y.; Ge, J.; Tian, S.; Li, S.; Nguy-Robertson, A.L.; Zhan, M.; Cao, C. Effects of water-saving irrigation practices and drought resistant rice variety on greenhouse gas emissions from a no-till paddy in the central lowlands of China. Sci. Total Environ. 2015, 505, 1043–1052. [Google Scholar] [CrossRef]
- Wang, Z.; Gu, D.; Beebout, S.S.; Zhang, H.; Liu, L.; Yang, J.; Zhang, J. Effect of irrigation regime on grain yield, water productivity, and methane emissions in dry direct-seeded rice grown in raised beds with wheat straw incorporation. Crop J. 2018, 6, 495–508. [Google Scholar] [CrossRef]
- Win, E.P.; Win, K.K.; Bellingrath-Kimura, S.D.; Oo, A.Z. Greenhouse gas emissions, grain yield and water productivity: A paddy rice field case study based in Myanmar. Greenh. Gases 2020, 10, 884–897. [Google Scholar] [CrossRef]
- Loaiza, S.; Verchot, L.; Valencia, D.; Guzmán, P.; Amezquita, N.; Garcés, G.; Puentes, O.; Trujillo, C.; Chirinda, N.; Pittelkow, C.M. Evaluating greenhouse gas mitigation through alternate wetting and drying irrigation in Colombian rice production. Agric. Ecosyst. Environ. 2024, 360, 108787. [Google Scholar] [CrossRef]
- Kim, G.-Y.; Gutierrez, J.; Jeong, H.-C.; Lee, J.-S.; Haque, M.D.M.; Kim, P.J. Effect of intermittent drainage on methane and nitrous oxide emissions under different fertilization in a temperate paddy soil during rice cultivation. J. Korean Soc. Appl. Biol. Chem. 2014, 57, 229–236. [Google Scholar] [CrossRef]
- Sriphirom, P.; Rossopa, B. Assessment of greenhouse gas mitigation from rice cultivation using alternate wetting and drying and rice straw biochar in Thailand. Agric. Water Manag. 2023, 290, 108586. [Google Scholar] [CrossRef]
- Camargo, E.S.; Pedroso, G.M.; Minamikawa, K.; Shiratori, Y.; Bayer, C. Intercontinental comparison of greenhouse gas emissions from irrigated rice fields under feasible water management practices: Brazil and Japan. Soil Sci. Plant Nutr. 2018, 64, 59–67. [Google Scholar] [CrossRef]
- Feng, Z.Y.; Qin, T.; Du, X.Z.; Sheng, F.; Li, C.F. Effects of irrigation regime and rice variety on greenhouse gas emissions and grain yields from paddy fields in central China. Agric. Water Manag. 2021, 250, 106830. [Google Scholar] [CrossRef]
- Rajesh Krishnan, R.K.; Lakshmanan, A.; Ajith, K.; Shajeeshjan, P. Sobering rice production from conventional to climate smart. Intl. J. Curr. Microbiol. Appl. Sci. 2017, 6, 2804–2813. [Google Scholar] [CrossRef]
- Samoy-Pascual, K.B.; Sibayan, E.S.; Grospe, F.T.; Remocal, A.T.; Padre, A.; Tokida, T.; Minamikawa, K. Is alternate wetting and drying irrigation technique enough to reduce methane emission from a tropical rice paddy? Soil Sci. Plant Nutr. 2019, 65, 203–207. [Google Scholar] [CrossRef]
- Zschornack, T.; Da Rosa, C.M.; Pedroso, G.M.; Marcolin, E.; Da Silva, P.R.F.; Bayer, C. Mitigation of yield-scaled greenhouse gas emissions in subtropical paddy rice under alternative irrigation systems. Nutr. Cycl. Agroecosyst. 2016, 105, 61–73. [Google Scholar] [CrossRef]
- Islam, S.M.M.; Gaihre, Y.K.; Islam, M.R.; Akter, M.; Al Mahmud, A.; Singh, U.; Sander, B.O. Effects of water management on greenhouse gas emissions from farmers’ rice fields in Bangladesh. Sci. Total Environ. 2020, 734, 139382. [Google Scholar] [CrossRef] [PubMed]
- Kudo, Y.; Noborio, K.; Shimoozono, N.; Kurihara, R. The effective water management practice for mitigating greenhouse gas emissions and maintaining rice yield in central Japan. Agric. Ecosyst. Environ. 2014, 186, 77–85. [Google Scholar] [CrossRef]
- Setyanto, P.; Pramono, A.; Adriany, T.A.; Susilawati, H.L.; Tokida, T.; Padre, A.T.; Minamikawa, K. Alternate wetting and drying reduces methane emission from a rice paddy in Central Java, Indonesia without yield loss. Soil Sci. Plant Nutr. 2018, 64, 23–30. [Google Scholar] [CrossRef]
- Liao, B.; Cai, T.; Wu, X.; Luo, Y.; Liao, P.; Zhang, B.; Zhang, Y.; Wei, G.; Hu, R.; Luo, Y.; et al. A combination of organic fertilizers partially substitution with alternate wet and dry irrigation could further reduce greenhouse gases emission in rice field. J. Environ. Manag. 2023, 344, 118372. [Google Scholar] [CrossRef]
- Towprayoon, S.; Smakgahn, K.; Poonkaew, S. Mitigation of methane and nitrous oxide emissions from drained irrigated rice fields. Chemosphere 2005, 59, 1547–1556. [Google Scholar] [CrossRef]
- Hou, H.; Yang, S.; Wang, F.; Li, D.; Xu, J. Controlled irrigation mitigates the annual integrative global warming potential of methane and nitrous oxide from the rice–winter wheat rotation systems in Southeast China. Ecol. Eng. 2016, 86, 239–246. [Google Scholar] [CrossRef]
- Hoang, T.N.; Minamikawa, K.; Tokida, T.; Wagai, R.; Tran, T.X.P.; Tran, T.H.D.; Tran, D.H. Higher rice grain yield and lower methane emission achieved by alternate wetting and drying in central Vietnam. Eur. J. Agron. 2023, 151, 126992. [Google Scholar] [CrossRef]
- Liang, H.; Xu, J.; Hou, H.; Qi, Z.; Yang, S.; Li, Y.; Hu, K. Modeling CH4 and N2O emissions for continuous and noncontinuous flooding rice systems. Agric. Syst. 2022, 203, 103528. [Google Scholar] [CrossRef]
- Wang, C.; Shen, J.; Tang, H.; Inubushi, K.; Guggenberger, G.; Li, Y.; Wu, J. Greenhouse gas emissions in response to straw incorporation, water management and their interaction in a paddy field in subtropical central China. Arch. Agron. Soil Sci. 2017, 63, 171–184. [Google Scholar] [CrossRef]
- Islam, S.M.M.; Gaihre, Y.K.; Islam, M.R.; Ahmed, M.N.; Akter, M.; Singh, U.; Sander, B.O. Mitigating greenhouse gas emissions from irrigated rice cultivation through improved fertilizer and water management. J. Environ. Manag. 2022, 307, 114520. [Google Scholar] [CrossRef] [PubMed]
- Tran, D.H.; Hoang, T.N.; Tokida, T.; Tirol-Padre, A.; Minamikawa, K. Impacts of alternate wetting and drying on greenhouse gas emission from paddy field in Central Vietnam. Soil Sci. Plant Nutr. 2018, 64, 14–22. [Google Scholar] [CrossRef]
- Thu, T.N.; Phuong, L.B.T.; Institute for Agricultural Environment, Ministry of Agriculture and Rural Development, Vietnam; Van, T.M.; Hong, S.N. Effect of Water Regimes and Organic Matter Strategies on Mitigating Green House Gas Emission from Rice Cultivation and Co-benefits in Agriculture in Vietnam. IJESD 2016, 7, 85–90. [Google Scholar] [CrossRef]
- Yang, S.; Peng, S.; Xu, J.; Luo, Y.; Li, D. Methane and nitrous oxide emissions from paddy field as affected by water-saving irrigation. Phys. Chem. Earth Parts A/B/C 2012, 53–54, 30–37. [Google Scholar] [CrossRef]
- Begum, K.; Kuhnert, M.; Yeluripati, J.B.; Ogle, S.M.; Parton, W.J.; Williams, S.A.; Pan, G.; Cheng, K.; Ali, M.A.; Smith, P. Modelling greenhouse gas emissions and mitigation potentials in fertilized paddy rice fields in Bangladesh. Geoderma 2019, 341, 206–215. [Google Scholar] [CrossRef]
- Li, J.; Li, Y.; Wan, Y.; Wang, B.; Cai, W.; Qin, X.; Zhou, Z.; Wang, X.; Yuan, J.; Deng, Q. Annual greenhouse gas emissions from a rice paddy with different water-nitrogen management strategies in Central China. Soil Tillage Res. 2024, 235, 105906. [Google Scholar] [CrossRef]
- Gupta, D.K.; Bhatia, A.; Kumar, A.; Das, T.K.; Jain, N.; Tomer, R.; Malyan, S.K.; Fagodiya, R.K.; Dubey, R.; Pathak, H. Mitigation of greenhouse gas emission from rice–wheat system of the Indo-Gangetic plains: Through tillage, irrigation and fertilizer management. Agric. Ecosyst. Environ. 2016, 230, 1–9. [Google Scholar] [CrossRef]
- Hoang, T.T.H.; Do, D.T.; Tran, T.T.G.; Ho, T.D.; Rehman, H.U. Incorporation of rice straw mitigates CH 4 and N 2 O emissions in water saving paddy fields of Central Vietnam. Arch. Agron. Soil Sci. 2019, 65, 113–124. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, Y.; Zhang, Y.; McDaniel, M.D.; Sun, L.; Su, W.; Fan, X.; Liu, S.; Xiao, X. Water-saving irrigation is a ‘win-win’ management strategy in rice paddies—With both reduced greenhouse gas emissions and enhanced water use efficiency. Agric. Water Manag. 2020, 228, 105889. [Google Scholar] [CrossRef]
- Tang, J.; Wang, J.; Li, Z.; Wang, S.; Qu, Y. Effects of Irrigation Regime and Nitrogen Fertilizer Management on CH4, N2O and CO2 Emissions from Saline–Alkaline Paddy Fields in Northeast China. Sustainability 2018, 10, 475. [Google Scholar] [CrossRef]
- Tirol-Padre, A.; Minamikawa, K.; Tokida, T.; Wassmann, R.; Yagi, K. Site-specific feasibility of alternate wetting and drying as a greenhouse gas mitigation option in irrigated rice fields in Southeast Asia: A synthesis. Soil Sci. Plant Nutr. 2018, 64, 2–13. [Google Scholar] [CrossRef]
- Mohapatra, K.K.; Nayak, A.K.; Patra, R.K.; Tripathi, R.; Swain, C.K.; Moharana, K.C.; Kumar, A.; Shahid, M.; Mohanty, S.; Garnaik, S.; et al. Multi-criteria assessment to screen climate smart rice establishment techniques in coastal rice production system of India. Front. Plant Sci. 2023, 14, 1130545. [Google Scholar] [CrossRef]
- Cowan, N.; Bhatia, A.; Drewer, J.; Jain, N.; Singh, R.; Tomer, R.; Kumar, V.; Kumar, O.; Prasanna, R.; Ramakrishnan, B.; et al. Experimental comparison of continuous and intermittent flooding of rice in relation to methane, nitrous oxide and ammonia emissions and the implications for nitrogen use efficiency and yield. Agric. Ecosyst. Environ. 2021, 319, 107571. [Google Scholar] [CrossRef]
- Chidthaisong, A.; Cha-un, N.; Rossopa, B.; Buddaboon, C.; Kunuthai, C.; Sriphirom, P.; Towprayoon, S.; Tokida, T.; Padre, A.T.; Minamikawa, K. Evaluating the effects of alternate wetting and drying (AWD) on methane and nitrous oxide emissions from a paddy field in Thailand. Soil Sci. Plant Nutr. 2018, 64, 31–38. [Google Scholar] [CrossRef]
- Sibayan, E.B.; Samoy-Pascual, K.; Grospe, F.S.; Casil, M.E.D.; Tokida, T.; Padre, A.T.; Minamikawa, K. Effects of alternate wetting and drying technique on greenhouse gas emissions from irrigated rice paddy in Central Luzon, Philippines. Soil Sci. Plant Nutr. 2018, 64, 39–46. [Google Scholar] [CrossRef]
- Karki, S. System of Rice Intensification: An Analysis of Adoption and Potential Environmental Benefits. Master’s Thesis, Norwegian University of Life Sciences, Ås, Norway, 2010. [Google Scholar]
- Jain, N.; Dubey, R.; Dubey, D.S.; Singh, J.; Khanna, M.; Pathak, H.; Bhatia, A. Mitigation of greenhouse gas emission with system of rice intensification in the Indo-Gangetic Plains. Paddy Water Environ. 2014, 12, 355–363. [Google Scholar] [CrossRef]
- Gangopadhyay, S.; Saha, A.; Pal, S.C.; Banerjee, R.; Batabyal, S.; Das, N.; Ghosh, P.B.; Mondal, A.; Mandal, S. A new methodological approach to the establishment of sustainable agricultural ecology in drought vulnerable areas of eastern India. Ecol. Inform. 2023, 75, 102013. [Google Scholar] [CrossRef]
- Gangopadhyay, S.; Banerjee, R.; Batabyal, S.; Das, N.; Mondal, A.; Pal, S.C.; Mandal, S. Carbon sequestration and greenhouse gas emissions for different rice cultivation practices. Sustain. Prod. Consum. 2022, 34, 90–104. [Google Scholar] [CrossRef]
- Oo, A.Z.; Sudo, S.; Inubushi, K.; Mano, M.; Yamamoto, A.; Ono, K.; Osawa, T.; Hayashida, S.; Patra, P.K.; Terao, Y.; et al. Methane and nitrous oxide emissions from conventional and modified rice cultivation systems in South India. Agric. Ecosyst. Environ. 2018, 252, 148–158. [Google Scholar] [CrossRef]
- Ly, P.; Jensen, L.S.; Bruun, T.B.; de Neergaard, A. Methane (CH4) and nitrous oxide (N2O) emissions from the system of rice intensification (SRI) under a rain-fed lowland rice ecosystem in Cambodia. Nutr. Cycl. Agroecosyst. 2013, 97, 13–27. [Google Scholar] [CrossRef]
- Ramesh, T.; Rathika, S. Evaluation of rice cultivation systems for greenhouse gases emission and productivity. Int. J. Ecol. Environ. Sci. 2020, 2, 49–54. [Google Scholar]
- Carrijo, D.R.; Lundy, M.E.; Linquist, B.A. Rice yields and water use under alternate wetting and drying irrigation: A meta-analysis. Field Crops Res. 2017, 203, 173–180. [Google Scholar] [CrossRef]
- Livsey, J.; Kätterer, T.; Vico, G.; Lyon, S.W.; Lindborg, R.; Scaini, A.; Da, C.T.; Manzoni, S. Do alternative irrigation strategies for rice cultivation decrease water footprints at the cost of long-term soil health? Environ. Res. Lett. 2019, 14, 074011. [Google Scholar] [CrossRef]
- Das, S.R.; Nayak, B.K.; Dey, S.; Sarkar, S.; Chatterjee, D.; Saha, S.; Sarkar, D.; Pradhan, A.; Saha, S.; Nayak, A.K. Potential soil organic carbon sequestration vis-a-vis methane emission in lowland rice agroecosystem. Environ. Monit. Assess. 2023, 195, 1099. [Google Scholar] [CrossRef] [PubMed]
- Suwanmaneepong, S.; Kultawanich, K.; Khurnpoon, L.; Sabaijai, P.E.; Cavite, H.J.; Llones, C.; Lepcha, N.; Kerdsriserm, C. Alternate wetting and drying as water-saving technology: An adoption intention in the perspective of good agricultural practices (GAP) suburban rice farmers in Thailand. Water 2023, 15, 402. [Google Scholar] [CrossRef]
- Allen, J.; Sander, B.O. The Diverse Benefits of Alternate Wetting and Drying (AWD); International Rice Research Institute (IRRI): Baños, Philippines, 2019. [Google Scholar]
- Hawken, P. Drawdown: The Most Comprehensive Plan Ever Proposed to Reverse Global Warming; Penguin Books: London, UK, 2018. [Google Scholar]
- Noltze, M.; Schwarze, S.; Qaim, M. Understanding the adoption of system technologies in smallholder agriculture: The system of rice intensification (SRI) in Timor Leste. Agric. Syst. 2012, 108, 64–73. [Google Scholar] [CrossRef]
- Katambara, Z.; Kahimba, F.C.; Mahoo, H.F.; Mbungu, W.B.; Mhenga, F.; Reuben, P.; Maugo, M.; Nyarubamba, A. Adopting the system of rice intensification (SRI) in Tanzania: A review. Agric. Sci. 2013, 4, 369–375. [Google Scholar] [CrossRef]
- Moser, C.M.; Barrett, C.B. The disappointing adoption dynamics of a yield-increasing, low external-input technology: The case of SRI in Madagascar. Agric. Syst. 2003, 76, 1085–1100. [Google Scholar] [CrossRef]
- Barrett, C.B.; Moser, C.M.; McHugh, O.V.; Barison, J. Better technology, better plots, or better farmers? Identifying changes in productivity and risk among Malagasy rice farmers. Am. J. Agric.Econ. 2004, 86, 869–888. [Google Scholar] [CrossRef]
- Zhang, W.; Yang, Z.; Liao, T. Preliminary study on the application of System of Rice Intensification in Fenggang County. Tillage Cultiv. 2004, 2, 39–40. [Google Scholar]
- Anthofer, J. Potential for the System of Rice Intensification (SRI) for Cambodia; GTZ: Phnom Penh, Cambodia, 2004; p. 85. Available online: http://sri.cals.cornell.edu/countries/cambodia/CambGTZrptAnthofer04.pdf (accessed on 14 January 2024).
- Ches, S.; Yamaji, E. Labor requirements of system of rice intensification (SRI) in Cambodia. Paddy Water Environ. 2015, 14, 335–342. [Google Scholar] [CrossRef]
- Gathorne-Hardy, A.; Reddy, D.N.; Venkatanarayana, M.; Harriss-White, B. System of Rice Intensification provides environmental and economic gains but at the expense of social sustainability—A multidisciplinary analysis in India. Agric. Syst. 2016, 143, 159–168. [Google Scholar] [CrossRef]
- Carnevale Zampaolo, F.; Kassam, A.; Friedrich, T.; Parr, A.; Uphoff, N. Compatibility between Conservation Agriculture and the System of Rice Intensification. Agronomy 2023, 13, 2758. [Google Scholar] [CrossRef]
- Moser, C.M.; Barrett, C.B. The complex dynamics of smallholder technology adoption: The case of SRI in Madagascar. Agric. Econ. 2006, 35, 373–388. [Google Scholar] [CrossRef]
- Gathorne-Hardy, A.; Reddy, D.; Motkuri, V.; Harriss-White, B. A Life Cycle Assessment (LCA) of greenhouse gas emissions from SRI and flooded rice production in SE India. Taiwan Water Conserv. 2013, 61, 111–125. [Google Scholar]
- Mishra, A.; Ketelaar, J.W.; Uphoff, N.; Whitten, M. Food security and climate-smart agriculture in the lower Mekong basin of Southeast Asia: Evaluating impacts of system of rice intensification with special reference to rainfed agriculture. Int. J. Agric. Sustain. 2021, 19, 152–174. [Google Scholar] [CrossRef]
- Kumar, G.; Subba Rao, L.V.; Keshavulu, K. Comparative evaluation of seed and grain quality parameters of rice (Oryza sativa L.) varieties under SRI and conventional methods of rice cultivation. Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 3653–3660. [Google Scholar] [CrossRef]
- Adhikari, P.; Araya, H.; Aruna, G.; Balamatti, A.; Banerjee, S.; Baskaran, P.; Barah, B.C.; Behera, D.; Berhe, T.; Boruah, P.; et al. System of crop intensification for more productive, resource-conserving, climate-resilient, and sustainable agriculture: Experience with diverse crops in varying agroecologies. Int. J. Agric. Sustain. 2018, 16, 1402504. [Google Scholar] [CrossRef]
- Thakur, A.K.; Mandal, K.G.; Mohanty, R.K.; Uphoff, N. How agroecological rice intensification can assist in reaching the Sustainable Development Goals. Int. J. Agric. Sustain. 2022, 20, 216–230. [Google Scholar] [CrossRef]
- Falk, J.; Gaffney, O.; Bhowmik, A.K.; Bergmark, P.; Galaz, V.; Gaskell, N.; Henningsson, S.; Höjer, M.; Jacobson, L.; Jónás, K.; et al. Exponential Roadmap; Stockholm Resilience Centre: Stockholm, Sweden, 2020. [Google Scholar]
- Parkin, B.; Savage, S.; Singh, J.; Adeoye, A. The return of the rice crisis. Financial Times, 23 October 2023. [Google Scholar]
Study | Trial Location | Change in CO2e ha−1 | Change in CO2e Emissions kg−1 Rice | Change in Yield of Rice ha−1 |
---|---|---|---|---|
Martínez-Eixarch et al. 2021 [25] | Spain | −94% | −94% | −11% |
Linquist et al. 2015 [26] | USA | −89% | −88% | −9% |
LaHue et al. 2016 [27] | USA | −66% | −68% | 9% |
Pandey et al. 2014 [28] | Vietnam | −66% | −64% | −6% |
Islam et al. 2020 [29] | Philippines | −65% | −67% | 6% |
Xu et al. 2015 [30] | China | −64% | −60% | −10% |
Wang et al. 2018 [31] | China | −63% | −65% | 8% |
Win et al. 2020 [32] | Myanmar | −57% | −59% | 5% |
Loaiza et al. 2024 [33] | Colombia | −53% | −49% | −9% |
Kim et al. 2014 [34] | Korea | −48% | −49% | 1% |
Sriphirom and Rossopa 2023 [35] | Thailand | −48% | −47% | −1% |
Camargo et al. 2018 [36] | Brazil a | −42% | −47% | 8% |
Feng et al. 2021 [37] | China | −41% | −33% | −12% |
Rajesh Krishnan et al. 2017 [38] | India | −39% | −45% | 11% |
Samoy-Pascual et al. 2019 [39] | Philippines | −39% | −37% | −4% |
Zschornac et al. 2016 [40] | Brazil | −38% | −38% | −1% |
Kumar et al. 2016 [6] | India | −37% | −19% | −22% |
Islam et al. 2020 [41] | Bangladesh | −36% | −34% | −3% |
Kudo et al. 2014 [42] | Japan | −36% | 5% | −39% |
Setyanto et al. 2018 [43] | Indonesia | −36% | −35% | −1% |
Liao et al. 2023 [44] | China | −35% | −34% | −2% |
Towprayoon et al. 2005 [45] | Thailand | −35% | −27% | −11% |
Hou et al. 2016 [46] | China | −34% | −33% | −1% |
Hoang et al. 2023 [47] | Vietnam | −33% | −36% | 4% |
Liang et al. 2022 [48] | China | −30% | n/a | n/a |
Wang et al. 2017 [49] | China | −29% | −20% | −10% |
Islam et al. 2022 [50] | Bangladesh | −27% | −26% | −1% |
Tran et al. 2018 [51] | Vietnam | −26% | −31% | 7% |
Thu et al. 2016 [52] | Vietnam | −25% | −22% | −4% |
Yang et al. 2012 [53] | China | −24% | −26% | 3% |
Begum et al. 2019 [54] | Bangladesh | −23% | −24% | 1% |
Li et al. 2024 [55] | China | −22% | −23% | 2% |
Gupta et al. 2016 [56] | India | −22% | −19% | −3% |
Hoang et al. 2019 [57] | Vietnam | −21% | −26% | 7% |
Wang et al. 2020 [58] | China | −20% | −22% | 3% |
Tang et al. 2018 [59] | China | −17% | n/a | n/a |
Tirol-Padre et al. 2018 [60] | SE Asia | −13% | −15% | 3% |
Mohapatra et al. 2023 [61] | India | −11% | −7% | −4% |
Cowan et al. 2021 [62] | India | −8% | 1% | −9% |
Chidthaisong et al. 2018 [63] | Thailand | −4% | −1% | −4% |
Sibayan et al. 2018 [64] | Philippines | 6% | 5% | 2% |
Average | −37% | −35% | −3% |
Study | Trial Location | Change in CO2e ha−1 | Change in CO2e Emissions kg−1 Rice | Change in Yield of Rice ha−1 |
---|---|---|---|---|
Karki 2010 [65] | Nepal | −74% | −88% | 118% |
Rajesh Krishnan et al. 2017 [38] | India | −42% | −62% | 51% |
Jain et al. 2014 [66] | India | −39% | −37% | −3% |
Gangopadhyay et al. 2023 [67] | India | −27% | −71% | 150% |
Mohapatra et al. 2023 [61] | India | −26% | −47% | 40% |
Gangopadhyay et al. 2022 [68] | India | −25% | −67% | 127% |
Oo et al. 2018 [69] | India | −25% | −31% | 8% |
Ly et al. 2013 [70] | Cambodia | −15% | −15% | 0% |
Ramesh and Rathika 2020 [71] | India | −1% | −11% | 11% |
Average | −26% | −47% | 40% |
Study | Trial Location | Change in CO2e ha−1 | Change in CO2e Emissions kg−1 Rice | Change in Yield of Rice ha−1 |
---|---|---|---|---|
Mohapatra et al. 2023 [61] | India | −6% | −20% | 17% |
Rajesh Krishnan et al. 2017 [38] | India | −5% | −30% | 37% |
Range | Median | Mean | ||
---|---|---|---|---|
Change in CO2e emissions ha−1 | AWD compared to CRC | −94% to 6% | −35% | −37% |
SRI compared to CRC | −74% to −1% | −26% | −31% | |
SRI compared to AWD | −6% to −5% | |||
AWD compared to CRC | −94% to 5% | −33% | −35% | |
Change in CO2e emissions kg−1 rice | SRI compared to CRC | −88% to −11% | −47% | −48% |
SRI compared to AWD | −30% to −20% | |||
CRC compared to AWD | −39% to 11% | −1% | −3% | |
Change in rice yield t ha−1 | CRC compared to SRI | −3% to 150% | 40% | 56% |
AWD compared to SRI | 17% to 37% |
Parameter | Mean Improvement | Change (%) | |
---|---|---|---|
CH4 + N2O | CH4 + N2O + CO2 | ||
CO2e emissions ha−1 | −49% | −30% | −38% |
CO2e emissions kg−1 rice | −40% | −20% | −51% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dahlgreen, J.; Parr, A. Exploring the Impact of Alternate Wetting and Drying and the System of Rice Intensification on Greenhouse Gas Emissions: A Review of Rice Cultivation Practices. Agronomy 2024, 14, 378. https://doi.org/10.3390/agronomy14020378
Dahlgreen J, Parr A. Exploring the Impact of Alternate Wetting and Drying and the System of Rice Intensification on Greenhouse Gas Emissions: A Review of Rice Cultivation Practices. Agronomy. 2024; 14(2):378. https://doi.org/10.3390/agronomy14020378
Chicago/Turabian StyleDahlgreen, James, and Adam Parr. 2024. "Exploring the Impact of Alternate Wetting and Drying and the System of Rice Intensification on Greenhouse Gas Emissions: A Review of Rice Cultivation Practices" Agronomy 14, no. 2: 378. https://doi.org/10.3390/agronomy14020378
APA StyleDahlgreen, J., & Parr, A. (2024). Exploring the Impact of Alternate Wetting and Drying and the System of Rice Intensification on Greenhouse Gas Emissions: A Review of Rice Cultivation Practices. Agronomy, 14(2), 378. https://doi.org/10.3390/agronomy14020378