A Machine Learning-Based High-Resolution Soil Moisture Mapping and Spatial–Temporal Analysis: The mlhrsm Package
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Model Performance
3.2. Overview of the Functionality of mlhrsm
3.2.1. Main Functions
VWC_Map
- (a)
- Constant land surface parameters: 30 m National Land Cover Dataset (NLCD) land cover maps in 2016, 10 m elevation data from the USGS 10 m digital elevation model and derived slope, aspect, and hillshade, 30 m Polaris soil clay and sand content and bulk density maps at 0–5 cm and 0–1 m, and
- (b)
- Dynamic variables spanning the input period of VWC maps (with a buffer period of 6–64 days for temporal interpolation depending on the available satellite data): 30 m 12-day Sentinel-1 backscatter data measured at VV and VH polarizations and incidence angle (masked for outliers and despeckling following [23]), 1 km daily SMAP land surface temperature, Landsat-8 bands 5, 6, 7, and 10, and NDVI and NDWI indices, and NASA-USDA Enhanced SMAP 10 km surface and subsurface soil moisture storage maps.
VWC_Point
Split_Region, Download_Map, and Mosaic_Region for Large ROIs
3.2.2. Functions for Spatial and Temporal Analysis
Area-Based/Zonal Functions
Point-Based Functions
3.3. Case Study
3.3.1. Study Area
3.3.2. Generating Soil Moisture Maps at Different Spatial Resolutions
3.3.3. Spatial and Temporal Analysis
3.4. Extract Soil Moisture Data at Individual Sites
3.5. Evaluation of Model Estimation with Ground Truth Data
4. Discussion
4.1. Usability Evaluation
4.2. Sustainability Plan
4.3. Computational Details
4.4. Application and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mladenova, I.E.; Bolten, J.D.; Crow, W.T.; Anderson, M.C.; Hain, C.R.; Johnson, D.M.; Mueller, R. Intercomparison of Soil Moisture, Evaporative Stress, and Vegetation Indices for Estimating Corn and Soybean Yields Over the U.S. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 1328–1343. [Google Scholar] [CrossRef]
- Robinson, D.A.; Campbell, C.S.; Hopmans, J.W.; Hornbuckle, B.K.; Jones, S.B.; Knight, R.; Ogden, F.; Selker, J.; Wendroth, O. Soil Moisture Measurement for Ecological and Hydrological Watershed-Scale Observatories: A Review. Vadose Zone J. 2008, 7, 358–389. [Google Scholar] [CrossRef]
- Dirmeyer, P.A.; Halder, S. Sensitivity of Numerical Weather Forecasts to Initial Soil Moisture Variations in CFSv2. Weather Forecast. 2016, 31, 1973–1983. [Google Scholar] [CrossRef]
- Korošak, Ž.; Suhadolnik, N.; Pleteršek, A. The Implementation of a Low Power Environmental Monitoring and Soil Moisture Measurement System Based on UHF RFID. Sensors 2019, 19, 5527. [Google Scholar] [CrossRef]
- Vereecken, H.; Huisman, J.A.; Bogena, H.; Vanderborght, J.; Vrugt, J.A.; Hopmans, J.W. On the Value of Soil Moisture Measurements in Vadose Zone Hydrology: A Review. Water Resour. Res. 2008, 44, 2008WR006829. [Google Scholar] [CrossRef]
- Wang, L.; Qu, J.J. Satellite remote sensing applications for surface soil moisture monitoring: A review. Front. Earth Sci. China 2009, 3, 237–247. [Google Scholar] [CrossRef]
- Babaeian, E.; Sadeghi, M.; Jones, S.B.; Montzka, C.; Vereecken, H.; Tuller, M. Ground, proximal, and satellite remote sensing of soil moisture. Rev. Geophys. 2019, 57, 530–616. [Google Scholar] [CrossRef]
- Li, Z.L.; Leng, P.; Zhou, C.; Chen, K.S.; Zhou, F.C.; Shang, G.F. Soil moisture retrieval from remote sensing measurements: Current knowledge and directions for the future. Earth-Sci. Rev. 2021, 218, 103673. [Google Scholar] [CrossRef]
- Ochsner, T.E.; Cosh, M.H.; Cuenca, R.H.; Dorigo, W.A.; Draper, C.S.; Hagimoto, Y.; Kerr, Y.H.; Larson, K.M.; Njoku, E.G.; Small, E.E.; et al. State of the Art in Large-Scale Soil Moisture Monitoring. Soil Sci. Soc. Am. J. 2013, 77, 1888–1919. [Google Scholar] [CrossRef]
- Petropoulos, G.P.; Ireland, G.; Barrett, B. Surface Soil Moisture Retrievals from Remote Sensing: Current Status, Products & Future Trends. Phys. Chem. Earth Parts A/B/C 2015, 83–84, 36–56. [Google Scholar] [CrossRef]
- Sadeghi, M.; Babaeian, E.; Tuller, M.; Jones, S.B. The optical trapezoid model: A novel approach to remote sensing of soil moisture applied to Sentinel-2 and Landsat-8 observations. Remote Sens. Environ. 2017, 198, 52–68. [Google Scholar] [CrossRef]
- Vergopolan, N.; Chaney, N.W.; Pan, M.; Sheffield, J.; Beck, H.E.; Ferguson, C.R.; Torres-Rojas, L.; Sadri, S.; Wood, E.F. SMAP-HydroBlocks, a 30-m Satellite-Based Soil Moisture Dataset for the Conterminous US. Sci. Data 2021, 8, 264. [Google Scholar] [CrossRef]
- Entekhabi, D.; Njoku, E.G.; O’Neill, P.E.; Kellogg, K.H.; Crow, W.T.; Edelstein, W.N.; Entin, J.K.; Goodman, S.D.; Jackson, T.J.; Johnson, J.; et al. The Soil Moisture Active Passive (SMAP) Mission. Proc. IEEE 2010, 98, 704–716. [Google Scholar] [CrossRef]
- Kerr, Y.H.; Waldteufel, P.; Richaume, P.; Wigneron, J.P.; Ferrazzoli, P.; Mahmoodi, A.; Al Bitar, A.; Cabot, F.; Gruhier, C.; Juglea, S.E.; et al. The SMOS Soil Moisture Retrieval Algorithm. IEEE Trans. Geosci. Remote Sens. 2012, 50, 1384–1403. [Google Scholar] [CrossRef]
- Chew, C.C.; Small, E.E. Soil moisture sensing using spaceborne GNSS reflections: Comparison of CYGNSS reflectivity to SMAP soil moisture. Geophys. Res. Lett. 2018, 45, 4049–4057. [Google Scholar] [CrossRef]
- Kim, H.; Lakshmi, V. Use of cyclone global navigation satellite system (CyGNSS) observations for estimation of soil moisture. Geophys. Res. Lett. 2018, 45, 8272–8282. [Google Scholar] [CrossRef]
- Clarizia, M.P.; Pierdicca, N.; Costantini, F.; Floury, N. Analysis of CYGNSS data for soil moisture retrieval. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 2227–2235. [Google Scholar] [CrossRef]
- Senyurek, V.; Lei, F.; Boyd, D.; Kurum, M.; Gurbuz, A.C.; Moorhead, R. Machine learning-based CYGNSS soil moisture estimates over ISMN sites in CONUS. Remote Sens. 2020, 12, 1168. [Google Scholar] [CrossRef]
- Mladenova, I.E.; Bolten, J.D.; Crow, W.; Sazib, N.; Reynolds, C. Agricultural Drought Monitoring via the Assimilation of SMAP Soil Moisture Retrievals Into a Global Soil Water Balance Model. Front. Big Data 2020, 3, 10. [Google Scholar] [CrossRef]
- Reichle, R.; Lannoy, G.D.; Koster, R.; Crow, W.; Kimball, J.; Liu, Q. SMAP L4 Global 3-Hourly 9 km EASE-Grid Surface and Root Zone Soil Moisture Geophysical Data, Version 4 (SPL4SMGP). Distributed by NASA National Snow and Ice Data Center Distributed Active Archive Center. 2018. Available online: https://nsidc.org/data/spl4smgp/versions/4 (accessed on 20 January 2024). [CrossRef]
- Kumar, S.; Peterslidard, C.; Tian, Y.; Houser, P.; Geiger, J.; Olden, S.; Lighty, L.; Eastman, J.; Doty, B.; Dirmeyer, P. Land Information System: An Interoperable Framework for High Resolution Land Surface Modeling. Environ. Model. Softw. 2006, 21, 1402–1415. [Google Scholar] [CrossRef]
- Zhang, C.; Yang, Z.; Zhao, H.; Sun, Z.; Di, L.; Bindlish, R.; Liu, P.-W.; Colliander, A.; Mueller, R.; Crow, W.; et al. Crop-CASMA: A Web Geoprocessing and Map Service Based Architecture and Implementation for Serving Soil Moisture and Crop Vegetation Condition Data over U.S. Cropland. Int. J. Appl. Earth Obs. Geoinf. 2022, 112, 102902. [Google Scholar] [CrossRef]
- Huang, J.; Desai, A.R.; Zhu, J.; Hartemink, A.E.; Stoy, P.C.; Loheide, S.P.; Bogena, H.R.; Zhang, Y.; Zhang, Z.; Arriaga, F. Retrieving Heterogeneous Surface Soil Moisture at 100 m Across the Globe via Fusion of Remote Sensing and Land Surface Parameters. Front. Water 2020, 2, 578367. [Google Scholar] [CrossRef]
- Greifeneder, F.; Notarnicola, C.; Wagner, W. A Machine Learning-Based Approach for Surface Soil Moisture Estimations with Google Earth Engine. Remote Sens. 2021, 13, 2099. [Google Scholar] [CrossRef]
- Tischler, M.; Garcia, M.; Peterslidard, C.; Moran, M.; Miller, S.; Thoma, D.; Kumar, S.; Geiger, J. A GIS Framework for Surface-Layer Soil Moisture Estimation Combining Satellite Radar Measurements and Land Surface Modeling with Soil Physical Property Estimation. Environ. Model. Softw. 2007, 22, 891–898. [Google Scholar] [CrossRef]
- Meinshausen, N. Quantile Regression Forests. J. Mach. Learn. Res. 2006, 7, 983–999. [Google Scholar]
- Chatterjee, S.; Huang, J.; Hartemink, A.E. Establishing an Empirical Model for Surface Soil Moisture Retrieval at the U.S. Climate Reference Network Using Sentinel-1 Backscatter and Ancillary Data. Remote Sens. 2020, 12, 1242. [Google Scholar] [CrossRef]
- Batchu, V.; Nearing, G.; Gulshan, V. A Deep Learning Data Fusion Model Using Sentinel-1/2, SoilGrids, SMAP, and GLDAS for Soil Moisture Retrieval. J. Hydrometeorol. 2023, 24, 1789–1823. [Google Scholar] [CrossRef]
- Mirvakhabova, L.; Pukalchik, M.; Matveev, S.; Tregubova, P.; Oseledets, I. Field heterogeneity detection based on the modified FastICA RGB-image processing. J. Phys. Conf. Ser. 2018, 1117, 012009. [Google Scholar] [CrossRef]
- Vasilyeva, N.A.; Vladimirov, A.; Vasiliev, T. Image Recognition for Large Soil Maps Archive Overview: Metadata Extraction and Georeferencing Tool Development. In Proceedings of the International Conference on Data Analytics and Management in Data Intensive Domains, Moscow, Russia, 26–29 October 2021; Springer International Publishing: Cham, Switzerland, 2021; pp. 193–204. [Google Scholar]
- Mirpulatov, I.; Illarionova, S.; Shadrin, D.; Burnaev, E. Pseudo-Labeling Approach for Land Cover Classification through Remote Sensing Observations with Noisy Labels. IEEE Access 2023, 11, 82570–82583. [Google Scholar] [CrossRef]
- Gao, Y.; Walker, J.P.; Ye, N.; Panciera, R.; Monerris, A.; Ryu, D.; Rudiger, C.; Jackson, T.J. Evaluation of the Tau–Omega Model for Passive Microwave Soil Moisture Retrieval Using SMAPEx Datasets. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 888–895. [Google Scholar] [CrossRef]
- Entekhabi, D.; Rodriguez-Iturbe, I. Analytical Framework for the Characterization of the Space-Time Variability of Soil Moisture. Adv. Water Resour. 1994, 17, 35–45. [Google Scholar] [CrossRef]
- Merz, B.; Plate, E.J. An Analysis of the Effects of Spatial Variability of Soil and Soil Moisture on Runoff. Water Resour. Res. 1997, 33, 2909–2922. [Google Scholar] [CrossRef]
- Yoo, C.; Kim, S. EOF Analysis of Surface Soil Moisture Field Variability. Adv. Water Resour. 2004, 27, 831–842. [Google Scholar] [CrossRef]
- Famiglietti, J.S.; Ryu, D.; Berg, A.A.; Rodell, M.; Jackson, T.J. Field Observations of Soil Moisture Variability across Scales. Water Resour. Res. 2008, 44, 2006WR005804. [Google Scholar] [CrossRef]
- Brocca, L.; Melone, F.; Moramarco, T.; Morbidelli, R. Spatial-temporal Variability of Soil Moisture and Its Estimation across Scales. Water Resour. Res. 2010, 46, 2009WR008016. [Google Scholar] [CrossRef]
- Ma, Y.; Zhang, Z.; Yang, H.L.; Yang, Z. An Adaptive Adversarial Domain Adaptation Approach for Corn Yield Prediction. Comput. Electron. Agric. 2021, 187, 106314. [Google Scholar] [CrossRef]
- Ojha, N.; Merlin, O.; Molero, B.; Suere, C.; Olivera-Guerra, L.; Ait Hssaine, B.; Amazirh, A.; Al Bitar, A.; Escorihuela, M.; Er-Raki, S. Stepwise Disaggregation of SMAP Soil Moisture at 100 m Resolution Using Landsat-7/8 Data and a Varying Intermediate Resolution. Remote Sens. 2019, 11, 1863. [Google Scholar] [CrossRef]
- Liu, P.-W.; Bindlish, R.; O’Neill, P.; Fang, B.; Lakshmi, V.; Yang, Z.; Cosh, M.H.; Bongiovanni, T.; Collins, C.H.; Starks, P.J.; et al. Thermal Hydraulic Disaggregation of SMAP Soil Moisture Over the Continental United States. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 4072–4092. [Google Scholar] [CrossRef]
- Feldman, A.F.; Short Gianotti, D.J.; Dong, J.; Akbar, R.; Crow, W.T.; McColl, K.A.; Konings, A.G.; Nippert, J.B.; Tumber-Dávila, S.J.; Holbrook, N.M.; et al. Remotely Sensed Soil Moisture Can Capture Dynamics Relevant to Plant Water Uptake. Water Resour. Res. 2023, 59, e2022WR033814. [Google Scholar] [CrossRef]
- Roy, D.P.; Ju, J.; Lewis, P.; Schaaf, C.; Gao, F.; Hansen, M.; Lindquist, E. Multi-Temporal MODIS–Landsat Data Fusion for Relative Radiometric Normalization, Gap Filling, and Prediction of Landsat Data. Remote Sens. Environ. 2008, 112, 3112–3130. [Google Scholar] [CrossRef]
- Chen, J.; Zhu, X.; Vogelmann, J.E.; Gao, F.; Jin, S. A Simple and Effective Method for Filling Gaps in Landsat ETM+ SLC-off Images. Remote Sens. Environ. 2011, 115, 1053–1064. [Google Scholar] [CrossRef]
- Carrasco, L.; O’Neil, A.; Morton, R.; Rowland, C. Evaluating Combinations of Temporally Aggregated Sentinel-1, Sentinel-2 and Landsat 8 for Land Cover Mapping with Google Earth Engine. Remote Sens. 2019, 11, 288. [Google Scholar] [CrossRef]
- McCuen, R.H.; Knight, Z.; Cutter, A.G. Evaluation of the Nash–Sutcliffe Efficiency Index. J. Hydrol. Eng. 2006, 11, 597–602. [Google Scholar] [CrossRef]
- Gupta, H.V.; Kling, H.; Yilmaz, K.K.; Martinez, G.F. Decomposition of the Mean Squared Error and NSE Performance Criteria: Implications for Improving Hydrological Modelling. J. Hydrol. 2009, 377, 80–91. [Google Scholar] [CrossRef]
- Wijewardane, N.K.; Ge, Y.; Wills, S.; Loecke, T. Prediction of Soil Carbon in the Conterminous United States: Visible and Near Infrared Reflectance Spectroscopy Analysis of the Rapid Carbon Assessment Project. Soil Sci. Soc. Am. J. 2016, 80, 973–982. [Google Scholar] [CrossRef]
- Chatterjee, S.; Hartemink, A.E.; Triantafilis, J.; Desai, A.R.; Soldat, D.; Zhu, J.; Townsend, P.A.; Zhang, Y.; Huang, J. Characterization of Field-Scale Soil Variation Using a Stepwise Multi-Sensor Fusion Approach and a Cost-Benefit Analysis. CATENA 2021, 201, 105190. [Google Scholar] [CrossRef]
- Koster, R.D.; Suarez, M.J. Soil Moisture Memory in Climate Models. J. Hydrometeorol. 2001, 2, 558–570. [Google Scholar] [CrossRef]
Surface Soil Moisture | Performance |
Bias (m3 m−3) | 0.010 [−0.092, −0.015, 0.125] |
RMSE (m3 m−3) | 0.075 [0.024, 0.072, 0.133] |
Correlation coefficient (squared, r2) | 0.649 [0.006, 0.406, 0.835] |
Kling–Gupta Efficiency (KGE) | 0.624 [−0.899, 0.382, 0.796] |
Nash–Sutcliffe efficiency (NSE) | 0.376 [−5.195, 0.092, 0.604] |
Rootzone Soil Moisture | |
Bias (m3 m−3) | 0.006 [−0.216, −0.015, 0.203] |
RMSE (m3 m−3) | 0.095 [0.020, 0.065, 0.218] |
Correlation coefficient (squared, r2) | 0.535 [0.000, 0.318, 0.896] |
Kling–Gupta Efficiency (KGE) | 0.492 [−2.470, 0.180, 0.754] |
Nash–Sutcliffe efficiency (NSE) | 0.042 [−177.149, −0.237, 0.521] |
Surface Soil Moisture | Cropland | Pasture | Grassland | Shrub | Forest | Barren | Wetland | Developed |
Bias (m3 m−3) | −0.027 | −0.019 | 0.001 | 0.004 | −0.032 | 0.036 | −0.033 | 0.002 |
RMSE (m3 m−3) | 0.081 | 0.063 | 0.083 | 0.054 | 0.089 | 0.048 | 0.095 | 0.060 |
r2 | 0.543 | 0.682 | 0.348 | 0.436 | 0.419 | 0.835 | 0.531 | 0.748 |
KGE | 0.609 | 0.703 | 0.553 | 0.466 | 0.481 | 0.493 | 0.418 | 0.758 |
NSE | 0.484 | 0.648 | 0.293 | 0.428 | 0.330 | 0.594 | 0.407 | 0.744 |
Rootzone Soil Moisture | ||||||||
Bias (m3 m−3) | 0.019 | −0.063 | 0.007 | 0.012 | −0.070 | N.A. | −0.074 | −0.010 |
RMSE (m3 m−3) | 0.113 | 0.090 | 0.096 | 0.064 | 0.089 | N.A. | 0.135 | 0.072 |
r2 | 0.296 | 0.427 | 0.203 | 0.304 | 0.252 | N.A. | 0.086 | 0.640 |
KGE | 0.232 | 0.574 | 0.302 | 0.482 | 0.433 | N.A. | 0.004 | 0.616 |
NSE | 0.249 | −0.153 | 0.185 | 0.233 | −2.281 | N.A. | −0.312 | 0.617 |
Date | Summary | Value | |
---|---|---|---|
1 | 2020-06-15 | Mean | 0.264 |
2 | 2020-06-15 | Median | 0.265 |
3 | 2020-06-15 | Min | 0.190 |
4 | 2020-06-15 | Max | 0.311 |
5 | 2020-06-16 | Mean | 0.228 |
6 | 2020-06-16 | Median | 0.229 |
X | Y | Layer | Date | |
---|---|---|---|---|
1 | 561512.8 | 2196288 | 0.228 | 2020-06-15 |
2 | 561542.8 | 2196288 | 0.248 | 2020-06-15 |
3 | 561572.8 | 2196288 | 0.221 | 2020-06-15 |
4 | 561602.8 | 2196288 | 0.236 | 2020-06-15 |
5 | 561512.8 | 2196258 | 0.227 | 2020-06-15 |
6 | 561542.8 | 2196258 | 0.246 | 2020-06-15 |
ID | Longitude | Latitude | Date | VWC_5_Mean_pts | VWC_5_sd_pts | VWC_100_Mean_pts | VWC_100_sd_pts | VWC_5_Lower_pts | VWC_5_Upper_pts | VWC_100_Lower_pts | VWC_100_Upper_pts | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | S2 | −89.11825 | 42.57247 | 2020-06-15 | 0.268 | 0.082 | 0.356 | 0.097 | 0.153 | 0.391 | 0.224 | 0.471 |
2 | S2 | −89.11825 | 42.57247 | 2020-06-16 | 0.212 | 0.074 | 0.363 | 0.101 | 0.106 | 0.331 | 0.199 | 0.476 |
3 | S2 | −89.11825 | 42.57247 | 2020-06-17 | 0.249 | 0.087 | 0.358 | 0.098 | 0.092 | 0.367 | 0.206 | 0.476 |
4 | S2 | −89.11825 | 42.57247 | 2020-06-18 | 0.255 | 0.073 | 0.358 | 0.097 | 0.148 | 0.374 | 0.205 | 0.476 |
5 | S2 | −89.11825 | 42.57247 | 2020-06-19 | 0.212 | 0.078 | 0.348 | 0.103 | 0.112 | 0.358 | 0.188 | 0.468 |
6 | S2 | −89.11825 | 42.57247 | 2020-06-20 | 0.210 | 0.081 | 0.348 | 0.101 | 0.103 | 0.354 | 0.188 | 0.466 |
Function | No. of Dates | Size of Study Area/No. of Points | Resolution | Calculation of CIs | Computation Time | Size of Output Folders/Files |
---|---|---|---|---|---|---|
VWC_map | ||||||
Small region | 45 | 0.703 km2 | 100 | T | 33 min | 1.93 MB |
Large region | 30 | 7229.816 km2 | 500 | F | 110 min | 82.1 MB |
VWC_point | ||||||
30 | 10 points | \ | T | 260 min | 1.4 MB | |
60 | 20 points | \ | T | 792 min | 5.1 MB | |
30 | 30 points | \ | T | 764 min | 4.1 MB |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, Y.; Yang, Z.; Zhang, Z.; Huang, J. A Machine Learning-Based High-Resolution Soil Moisture Mapping and Spatial–Temporal Analysis: The mlhrsm Package. Agronomy 2024, 14, 421. https://doi.org/10.3390/agronomy14030421
Peng Y, Yang Z, Zhang Z, Huang J. A Machine Learning-Based High-Resolution Soil Moisture Mapping and Spatial–Temporal Analysis: The mlhrsm Package. Agronomy. 2024; 14(3):421. https://doi.org/10.3390/agronomy14030421
Chicago/Turabian StylePeng, Yuliang, Zhengwei Yang, Zhou Zhang, and Jingyi Huang. 2024. "A Machine Learning-Based High-Resolution Soil Moisture Mapping and Spatial–Temporal Analysis: The mlhrsm Package" Agronomy 14, no. 3: 421. https://doi.org/10.3390/agronomy14030421
APA StylePeng, Y., Yang, Z., Zhang, Z., & Huang, J. (2024). A Machine Learning-Based High-Resolution Soil Moisture Mapping and Spatial–Temporal Analysis: The mlhrsm Package. Agronomy, 14(3), 421. https://doi.org/10.3390/agronomy14030421