Onion Peel as a Potential Source of Antioxidants and Antimicrobial Agents
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Microbial Strains
2.3. Onion Peel Extraction
2.4. Qualitative and Quantitative Analysis by UHPLC-DAD-ESI/MS
2.5. Total Phenolic and Flavonoid Content
2.6. DPPH Scavenging Activity
2.7. ABTS Radical Scavenging Activity
2.8. Antimicrobial Assay
2.9. Statistical Analysis
3. Results
3.1. Chemical Composition of the Extracts
3.2. Antioxidant Activity
3.3. Antimicrobial Activity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- FAOSTAT, Food and Agriculture Organization of the United Nations. Statistics Division. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 1 November 2023).
- Maji, S.; Dwivedi, D.H.; Singh, N.; Kishor, S.; Gond, M. Agricultural Waste: Its Impact on Environment and Management Approaches. In Emerging Eco-friendly Green Technologies for Wastewater Treatment, Microorganisms for Sustainability; Springer: Berlin/Heidelberg, Germany, 2020; Volume 18, pp. 329–351. [Google Scholar]
- Ugwuoke, C.U.; Monwuba, N.; Onu, F.M.; Shimave, A.G.; Okonkwo, E.N.; Opurum, C.C. Impact of Agricultural Waste on Sustainable Environment and Health of Rural Women. Civ. Environ. Res. 2018, 10, 9. [Google Scholar]
- Benítez, V.; Mollá, E.; Martín-Cabrejas, M.A.; Aguilera, Y.; López-Andréu, F.J.; Cools, K.; Terry, L.A.; Esteban, R.M. Characterization of industrial onion wastes (Allium cepa L.): Dietary fibre and bioactive compounds. Plant Foods Hum. Nutr. 2011, 66, 48–57. [Google Scholar] [CrossRef]
- Sagar, N.A.; Kumar, Y.; Singh, R.; Nickhil, C.; Kumar, D.; Sharma, P.; Pandey, H.O.; Bhoj, S.; Tarafdar, A. Onion waste based-biorefinery for sustainable generation of value-added products. Bioresour. Technol. 2022, 362, 127870. [Google Scholar] [CrossRef]
- Mallek, S.B.; Prather, T.S.; Stapleton, J.J. Interaction effects of Allium spp. residues, concentrations and soil temperature on seed germination of four weedy plant species. Appl. Soil Ecol. 2007, 37, 233–239. [Google Scholar] [CrossRef]
- Romano, R.T.; Zhang, R. Anaerobic digestion of onion residuals using a mesophilic Anaerobic Phased Solids Digester. Biomass Bioenergy 2011, 35, 4174–4179. [Google Scholar] [CrossRef]
- Segundo, R.F.; De La Cruz-Noriega, M.; Milly Otiniano, N.; Benites, S.M.; Esparza, M.; Nazario-Naveda, R. Use of Onion Waste as Fuel for the Generation of Bioelectricity. Molecules 2022, 27, 625. [Google Scholar] [CrossRef]
- Kumar, A.P.N.; Kumar, M.; Jose, A.; Tomer, V.; Oz, E.; Proestos, C.; Zeng, M.; Elobeid, T.K.S. Major phytochemicals: Recent advances in health benefits and extraction method. Molecules 2023, 28, 887. [Google Scholar] [CrossRef]
- Mihajilov-Krstev, T.; Jovanović, B.; Zlatković, B.; Matejić, J.; Vitorović, J.; Cvetković, V.; Ilić, B.; Đorđević, L.; Joković, N.; Miladinović, D.; et al. Phytochemistry, toxicology and therapeutic value of Petasites hybridus subsp. Ochroleucus (Common Butterbur) from the Balkans. Plants 2020, 9, 700. [Google Scholar] [CrossRef] [PubMed]
- Kasapidou, E.; Sossidou, E.; Mitlianga, P. Fruit and vegetable co-products as functional feed ingredients in farm animal nutrition for improved product quality. Agriculture 2015, 5, 1020–1034. [Google Scholar] [CrossRef]
- Rodrigues, F.; Nunes, M.A.; Alves, R.C.; Oliveira, M.B.P. Applications of recovered bioactive compounds in cosmetics and other products. In Handbook of Coffee Processing By-Products; Elsevier: Amsterdam, The Netherlands, 2017; pp. 195–220. [Google Scholar]
- Ngwasiri, P.N.; Ambindei, W.A.; Adanmengwi, V.A.; Ngwi, P.; Mah, A.T.; Ngangmou, N.T.; Fonmboh, D.J.; Ngwabie, N.M.; Ngassoum, M.B.; Aba, E.R. A Review Paper on Agro-food Waste and Food by-Product Valorization into Value Added Products for Application in the Food Industry: Opportunities and Challenges for Cameroon Bioeconomy. J. Biotechnol. Bioresour. Technol. 2022, 8, 32–61. [Google Scholar] [CrossRef]
- Oleszek, M.; Kowalska, I.; Bertuzzi, T.; Oleszek, W. Phytochemicals derived from agricultural residues and their valuable properties and applications. Molecules 2023, 28, 342. [Google Scholar] [CrossRef] [PubMed]
- Lourenço, S.C.; Moldão-Martins, M.; Alves, V.D. Antioxidants of natural plant origins: From sources to food industry applications. Molecules 2019, 24, 4132. [Google Scholar] [CrossRef] [PubMed]
- Bains, A.; Sridhar, K.; Singh, B.N.; Kuhad, R.C.; Chawla, P.; Sharma, M. Valorization of onion peel waste: From trash to treasure. Chemosphere 2023, 343, 140178. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Barbhai, M.D.; Hasan, M.; Punia, S.; Dhumal, S.; Rais, N.; Chandran, D.; Pandiselvam, R.; Kothakota, A.; Tomar, M. Onion (Allium cepa L.) peels: A review on bioactive compounds and biomedical activities. Biomed. Pharmacother. 2022, 146, 112498. [Google Scholar] [CrossRef] [PubMed]
- Stoica, F.; Rațu, R.N.; Veleșcu, I.D.; Stănciuc, N.; Râpeanu, G. A comprehensive review on bioactive compounds, health benefits, and potential food applications of onion (Allium cepa L.) skin waste. Trends Food Sci. Technol. 2023, 141, 104173. [Google Scholar] [CrossRef]
- Albishi, T.; John, J.A.; Al-Khalifa, A.S.; Shahidi, F. Antioxidative phenolic constituents of skins of onion varieties and their activities. J. Funct. Foods 2013, 5, 1191–1203. [Google Scholar] [CrossRef]
- Gorelick, J.; Iraqi, R.H.; Bernstein, N. Ecdysteroid content and therapeutic activity in elicited spinach accessions. Plants 2020, 9, 727. [Google Scholar] [CrossRef]
- Shiponi, S.; Bernstein, N. Response of medical cannabis (Cannabis sativa L.) genotypes to P supply under long photoperiod: Functional phenotyping and the ionome. Ind. Crops Prod. 2021, 161, 113154. [Google Scholar] [CrossRef]
- Danziger, N.; Bernstein, N. Plant architecture manipulation increases cannabinoid standardization in ‘drug-type’ medical cannabis. Ind. Crops Prod. 2021, 167, 113528. [Google Scholar] [CrossRef]
- Saloner, A.; Bernstein, N. Effect of Potassium (K) supply on cannabinoids, terpenoids and plant function in medical cannabis. Agronomy 2022, 12, 1242. [Google Scholar] [CrossRef]
- Kumar, M.; Barbhai, M.D.; Hasan, M.; Dhumal, S.; Singh, S.; Pandiselvam, R.; Rais, N.; Natta, S.; Senapathy, M.; Sinha, N. Onion (Allium cepa L.) peel: A review on the extraction of bioactive compounds, its antioxidant potential, and its application as a functional food ingredient. J. Food Sci. 2022, 87, 4289–4311. [Google Scholar] [CrossRef]
- AbouZid, S.F.; Elsherbeiny, G.M. Increase in flavonoids content in red onion peel by mechanical shredding. J. Med. Plants Res. 2008, 82, 258–260. [Google Scholar]
- Ly, T.N.; Hazama, C.; Shimoyamada, M.; Ando, H.; Kato, K.; Yamauchi, R. Antioxidative compounds from the outer scales of onion. J. Agric. Food Chem. 2005, 53, 8183–8189. [Google Scholar] [CrossRef] [PubMed]
- Prakash, D.; Singh, B.N.; Upadhyay, G. Antioxidant and free radical scavenging activities of phenols from onion (Allium cepa). Food Chem. 2007, 102, 1389–1393. [Google Scholar] [CrossRef]
- Park, J.; Kim, J.; Kim, M.K. Onion flesh and onion peel enhance antioxidant status in aged rats. J. Nutr. Sci. Vitaminol. 2007, 53, 21–29. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Cha, Y.J.; Lee, K.H.; Park, E. Effect of onion peel extract supplementation on the lipid profile and antioxidative status of healthy young women: A randomized, placebo-controlled, double-blind, crossover trial. Nutr. Res. Pract. 2013, 7, 373–379. [Google Scholar] [CrossRef]
- Ayanniyi, R.; Olumoh-Abdul, H.; Ojuade, F.; Akintola, J. Evaluation of Anti-Inflammatory and Gastroprotective Activity of Aqueous Peel Extract of Allium cepa. J. Res. Pharm. 2022, 26, 734–741. [Google Scholar] [CrossRef]
- Zvezdanović, J. UHPLC–DAD–ESI–MS/MS characterization of St. John’s wort infusions from Serbia origin. Chem. Pap. 2022, 76, 1329–1347. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventos, R.M. Analysis of Total Phenols and Other Oxidation Substrates and Antioxidants by Means of Folin-Ciocalteu Reagent. Meth. Enzymol. 1999, 299, 152–178. [Google Scholar]
- Woisky, R.G.; Salatino, A. Analysis of propolis: Some parameters and procedures for chemical quality control. J. Apic. Res. 1998, 37, 99–105. [Google Scholar] [CrossRef]
- Blois, M.S. Antioxidant determinations by the use of a stable free radical. Nature 1958, 181, 1199–1200. [Google Scholar] [CrossRef]
- Miller, N.J.; Rice-Evans, C.A. Factors influencing the antioxidant activity determined by the ABTS radical cation assay. Free Radic. Res. 1997, 26, 195–199. [Google Scholar] [CrossRef]
- M07-A9; Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically. Approved Standard—Ninety Edition 2012. Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2012; Volume 32.
- Masike, K.; Mhlongo, M.I.; Mudau, S.P.; Nobela, O.; Ncube, E.N.; Tugizimana, F.; George, M.J.; Madala, N.E. Highlighting mass spectrometric fragmentation differences and similarities between hydroxycinnamoyl-quinic acids and hydroxycinnamoyl-isocitric acids. Chem. Cent. J. 2017, 11, 29. [Google Scholar] [CrossRef]
- Zimmermann, B.F.; Walch, S.G.; Tinzoh, L.N.; Stühlinger, W.; Lachenmeier, D.W. Rapid UHPLC determination of polyphenols in aqueous infusions of Salvia officinalis L. (sage tea). J. Chromatogr. B 2011, 879, 2459–2464. [Google Scholar] [CrossRef]
- Grzelak-Błaszczyk, K.; Milala, J.; Kołodziejczyk, K.; Sójka, M.; Czarnecki, A.; Kosmala, M.; Klewicki, R.; Fotschki, B.; Jurgoński, A.; Juśkiewicz, J. Protocatechuic acid and quercetin glucosides in onions attenuate changes induced by high fat diet in rats. Food Funct. 2020, 11, 3585–3597. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.; Price, W.E.; Ashton, J.; Tapsell, L.C.; Johnson, S. Identification and characterization of phenolic compounds in hydromethanolic extracts of sorghum wholegrains by LC-ESI-MSn. Food Chem. 2016, 211, 215–226. [Google Scholar] [CrossRef] [PubMed]
- Chernonosov, A.A.; Karpova, E.A.; Lyakh, E.M. Identification of phenolic compounds in Myricaria bracteata leaves by high-performance liquid chromatography with a diode array detector and liquid chromatography with tandem mass spectrometry. Rev. Bras. Farmacogn. 2017, 27, 576–579. [Google Scholar] [CrossRef]
- Kramer, C.M.; Prata, R.T.; Willits, M.G.; De Luca, V.; Steffens, J.C.; Graser, G. Cloning and regiospecificity studies of two flavonoid glucosyltransferases from Allium cepa. Phytochemistry 2003, 64, 1069–1076. [Google Scholar] [CrossRef]
- Yoo, K.S.; Lee, E.J.; Patil, B.S. Quantification of Quercetin Glycosides in 6 Onion Cultivars and Comparisons of Hydrolysis-HPLC and Spectrophotometric Methods in Measuring Total Quercetin Concentrations. J. Food Sci. 2010, 75, C160–C165. [Google Scholar] [CrossRef] [PubMed]
- Sesink, A.L.A.; O’Leary, K.A.; Hollman, P.C.H. Quercetin Glucuronides but Not Glucosides Are Present in Human Plasma after Consumption of Quercetin-3-Glucoside or Quercetin-4′-Glucoside. J. Nutr. 2001, 131, 1938–1941. [Google Scholar] [CrossRef] [PubMed]
- Beesk, N.; Perner, H.; Schwarz, D.; George, E.; Kroh, L.W.; Rohn, S. Distribution of quercetin-3, 4′-O-diglucoside, quercetin-4′-O-monoglucoside, and quercetin in different parts of the onion bulb (Allium cepa L.) influenced by genotype. Food Chem. 2010, 122, 566–571. [Google Scholar] [CrossRef]
- Burri, S.C.; Ekholm, A.; Håkansson, Å.; Tornberg, E.; Rumpunen, K. Antioxidant capacity and major phenol compounds of horticultural plant materials not usually used. J. Funct. Foods 2017, 38, 119–127. [Google Scholar] [CrossRef]
- Škerget, M.; Majhenič, L.; Bezjak, M.; Knez, Ž. Antioxidant, radical scavenging and antimicrobial activities of red onion (Allium cepa L) skin and edible part extracts. Chem. Biochem. Eng. Q. 2009, 23, 435–444. [Google Scholar]
- Kim, J.; Kim, J.S.; Park, E. Antioxidative and antigenotoxic effects of onion peel extracts in non-cellular and cellular systems. Food Sci. Biotechnol. 2013, 22, 1–8. [Google Scholar] [CrossRef]
- Do, Q.D.; Angkawijaya, A.E.; Tran-Nguyen, P.L.; Huynh, L.H.; Soetaredjo, F.E.; Ismadji, S.; Ju, Y.-H. Effect of extraction solvent on total phenol content, total flavonoid content, and antioxidant activity of Limnophila aromatica. J. Food Drug Anal. 2014, 22, 296–302. [Google Scholar] [CrossRef]
- Singh, B.N.; Singh, B.; Singh, R.; Prakash, D.; Singh, D.; Sarma, B.; Upadhyay, G.; Singh, H. Polyphenolics from various extracts/fractions of red onion (Allium cepa) peel with potent antioxidant and antimutagenic activities. Food Chem. Toxicol. 2009, 47, 1161–1167. [Google Scholar] [CrossRef] [PubMed]
- Nile, S.H.; Nile, A.S.; Keum, Y.S.; Sharma, K. Utilization of quercetin and quercetin glycosides from onion (Allium cepa L.) solid waste as an antioxidant, urease and xanthine oxidase inhibitors. Food Chem. 2017, 235, 119–126. [Google Scholar] [CrossRef]
- Khalili, S.; Saeidi Asl, M.R.; Khavarpour, M.; Vahdat, S.M.; Mohammadi, M. Comparative study on the effect of extraction solvent on total phenol, flavonoid content, antioxidant and antimicrobial properties of red onion (Allium cepa). J. Food Meas. Charact. 2022, 16, 3578–3588. [Google Scholar] [CrossRef]
- Takahama, U.; Hirota, S. Deglucosidation of quercetin glucosides to the aglycone and formation of antifungal agents by peroxidase-dependent oxidation of quercetin on browning of onion scales. Plant Cell Physiol. 2000, 41, 1021–1029. [Google Scholar] [CrossRef] [PubMed]
- Higashio, H.; Hirokane, H.; Sato, F.; Tokuda, S.; Uragami, A. Effect of UV irradiation after the harvest on the content of flavonoid in vegetables. In V International Postharvest Symposium 682; ISHS: Korbeek-Lo, Belgium, 2004; pp. 1007–1012. [Google Scholar]
- Campone, L.; Celano, R.; Piccinelli, A.L.; Pagano, I.; Carabetta, S.; Di Sanzo, R.; Russo, M.; Ibañez, E.; Cifuentes, A.; Rastrelli, L. Response surface methodology to optimize supercritical carbon dioxide/co-solvent extraction of brown onion skin by-product as source of nutraceutical compounds. Food Chem. 2018, 269, 495–502. [Google Scholar] [CrossRef] [PubMed]
- Piechowiak, T.; Grzelak-Błaszczyk, K.; Bonikowski, R.; Balawejder, M. Optimization of extraction process of antioxidant compounds from yellow onion skin and their use in functional bread production. LWT 2020, 117, 108614. [Google Scholar] [CrossRef]
- Khiari, Z.; Makris, D.P. Stability and transformation of major flavonols in onion (Allium cepa) solid wastes. J. Food Sci. Technol. 2012, 49, 489–494. [Google Scholar] [CrossRef] [PubMed]
- Sukor, N.; Selvam, V.P.; Jusoh, R.; Kamarudin, N.; Abd Rahim, S. Intensified DES mediated ultrasound extraction of tannic acid from onion peel. J. Food Eng. 2021, 296, 110437. [Google Scholar] [CrossRef]
- Chia, P.W.; Lim, B.S.; Tan, K.C.; Yong, F.S.J.; Kan, S.Y. Water extract of onion peel for the synthesis of bisindolylmethanes. J. King Saud Univ. Sci. 2019, 31, 642–647. [Google Scholar] [CrossRef]
- Mounir, R.; Alshareef, W.A.; El Gebaly, E.A.; El-Haddad, A.E.; Ahmed, A.M.S.; Mohamed, O.G.; Enan, E.T.; Mosallam, S.; Tripathi, A.; Selim, H.M.R.M. Unlocking the Power of Onion Peel Extracts: Antimicrobial and Anti-Inflammatory Effects Improve Wound Healing through Repressing Notch-1/NLRP3/Caspase-1 Signaling. Pharmaceuticals 2023, 16, 1379. [Google Scholar] [CrossRef] [PubMed]
- Prior, R.L.; Wu, X.; Schaich, K. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J. Agric. Food Chem. 2005, 53, 4290–4302. [Google Scholar] [CrossRef]
- Celano, R.; Docimo, T.; Piccinelli, A.L.; Gazzerro, P.; Tucci, M.; Di Sanzo, R.; Carabetta, S.; Campone, L.; Russo, M.; Rastrelli, L. Onion peel: Turning a food waste into a resource. Antioxidants 2021, 10, 304. [Google Scholar] [CrossRef]
- Sun-Waterhouse, D.; Smith, B.G.; O’Connor, C.J.; Melton, L.D. Effect of raw and cooked onion dietary fibre on the antioxidant activity of ascorbic acid and quercetin. Food Chem. 2008, 111, 580–585. [Google Scholar] [CrossRef]
- Ramos, F.A.; Takaishi, Y.; Shirotori, M.; Kawaguchi, Y.; Tsuchiya, K.; Shibata, H.; Higuti, T.; Tadokoro, T.; Takeuchi, M. Antibacterial and antioxidant activities of quercetin oxidation products from yellow onion (Allium cepa) skin. J. Agric. Food Chem. 2006, 54, 3551–3557. [Google Scholar] [CrossRef]
- Sagar, N.A.; Pareek, S. Antimicrobial assessment of polyphenolic extracts from onion (Allium cepa L.) skin of fifteen cultivars by sonication-assisted extraction method. Heliyon 2020, 6, e05478. [Google Scholar] [CrossRef]
- Fredotović, Ž.; Puizina, J.; Nazlić, M.; Maravić, A.; Ljubenkov, I.; Soldo, B.; Vuko, E.; Bajić, D. Phytochemical Characterization and Screening of Antioxidant, Antimicrobial and Antiproliferative Properties of Allium× cornutum Clementi and Two Varieties of Allium cepa L. Peel Extracts. Plants 2021, 10, 832. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.A.; Kim, K.T.; Nah, S.Y.; Chung, M.-S.; Cho, S.; Paik, H.D. Antimicrobial and antioxidative effects of onion peel extracted by the subcritical water. Food Sci. Biotechnol. 2011, 20, 543–548. [Google Scholar] [CrossRef]
- Kim, W.J.; Lee, K.A.; Kim, K.T.; Chung, M.S.; Cho, S.W.; Paik, H.D. Antimicrobial effects of onion (Allium cepa L.) peel extracts produced via subcritical water extraction against Bacillus cereus strains as compared with ethanolic and hot water extraction. Food Sci. Biotechnol. 2011, 20, 1101–1106. [Google Scholar] [CrossRef]
- Santas, J.; Almajano, M.P.; Carbó, R. Antimicrobial and antioxidant activity of crude onion (Allium cepa, L.) extracts. Int. J. Food Sci. Technol. 2010, 45, 403–409. [Google Scholar] [CrossRef]
- Moosazad, S.; Ghajarbeigi, P.; Mahmoudi, R.; Shahsavari, S.; Vahidi, R.; Soltani, A. Antibacterial and antioxidant properties of colorant extracted from red onion skin. J. Chem. Health Risks 2019, 9, 235–243. [Google Scholar]
- Loredana, L.; Giuseppina, A.; Filomena, N.; Florinda, F.; Marisa, D.M.; Donatella, A. Biochemical, antioxidant properties and antimicrobial activity of different onion varieties in the Mediterranean area. J. Food Meas. Charact. 2019, 13, 1232–1241. [Google Scholar] [CrossRef]
Peak No. | tR, min (from UHPLC-MS Signal) | UV/Vis Data from UHPLC-DAD Signal Absorbance Maximum, nm | Molecular Ion [M-H]–m/z | MS/MS Fragment Ions | Assignment (Reference) | Extracts | |||
---|---|---|---|---|---|---|---|---|---|
MeOH | EtOH | AC | EA | ||||||
1 | 0.79 | - | 191 | 173,111(100%) | Quinic acid [37] | + | + | + | - |
2 | 0.91 | - | 315 | 255,225,153(100%),109 | a Protocatechuic acid hexoside [38] | + | + | + | + |
3 | 1.28 | - | 315 | 255,225,153(100%),109 | a Protocatechuic acid hexoside [38] | + | + | + | + |
4 | 1.94 | 217,261,295 | 315 | 255,225,153(100%),109 | a Protocatechuic acid hexoside [38] | + | + | + | + |
5 | 2.00 | 217,261,295 | 315 | 255,225,153(100%),109 | a Protocatechuic acid hexoside [38]) | + | + | + | + |
6 | 2.15 | 220,261,295 | 153 | 109(100%) | a Protocatechuic acid [38] | + | + | + | + |
7 | 4.90 | 281 | 289 | 245,179(100%),151,109 | (+) Catechin [31] | - | + | + | + |
8 | 5.64 | 325,298 | 179 | 143,135(100%),71 | Caffeic acid (standard) | - | - | - | + |
9 | 6.08 | 296,330sh | 317 | 299,255,206,191(100%),163 | Dihydroisorhamnetin (tent.) | + | + | + | + |
10 | 6.63 | 219,262,295 | 167 | 153/152,108(100%)/107 | Vanillic acid b (PubChem CID: 8468) | + | - | - | - |
11 | 6.84 | 364,255 | 671 | 625(100%) | Quercetin-dihexoside derivative (tent.) | + | + | + | - |
12 | 7.30 | 292,330sh | 303 | 285(100%) | Taxifolin (standard) | + | + | + | + |
13 | 7.50 | 266,346 | 625 | 463(100%),301 | c Quercetin-dihexoside [39] | + | + | + | + |
14 | 7.84 | 255,346 | 639 | 519,477,315(100%),357,271 | d Isorhamnetin-dihexoside [39] | + | + | + | - |
15 | 8.00 | 257,372 | 463 | 301(100%) | d Isorhamnetin-dihexoside [40] | + | + | + | + |
16 | 8.89 | 258,359 | 463 | 301(100%) | e Quercetin-3-O-glucoside (standard) | + | + | + | + |
17 | 9.06 | 271,364 | 735 | 609(100%),573,529,447,301 | Quercetin-rutinoside derivative (tent.) | + | + | - | - |
18 | 9.77 | 255,364 | 463 | 301(100%) | f Quercetin-hexoside [39] | + | + | + | + |
19 | 10.24 | 255,365 | 477 | 315(100%)/314,300/299,285 | Isorhamnetin-hexoside [40] | + | + | + | + |
20 | 10.85 | 257,371 | 301 | 273,179(100%),151,107 | Quercetin (standard) | + | + | + | + |
21 | 11.94 | 267,365 | 285 | 285(100%),257,213,151 | Kaempferol (standard) | + | + | + | + |
22 | 12.10 | 256,371 | 315 | 300(100%)/301 | Isorhamnetin (standard) | + | + | + | + |
23 | 12.55 | 271,305,364 | 257 | 213(100%),107 | n.i. | + | + | + | + |
24 | 12.84 | 271,305,363 | 299 | 271(100%),255,243 | Rhamnocitrin [41] | - | + | + | + |
25 | 13.55 | 258,306,365 | 761 | 599(100%),555,473 | n.i. | + | + | - | - |
26 | 13.70 | 258,305,381 | 599 | 555,473(100%) | n.i. | + | + | + | + |
27 | 15.17 | - | 783 | 737(100%),747 | n.i. | + | + | + | + |
28 | 15.28 | - | 753 | 707(100%) | n.i. | + | + | + | + |
Extracts | Quercetin (mg/gDW) | Quercetin-Hexoside * (mg/gDW) |
---|---|---|
Methanol | 48.53 ± 7.95 a | 6.22 ± 1.42 a |
Ethanol | 14.91 ± 0.73 b | 3.67 ± 0.13 b |
Acetone | 38.47 ± 4.67 ac | 3.94 ± 0.11 b |
Ethyl acetate | 29.01 ± 0.71 c | 2.17 ± 0.1 b |
Bacterial Strains Isolated and ATCC | Antimicrobial Activity MIC/MMC (mg/mL) | Antimicrobial Activity MIC/MMC (µg/mL) | ||||
---|---|---|---|---|---|---|
Extracts | Reference Antimicrobials | |||||
Methanol | Ethanol | Acetone | Ethyl-Acetate | Ciprofloxacine (Antibacterial) or Nystatin (Antifungal) | ||
Gram (−) bacteria | Source | |||||
Escherichia coli | Human stool | 12.50/12.50 | 12.50/12.50 | 25.00/50.00 | 25.00/25.00 | 2.50/2.50 |
Escherichia coli | ATCC25922 | 25.00/25.00 | 12.50/25.00 | 25.00/50.00 | 6.25/25.00 | 2.50/2.50 |
Pseudomonas aeruginosa | Human stool | 3.13/12.50 | 1.56/25.00 | 6.25/25.00 | 25.00/25.00 | 0.31/0.62 |
Pseudomonas aeruginosa | ATCC9027 | 12.50/12.50 | 6.25/6.25 | 25.00/25.00 | 25.00/25.00 | 0.62/0.62 |
Klebsiella aerogenes | Human stool | 3.13/> 50.00 | 1.56/25.00 | 25.00/>50.00 | 12.50/>50.00 | 0.16/0.62 |
Klebsiella aerogenes | ATCC 13048 | 12.50/12.50 | 12.50/12.50 | 25.00/50.00 | 25.00/>50.00 | 0.008/0.31 |
Proteus mirabilis | Human stool | 1.56/6.25 | 0.78/6.25 | 3.13/12.50 | 1.56/6.25 | 0.16/2.50 |
Proteus mirabilis | ATCC12453 | 6.25/6.25 | 1.56/6.25 | 6.25/25.00 | 6.25/6.25 | 0.62/2.50 |
Salmonella enteritidis | Human stool | 12.50/12.50 | 6.25/12.50 | 25.00/25.00 | 25.00/25.00 | 0.008/0.16 |
Salmonella enteritidis | ATCC 13076 | 12.50/25.00 | 6.25/25.00 | 25.00/>50.00 | 25.00/25.00 | 0.008/0.16 |
Shigella sonnei | Human stool | 6.25/>50.00 | 3.13/25.00 | 6.25/>50.00 | 50.00/>50.00 | 2.50/5.00 |
Shigella sonnei | ATCC 25931 | 12.50/>50.00 | 3.13/50.00 | 3.13/>50.00 | 50.00/>50.00 | 2.50/5.00 |
Gram (+) bacteria | Source | |||||
Staphylococcus aureus | Human stool | 6.25/12.50 | 3.13/25.00 | 3.13/50.00 | 3.13/25.00 | 0.008/0.16 |
Staphylococcus aureus | ATCC6538 | 25.00/50.00 | 1.56/25.00 | 1.56/50.00 | 3.13/25.00 | 0.008/0.16 |
Enterococcus faecalis | Human stool | 6.25/50.00 | 3.13/50.00 | 6.25/>50.00 | 3.13/>50.00 | 0.31/0.31 |
Enterococcus faecalis | ATCC19433 | 3.13/50.00 | 3.13/50.00 | 12.50/>50.00 | 3.13/>50.00 | 0.31/0.31 |
Yeast | Source | |||||
Candida albicans | Human stool | 1.56/25.00 | 3.13/12.50 | 1.56/25.00 | 1.56/25.00 | 16.00/16.00 |
Candida albicans | ATCC10231 | 3.13/50.00 | 3.13/12.50 | 12.05/50.00 | 1.56/12.50 | 16.00/16.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Joković, N.; Matejić, J.; Zvezdanović, J.; Stojanović-Radić, Z.; Stanković, N.; Mihajilov-Krstev, T.; Bernstein, N. Onion Peel as a Potential Source of Antioxidants and Antimicrobial Agents. Agronomy 2024, 14, 453. https://doi.org/10.3390/agronomy14030453
Joković N, Matejić J, Zvezdanović J, Stojanović-Radić Z, Stanković N, Mihajilov-Krstev T, Bernstein N. Onion Peel as a Potential Source of Antioxidants and Antimicrobial Agents. Agronomy. 2024; 14(3):453. https://doi.org/10.3390/agronomy14030453
Chicago/Turabian StyleJoković, Nataša, Jelena Matejić, Jelena Zvezdanović, Zorica Stojanović-Radić, Nemanja Stanković, Tatjana Mihajilov-Krstev, and Nirit Bernstein. 2024. "Onion Peel as a Potential Source of Antioxidants and Antimicrobial Agents" Agronomy 14, no. 3: 453. https://doi.org/10.3390/agronomy14030453
APA StyleJoković, N., Matejić, J., Zvezdanović, J., Stojanović-Radić, Z., Stanković, N., Mihajilov-Krstev, T., & Bernstein, N. (2024). Onion Peel as a Potential Source of Antioxidants and Antimicrobial Agents. Agronomy, 14(3), 453. https://doi.org/10.3390/agronomy14030453