Transcriptome Analysis Provides Valuable Insights into Leaf Size Variation in Rhamnus heterophylla
Abstract
:1. Introduction
2. Materials and Methods
2.1. PacBio Iso-Seq Library Construction, Data Processing, and Isoform Identification
2.2. Illumina RNA-Seq Data Processing
2.3. Gene Function Annotation and Gene Structure Analysis
2.4. Differentially Expressed Genes (DEGs) and GO and KEGG Enrichment Analysis
3. Results
3.1. Full-Length Transcripts from PacBio Isoform Sequencing
3.2. Functional Annotation and Classification
3.3. Gene Structure Prediction
3.4. Categorization and Examination of Genes Exhibiting Differential Expression
3.5. Genes Associated with the Transduction of Plant Hormone Signals
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McConnell, J.R.; Barton, M.K. Leaf polarity and meristem formation in Arabidopsis. Development 1998, 125, 2935–2942. [Google Scholar] [CrossRef]
- Beemster, G.T.; Fiorani, F.; Inzé, D. Cell cycle: The key to plant growth control? Trends Plant Sci. 2003, 8, 154–158. [Google Scholar] [CrossRef]
- Barkoulas, M.; Hay, A.; Kougioumoutzi, E.; Tsiantis, M. A developmental framework for dissected leaf formation in the Arabidopsis relative Cardamine hirsuta. Nat. Genet. 2008, 40, 1136–1141. [Google Scholar] [CrossRef]
- Waites, R.; Hudson, A. phantastica: A gene required for dorsoventrality of leaves in Antirrhinum majus. Development 1995, 121, 2143–2154. [Google Scholar] [CrossRef]
- Braybrook, S.A.; Kuhlemeier, C. How a plant builds leaves. Plant Cell 2010, 22, 1006–1018. [Google Scholar] [CrossRef]
- Bayer, E.M.; Smith, R.S.; Mandel, T.; Nakayama, N.; Sauer, M.; Prusinkiewicz, P.; Kuhlemeier, C. Integration of transport-based models for phyllotaxis and midvein formation. Genes Dev. 2009, 23, 373–384. [Google Scholar] [CrossRef]
- Guenot, B.; Bayer, E.; Kierzkowski, D.; Smith, R.S.; Mandel, T.; Žádníková, P.; Benková, E.; Kuhlemeier, C. Pin1-independent leaf initiation in Arabidopsis. Plant Physiol. 2012, 159, 1501–1510. [Google Scholar] [CrossRef]
- Sablowski, R.; Carnier Dornelas, M. Interplay between cell growth and cell cycle in plants. J. Exp. Bot. 2014, 65, 2703–2714. [Google Scholar] [CrossRef]
- Blilou, I.; Xu, J.; Wildwater, M.; Willemsen, V.; Paponov, I.; Friml, J.; Heidstra, R.; Aida, M.; Palme, K.; Scheres, B. The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature 2005, 433, 39–44. [Google Scholar] [CrossRef]
- Velasquez, S.M.; Barbez, E.; Kleine-Vehn, J.; Estevez, J.M. Auxin and Cellular Elongation. Plant Physiol. 2016, 170, 1206–1215. [Google Scholar] [CrossRef]
- Majda, M.; Robert, S. The role of auxin in cell wall expansion. Int. J. Mol. Sci. 2018, 19, 951. [Google Scholar] [CrossRef]
- Castro-Camba, R.; Sánchez, C.; Vidal, N.; Vielba, J.M. Plant development and crop yield: The role of gibberellins. Plants 2022, 11, 2650. [Google Scholar] [CrossRef]
- Chen, S.; Wang, X.J.; Tan, G.F.; Zhou, W.Q.; Wang, G.L. Gibberellin and the plant growth retardant Paclobutrazol altered fruit shape and ripening in tomato. Protoplasma 2020, 257, 853–861. [Google Scholar] [CrossRef]
- Nagai, K.; Mori, Y.; Ishikawa, S.; Furuta, T.; Gamuyao, R.; Niimi, Y.; Hobo, T.; Fukuda, M.; Kojima, M.; Takebayashi, Y.; et al. Antagonistic regulation of the gibberellic acid response during stem growth in rice. Nature 2020, 584, 109–114. [Google Scholar] [CrossRef]
- Schaller, G.E.; Street, I.H.; Kieber, J.J. Cytokinin and the cell cycle. Curr. Opin. Plant Biol. 2014, 21, 7–15. [Google Scholar] [CrossRef]
- Werner, T.; Schmülling, T. Cytokinin action in plant development. Curr. Opin. Plant Biol. 2009, 12, 527–538. [Google Scholar] [CrossRef]
- Wybouw, B.; De Rybel, B. Cytokinin—A Developing Story. Trends Plant Sci. 2019, 24, 177–185. [Google Scholar] [CrossRef]
- Wu, W.; Du, K.; Kang, X.; Wei, H. The diverse roles of cytokinins in regulating leaf development. Hortic. Res. 2021, 8, 118. [Google Scholar] [CrossRef]
- Wei, Z.; Li, J. Brassinosteroids regulate root growth, development, and symbiosis. Mol. Plant 2016, 9, 86–100. [Google Scholar] [CrossRef]
- Pekker, I.; Alvarez, J.P.; Eshed, Y. Auxin response factors mediate Arabidopsis organ asymmetry via modulation of KANADI activity. Plant Cell 2005, 17, 2899–2910. [Google Scholar] [CrossRef]
- Koenig, D.; Bayer, E.; Kang, J.; Kuhlemeier, C.; Sinha, N. Auxin patterns solanum lycopersicum leaf morphogenesis. Development 2009, 136, 2997–3006. [Google Scholar] [CrossRef]
- Peng, Y.; Fang, T.; Zhang, Y.; Zhang, M.; Zeng, L. Genome-wide identification and expression analysis of auxin response factor (ARF) gene family in Longan (Dimocarpus longan L.). Plants 2020, 9, 221. [Google Scholar] [CrossRef]
- Horiguchi, G.; Kim, G.T.; Tsukaya, H. The transcription factor AtGRF5 and the transcription coactivator AN3 regulate cell proliferation in leaf primordia of Arabidopsis thaliana. Plant J. 2005, 43, 68–78. [Google Scholar] [CrossRef]
- Viola, I.L.; Alem, A.L.; Jure, R.M.; Gonzalez, D.H. Physiological roles and mechanisms of action of class I TCP transcription factors. Int. J. Mol. Sci. 2023, 24, 5437. [Google Scholar] [CrossRef]
- Liu, Y.; Guan, X.; Liu, S.; Yang, M.; Ren, J.; Guo, M.; Huang, Z.; Zhang, Y. Genome-wide identification and analysis of TCP transcription factors involved in the formation of leafy head in Chinese cabbage. Int. J. Mol. Sci. 2018, 19, 847. [Google Scholar] [CrossRef]
- Sorrell, D.A.; Menges, M.; Healy, J.M.; Deveaux, Y.; Amano, C.; Su, Y.; Nakagami, H.; Shinmyo, A.; Doonan, J.H.; Sekine, M.; et al. Cell cycle regulation of cyclin-dependent kinases in tobacco cultivar Bright Yellow-2 cells. Plant Physiol. 2001, 126, 1214–1223. [Google Scholar] [CrossRef]
- Hu, Y.; Tang, F.; Zhang, D.; Shen, S.; Peng, X. Integrating genome-wide association and transcriptome analysis to provide molecular insights into heterophylly and eco-adaptability in woody plants. Hortic. Res. 2023, 10, uhad212. [Google Scholar] [CrossRef]
- He, D.; Guo, P.; Gugger, P.F.; Guo, Y.; Liu, X.; Chen, J. Investigating the molecular basis for heterophylly in the aquatic plant Potamogeton octandrus (Potamogetonaceae) with comparative transcriptomics. Peer J. 2018, 6, e4448. [Google Scholar] [CrossRef]
- Nakayama, H.; Sinha, N.R.; Kimura, S. How do plants and phytohormones accomplish heterophylly, leaf phenotypic plasticity, in response to environmental cues. Front. Plant Sci. 2017, 8, 1717. [Google Scholar] [CrossRef]
- Wang, L.; Fan, S.; Wang, X.; Wang, X.; Yan, X.; Shan, D.; Xiao, W.; Ma, J.; Wang, Y.; Li, X.; et al. Physicochemical aspects and sensory profiles as various potential factors for comprehensive quality assessment of Nü-Er-Cha produced from Rhamnus heterophylla Oliv. Molecules 2019, 24, 3211. [Google Scholar] [CrossRef]
- Gordon, S.P.; Tseng, E.; Salamov, A.; Zhang, J.; Meng, X.; Zhao, Z.; Kang, D.; Underwood, J.; Grigoriev, I.V.; Figueroa, M.; et al. Widespread polycistronic transcripts in fungi revealed by single-molecule mRNA sequencing. PLoS ONE 2015, 10, e0132628. [Google Scholar] [CrossRef]
- Salmela, L.; Rivals, E. LoRDEC: Accurate and efficient long read error correction. Bioinformatics 2014, 30, 3506–3514. [Google Scholar] [CrossRef]
- Huang, Y.; Niu, B.; Gao, Y.; Fu, L.; Li, W. CD-HIT Suite: A web server for clustering and comparing biological sequences. Bioinformatics 2010, 26, 680–682. [Google Scholar] [CrossRef]
- Manni, M.; Berkeley, M.R.; Seppey, M.; Simão, F.A.; Zdobnov, E.M. BUSCO Update: Novel and streamlined workflows along with broader and deeper phylogenetic coverage for scoring of eukaryotic, prokaryotic, and viral genomes. Mol. Biol. Evol. 2021, 38, 4647–4654. [Google Scholar] [CrossRef]
- Conesa, A.; Götz, S.; García-Gómez, J.M.; Terol, J.; Talón, M.; Robles, M. Blast2GO: A universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 2005, 21, 3674–3676. [Google Scholar] [CrossRef]
- Jin, J.; Tian, F.; Yang, D.C.; Meng, Y.Q.; Kong, L.; Luo, J.; Gao, G. PlantTFDB 4.0: Toward a central hub for transcription factors and regulatory interactions in plants. Nucleic Acids Res. 2017, 45, D1040–D1045. [Google Scholar] [CrossRef]
- Alamancos, G.P.; Pagès, A.; Trincado, J.L.; Bellora, N.; Eyras, E. Leveraging transcript quantification for fast computation of alternative splicing profiles. Rna 2015, 21, 1521–1531. [Google Scholar] [CrossRef]
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. B Stat. Methodol. 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Kanehisa, M.; Araki, M.; Goto, S.; Hattori, M.; Hirakawa, M.; Itoh, M.; Katayama, T.; Kawashima, S.; Okuda, S.; Tokimatsu, T.; et al. KEGG for linking genomes to life and the environment. Nucleic Acids Res. 2008, 36, D480–D484. [Google Scholar] [CrossRef]
- Zhang, L.; Zhou, L.; Yung, W.S.; Su, W.; Huang, M. Ectopic expression of Torenia fournieri TCP8 and TCP13 alters the leaf and petal phenotypes in Arabidopsis thaliana. Physiol. Plant 2021, 173, 856–866. [Google Scholar] [CrossRef]
- Koga, H.; Kojima, M.; Takebayashi, Y.; Sakakibara, H.; Tsukaya, H. Identification of the unique molecular framework of heterophylly in the amphibious plant Callitriche palustris L. Plant Cell 2021, 33, 3272–3292. [Google Scholar] [CrossRef]
- Qin, S.W.; Bao, L.H.; He, Z.G.; Li, C.L.; La, H.G.; Zhao, L.F. Identification and regulatory network analysis of SPL family transcription factors in Populus euphratica Oliv. heteromorphic leaves. Sci. Rep. 2022, 12, 2856. [Google Scholar] [CrossRef]
- Kim, J.; Joo, Y.; Kyung, J.; Jeon, M.; Park, J.Y.; Lee, H.G.; Chung, D.S.; Lee, E.; Lee, I. A molecular basis behind heterophylly in an amphibious plant, Ranunculus trichophyllus. PLoS Genet. 2018, 14, e1007208. [Google Scholar] [CrossRef]
- Nakayama, H.; Nakayama, N.; Seiki, S.; Kojima, M.; Sakakibara, H.; Sinha, N.; Kimura, S. Regulation of the KNOX-GA gene module induces heterophyllic alteration in North American lake cress. Plant Cell 2014, 26, 4733–4748. [Google Scholar] [CrossRef]
- Takatsuka, H.; Umeda, M. Hormonal control of cell division and elongation along differentiation trajectories in roots. J. Exp. Bot. 2014, 65, 2633–2643. [Google Scholar] [CrossRef]
- Zluhan-Martínez, E.; López-Ruíz, B.A.; García-Gómez, M.L.; García-Ponce, B.; de la Paz Sánchez, M.; Álvarez-Buylla, E.R.; Garay-Arroyo, A. Integrative roles of phytohormones on cell proliferation, elongation and differentiation in the Arabidopsis thaliana primary root. Front. Plant Sci. 2021, 12, 659155. [Google Scholar] [CrossRef]
- Merchante, C.; Brumos, J.; Yun, J.; Hu, Q.; Spencer, K.R.; Enríquez, P.; Binder, B.M.; Heber, S.; Stepanova, A.N.; Alonso, J.M. Gene-specific translation regulation mediated by the hormone-signaling molecule EIN2. Cell 2015, 163, 684–697. [Google Scholar] [CrossRef]
- Feng, G.; Liu, G.; Xiao, J. The Arabidopsis EIN2 restricts organ growth by retarding cell expansion. Plant Signal. Behav. 2015, 10, e1017169. [Google Scholar] [CrossRef]
- Kalve, S.; De Vos, D.; Beemster, G.T. Leaf development: A cellular perspective. Front. Plant Sci. 2014, 5, 362. [Google Scholar] [CrossRef]
Metrics | Number |
---|---|
Complete BUSCOs (C) | 2020 (86.9%) |
Complete and single-copy BUSCOs (S) | 453 (19.5%) |
Complete and duplicated BUSCOs (D) | 1567 (67.4%) |
Fragmented BUSCOs (F) | 34 (1.5%) |
Missing BUSCOs (M) | 272 (11.6%) |
Total BUSCO groups searched | 2326 |
Total Isoform | NR | Swiss-Prot | KOG | KEGG | Annotation Gene | Without Annotation Gene Number |
---|---|---|---|---|---|---|
88,546 | 83,187 (93.95%) | 71,497 (80.75%) | 58,545 (66.12%) | 40,469 (45.70%) | 83,725 (94.56%) | 4821 (5.44%) |
Sample | All Reads Num | Unmapped Reads | Unique Mapped Reads | Multiple Mapped Reads | Mapping Ratio |
---|---|---|---|---|---|
Large1 | 46,664,928 | 3,073,767 | 3,131,403 | 40,459,758 | 93.41% |
Large2 | 35,669,042 | 2,302,264 | 2,047,345 | 31,319,433 | 93.55% |
Large3 | 40,439,690 | 2,627,144 | 2,626,124 | 35,186,422 | 93.50% |
Small1 | 39,492,624 | 2,800,086 | 2,687,340 | 34,005,198 | 92.91% |
Small2 | 37,522,320 | 2,487,999 | 2,381,952 | 32,652,369 | 93.37% |
Small3 | 42,800,590 | 3,943,706 | 2,847,386 | 36,009,498 | 90.79% |
Gene | log2 Ratio (Small/Large Leaf) | p Value | FDR | Regulation | Function |
---|---|---|---|---|---|
BSK1 | 9.98 | 1.86 × 10−4 | 1.91 × 10−2 | Up | BR-signaling kinases |
EIL3 | −11.17 | 3.69 × 10−4 | 3.16 × 10−2 | Down | Regulators of ethylene signaling |
HAB1 | −11.86 | 1.40 × 10−4 | 1.50 × 10−2 | Down | Regulates numerous ABA responses |
EBF1 | −13.42 | 3.34 × 10−8 | 2.02 × 10−5 | Down | EIN3-binding F-box protein, ethylene signaling |
EBF1 | −14.28 | 4.95 × 10−7 | 1.87 × 10−4 | Down | EIN3-binding F-box protein, ethylene signaling |
TIFY6B | −6.59 | 1.47 × 10−6 | 4.77 × 10−4 | Down | Repressor of jasmonate responses |
ABF2 | −12.10 | 2.25 × 10−4 | 2.19 × 10−2 | Down | Regulates ABA-responsive gene expression |
ARF9 | −6.64 | 2.11 × 10−6 | 6.23 × 10−4 | Down | Auxin response factor |
IAA27 | −10.18 | 5.84 × 10−4 | 4.38 × 10−2 | Down | Auxin-responsive protein |
ARR1 | −11.75 | 4.60 × 10−4 | 3.67 × 10−2 | Down | Cytokinin response regulator |
ARF19 | −11.70 | 1.36 × 10−4 | 1.46 × 10−2 | Down | Auxin response factor |
HAB1 | −12.77 | 3.77 × 10−6 | 9.95 × 10−4 | Down | ABA signaling pathway |
MYC2 | −13.83 | 2.67 × 10−7 | 1.09 × 10−4 | Down | Regulators of JA signaling |
EIN2 | −11.80 | 5.67 × 10−5 | 7.61 × 10−3 | Down | Ethylene-insensitive protein |
ARF6 | −10.59 | 6.15 × 10−4 | 4.54 × 10−2 | Down | Auxin response factor |
GRF8 | −14.33 | 4.13 × 10−6 | 1.04 × 10−3 | Down | Growth-regulating factor |
ARF2 | −13.08 | 3.80 × 10−6 | 9.97 × 10−4 | Down | Auxin response factor |
ARF6 | −13.13 | 2.17 × 10−5 | 3.75 × 10−3 | Down | Auxin response factor |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shang, H.; Xun, L.; Miao, T.; Chen, C.; Lu, Y.; Li, B. Transcriptome Analysis Provides Valuable Insights into Leaf Size Variation in Rhamnus heterophylla. Agronomy 2024, 14, 396. https://doi.org/10.3390/agronomy14020396
Shang H, Xun L, Miao T, Chen C, Lu Y, Li B. Transcriptome Analysis Provides Valuable Insights into Leaf Size Variation in Rhamnus heterophylla. Agronomy. 2024; 14(2):396. https://doi.org/10.3390/agronomy14020396
Chicago/Turabian StyleShang, Huiying, Lulu Xun, Tao Miao, Chen Chen, Yuan Lu, and Bin Li. 2024. "Transcriptome Analysis Provides Valuable Insights into Leaf Size Variation in Rhamnus heterophylla" Agronomy 14, no. 2: 396. https://doi.org/10.3390/agronomy14020396
APA StyleShang, H., Xun, L., Miao, T., Chen, C., Lu, Y., & Li, B. (2024). Transcriptome Analysis Provides Valuable Insights into Leaf Size Variation in Rhamnus heterophylla. Agronomy, 14(2), 396. https://doi.org/10.3390/agronomy14020396