Effect of Application Rates of N and P Fertilizers on Soil Nematode Community Structure in Mollisols
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Design
2.3. Soil Sampling
2.4. Nematode Extraction and Identification
2.5. Calculation of Community Structure Indices and Respired Carbon
2.6. Soil Properties
2.7. Data Analysis
3. Results
3.1. Effect of N and P Fertilizers on Abundance of Soil Nematodes
3.2. Effect of N and P Fertilizers on Soil Nematode Community Diversity
3.3. Effect of N and P Fertilizers on Nematode Food Web Structure and Respired Carbon
3.4. Relationship between Soil Properties and Soil Nematode Community Structure
4. Discussion
4.1. Effect of N and P Fertilizers on Abundance of Soil Nematodes
4.2. Effect of N and P Fertilizers on Soil Nematode Community Diversity
4.3. Effect of N and P Fertilizers on Nematode Food Web Structure and Respired Carbon
4.4. Relationship between Soil Properties and Soil Nematode Community Structure
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Galloway, J.N.; Townsend, A.R.; Erisman, J.W.; Bekunda, M.; Cai, Z.C.; Freney, J.R.; Martinelli, L.A.; Seitzinger, S.P.; Sutton, M.A. Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions. Science 2008, 320, 889–892. [Google Scholar] [CrossRef] [PubMed]
- Hungate, B.A.; Dukes, J.S.; Shaw, M.R.; Luo, Y.Q.; Field, C.B. Nitrogen and climate change. Science 2003, 302, 1512–1513. [Google Scholar] [CrossRef] [PubMed]
- Turner, B.L.; Cheesman, A.W.; Condron, L.M.; Reitzel, K.; Richardson, A.E. Introduction to the special issue: Developments in soil organic phosphorus cycling in natural and agricultural ecosystems. Geoderma 2015, 257–258, 1–3. [Google Scholar] [CrossRef]
- Treseder, K.K. Nitrogen additions and microbial biomass: A meta-analysis of ecosystem studies. Ecol. Lett. 2008, 11, 1111–1120. [Google Scholar] [CrossRef] [PubMed]
- Leff, J.W.; Jones, S.E.; Prober, S.M.; Barberán, A.; Borer, E.T.; Firn, J.L.; Harpole, W.S.; Hobbie, S.E.; Hofmockel, K.S.; Knops, J.M.H.; et al. Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe. Proc. Natl. Acad. Sci. USA 2015, 112, 10967–10972. [Google Scholar] [CrossRef] [PubMed]
- Van den Hoogen, J.; Geisen, S.; Routh, D.; Ferris, H.; Traunspurger, W.; Wardle, D.A.; de Goede, R.G.M.; Adams, B.J.; Ahmad, W.; Andriuzzi, W.S.; et al. Soil nematode abundance and functional group composition at a global scale. Nature 2019, 572, 194–198. [Google Scholar] [CrossRef] [PubMed]
- Bongers, T. The maturity index: An ecological measure of environmental disturbance based on nematode species composition. Oecologia 1990, 83, 14–19. [Google Scholar] [CrossRef]
- Ferris, H.; Bongers, T.; de Goede, R.G.M. A framework for soil food web diagnostics: Extension of the nematode faunal analysis concept. Appl. Soil Ecol. 2001, 18, 13–29. [Google Scholar] [CrossRef]
- Yeates, G.W.; Bongers, T.; De Goede, R.G.M.; Freckman, D.W.; Georgieva, S.S. Feeding habits in soil nematode families and genera-an outline for soil ecologists. J. Nematol. 1993, 25, 315–331. [Google Scholar]
- Hu, J.; Chen, G.R.; Hassan, W.M.; Chen, H.; Li, J.Y.; Du, G.Z. Fertilization influences the nematode community through changing the plant community in the Tibetan Plateau. Eur. J. Soil Biol. 2017, 78, 7–16. [Google Scholar] [CrossRef]
- Wang, H.L.; Liu, G.C.; Huang, B.B.; Wang, X.C.; Xing, Y.J.; Wang, Q.G. Long-term nitrogen addition and precipitation reduction decrease soil nematode community diversity in a temperate forest. Appl. Soil Ecol. 2021, 162, 103895. [Google Scholar] [CrossRef]
- Todd, T. Effects of management practices on nematode community structure in tallgrass prairie. Appl. Soil Ecol. 1996, 3, 235–246. [Google Scholar] [CrossRef]
- Forge, T.A.; Bittman, S.; Kowalenko, C.G. Responses of grassland soil nematodes and protozoa to multi-year and single-year applications of dairy manure slurry and fertilizer. Soil Biol. Biochem. 2005, 37, 1751–1762. [Google Scholar] [CrossRef]
- Van Eekeren, N.; de Boer, H.; Bloem, J.; Schouten, T.; Rutgers, M.; de Goede, R.; Brussaard, L. Soil biological quality of grassland fertilized with adjusted cattle manure slurries in comparison with organic and inorganic fertilizers. Biol. Fertil. Soils 2009, 45, 595–608. [Google Scholar] [CrossRef]
- Sarathchandra, S.U.; Ghani, A.; Yeates, G.W.; Burch, G.; Cox, N.R. Effect of nitrogen and phosphate fertilizers on microbial and nematode diversity in pasture soils. Soil Biol. Biochem. 2001, 33, 953–964. [Google Scholar] [CrossRef]
- Wang, K.H.; McSorley, R.; Marshall, A.; Gallaher, R.N. Influence of organic Crotalaria juncea hay and ammonium nitrate fertilizers on soil nematode communities. Appl. Soil Ecol. 2006, 31, 186–198. [Google Scholar] [CrossRef]
- Liang, W.; Lou, Y.; Li, Q.; Zhong, S.; Zhang, X.; Wang, J. Nematode faunal response to long-term application of nitrogen fertilizer and organic manure in Northeast China. Soil Biol. Biochem. 2009, 41, 883–890. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, F.M.; Li, J.; Zou, B.; Wang, X.L.; Li, Z.A.; Fu, S.L. Effects of experimental nitrogen and/or phosphorus additions on soil nematode communities in a secondary tropical forest. Soil Biol. Biochem. 2014, 75, 1–10. [Google Scholar] [CrossRef]
- Simon, A.; Rovira, A. The influence of phosphate fertilizer on the growth and yield of wheat in soil infested with cereal cyst nematode (Heterodera avenae Woll.). Aust. J. Exp. Agric. 1985, 25, 191–197. [Google Scholar] [CrossRef]
- Price, N.S.; Roncadori, R.W.; Hussey, R.S. The growth of nematode ‘tolerant’ and ‘intolerant’ soyabeans as affected by phosphorus, Glomus intraradices and light. Plant Pathol. 1995, 44, 597–603. [Google Scholar] [CrossRef]
- Coyne, D.L.; Sahrawat, K.L.; Plowright, R.A. The influence of mineral fertilizer application and plant nutrition on plant-parasitic nematodes in upland and lowland rice in Cote d’Ivoire and its implications in long term agricultural research trials. Exp. Agric. 2004, 40, 245–256. [Google Scholar] [CrossRef]
- Ferris, H.; Matute, M.M. Structural and functional succession in the nematode fauna of a soil food web. Appl. Soil Ecol. 2003, 23, 93–110. [Google Scholar] [CrossRef]
- Du Preez, G.; Daneel, M.; De Goede, R.; Du Toit, M.J.; Ferris, H.; Fourie, H.; Geisen, S.; Kakouli-Duarte, T.; Korthals, G.; Sánchez-Moreno, S.; et al. Nematode-based indices in soil ecology: Application, utility, and future directions. Soil Biol. Biochem. 2022, 169, 108640. [Google Scholar] [CrossRef]
- Roth, D.S.; Perfecto, I.; Rathcke, B. The effects of management systems on ground-foraging ant diversity in Costa Rica. Ecol. Appl. 1994, 4, 423–436. [Google Scholar] [CrossRef]
- Shaw, E.A.; Boot, C.M.; Moore, J.C.; Wall, D.H.; Barone, J.S. Long-term nitrogen addition shifts the soil nematode community to bacterivore-dominated and reduces its ecological maturity in a subalpine forest. Soil Biol. Biochem. 2019, 130, 177–184. [Google Scholar] [CrossRef]
- Cesarz, S.; Reich, P.B.; Scheu, S.; Ruess, L.; Schaefer, M.; Eisenhauer, N. Nematode functional guilds, not trophic groups, reflect shifts in soil food webs and processes in response to interacting global change factors. Pedobiologia 2015, 58, 23–32. [Google Scholar] [CrossRef]
- Liu, T.; Mao, P.; Shi, L.L.; Eisenhauer, N.; Liu, S.J.; Wang, X.L.; He, X.X.; Wang, Z.Y.; Zhang, W.; Liu, Z.F.; et al. Forest canopy maintains the soil community composition under elevated nitrogen deposition. Soil Biol. Biochem. 2020, 143, 107733. [Google Scholar] [CrossRef]
- Tonjer, L.R.; Nybakken, L.; Birkemoe, T.; Renčo, M.; Ferdous, Z.; Asplund, J. Condensed tannins mediate the effect of long-term nitrogen addition on soil nematodes in a boreal spruce forest. Forest Ecol. Manag. 2023, 545, 121248. [Google Scholar] [CrossRef]
- Gruzdeva, L.I.; Matveeva, E.M.; Kovalenko, T.E. Changes in soil nematode communities under the impact of fertilizers. Eurasian Soil Sci. 2007, 40, 681–693. [Google Scholar] [CrossRef]
- Wei, C.; Zheng, H.; Li, Q.; Lü, X.; Yu, Q.; Zhang, H.; Chen, Q.; He, N.; Kardol, P.; Liang, W.; et al. Nitrogen addition regulates soil nematode community composition through ammonium suppression. PLoS ONE 2012, 7, e43384. [Google Scholar] [CrossRef]
- Pan, K.; Gong, P.; Wang, J.; Wang, Y.; Liu, C.; Li, W.; Zhang, L. Applications of nitrate and ammonium fertilizers alter soil nematode food webs in a continuous cucumber cropping system in Southwestern Sichuan, China. Eur. J. Soil Sci. 2015, 4, 287–300. [Google Scholar] [CrossRef]
- Barker, K.R. Nematode Extraction and Bioassays. In An Advanced Treatise on Meloidogyne; Barker, K.R., Carter, C.C., Sasser, J.N., Eds.; North Carolina State University Graphics: Raleigh, NC, USA, 1985; pp. 19–35. [Google Scholar]
- Bongers, T.; Bongers, M. Functional diversity of nematodes. Appl. Soil Ecol. 1998, 10, 239–251. [Google Scholar] [CrossRef]
- Bongers, T.; Ferris, H. Nematode community structure as a bioindicator in environmental monitoring. Trends Ecol. Evol. 1999, 14, 224–228. [Google Scholar] [CrossRef] [PubMed]
- Shannon, C.E.; Weaver, W. The Mathematical Theory of Communication; University of Illinois: Champaign, IL, USA, 1949. [Google Scholar]
- Neher, D.A. Role of nematodes in soil health and their use as indicators. J. Nematol. 2001, 33, 161–168. [Google Scholar] [PubMed]
- Sun, X.; Zhang, X.; Zhang, S.; Dai, G.; Han, S.; Liang, W. Soil nematode responses to increases in nitrogen deposition and precipitation in a temperate forest. PLoS ONE 2013, 8, e82468. [Google Scholar] [CrossRef] [PubMed]
- Nisa, R.U.; Tantray, A.Y.; Kouser, N.; Allie, K.A.; Wani, S.M.; Alamri, S.A.; Alyemeni, M.N.; Wijaya, L.; Shah, A.A. Influence of ecological and edaphic factors on biodiversity of soil nematodes. Saudi J. Biol. Sci. 2021, 28, 3049–3059. [Google Scholar] [CrossRef] [PubMed]
- De Melo Santana-Gomes, S.; Dias-Arieira, C.R.; Roldi, M.; Santo Dadazio, T.; Marini, P.M.; de Oliveira Barizão, D.A. Mineral nutrition in the control of nematodes. Afr. J. Agric. Res. 2013, 8, 2413–2420. [Google Scholar]
- Zhou, J.; Lu, M.; Sheng, X.J.; Wu, J.P. Effects of nitrogen addition and warming on nematode ecological indices: A meta-analysis. Eur. J. Soil Biol. 2022, 110, 103407. [Google Scholar] [CrossRef]
- Chen, D.; Lan, Z.; Hu, S.; Bai, Y. Effects of nitrogen enrichment on belowground communities in grassland: Relative role of soil nitrogen availability vs. soil acidification. Soil. Biol. Biochem. 2015, 89, 99–108. [Google Scholar] [CrossRef]
- Wall, M.E.; Tiedjens, V.A. Potassium deficiency in ammonium-and nitrate-fed tomato plants. Science 1940, 91, 221–222. [Google Scholar] [CrossRef]
- Kronzucker, H.J.; Britto, D.T.; Davenport, R.J.; Tester, M. Ammonium toxicity and the real cost of transport. Trends Plant Sci. 2001, 6, 335–337. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Xiang, Y.; Li, D.; Luo, X.; Wu, J. Global patterns and controls of soil nematode responses to nitrogen enrichment: A meta-analysis. Soil Biol. Biochem. 2021, 163, 108433. [Google Scholar] [CrossRef]
- Song, M.; Jing, S.; Zhou, Y.; Hui, Y.; Zhu, L.; Wang, F.; Hui, D.; Jiang, L.; Wan, S. Dynamics of soil nematode communities in wheat fields under different nitrogen management in Northern China Plain. Eur. J. Soil Biol. 2015, 71, 13–20. [Google Scholar] [CrossRef]
- Bongers, T.; van der Meulen, H.; Korthals, G. Inverse relationship between the nematode maturity index and plant parasite index under enriched nutrient conditions. Appl. Soil Ecol. 1997, 6, 195–199. [Google Scholar] [CrossRef]
- Xing, W.; Lu, X.M.; Niu, S.L.; Chen, D.M.; Wang, J.S.; Liu, Y.; Wang, B.X.; Zhang, S.; Li, Z.L.; Yao, X.J.; et al. Global patterns and drivers of soil nematodes in response to nitrogen enrichment. Catena 2022, 213, 106235. [Google Scholar] [CrossRef]
- Ferris, H. Form and function: Metabolic footprints of nematodes in the soil food web. Eur. J. Soil Biol. 2010, 46, 97–104. [Google Scholar] [CrossRef]
- Zhong, S.; Zeng, H.C.; Jin, Z.Q. Influences of different tillage and residue management systems on soil nematode community composition and diversity in the tropics. Soil Biol. Biochem. 2017, 107, 234–243. [Google Scholar] [CrossRef]
- Cheng, J.; Ma, W.; Hao, B.; Liu, X.; Li, F.Y. Divergent responses of nematodes in plant litter versus in top soil layer to nitrogen addition in a semi-arid grassland. Appl. Soil Ecol. 2021, 157, 103719. [Google Scholar] [CrossRef]
- Forge, T.A.; Simard, S.W. Structure of nematode communities in forest soils of southern British Columbia: Relationships to nitrogen mineralization and effects of clearcut harvesting and fertilization. Biol. Fert. Soils 2001, 34, 170–178. [Google Scholar]
- Postma-Blaauw, M.B.; de Vries, F.T.; de Goede, R.G.M.; Bloem, J.; Faber, J.H.; Brussaard, L. Within-trophic group interactions of bacterivorous nematode species and their effects on the bacterial community and nitrogen mineralization. Oecologia 2005, 142, 428–439. [Google Scholar] [CrossRef]
- Ren, N.; Wang, Y.; Ye, Y.; Zhao, Y.; Huang, Y.; Fu, W.; Chu, X. Effects of Continuous Nitrogen Fertilizer Application on the Diversity and Composition of Rhizosphere Soil Bacteria. Front. Microbiol. 2020, 11, 1948. [Google Scholar] [CrossRef]
- Fiscus, D.A.; Neher, D.A. Distinguishing sensitivity of free-living soil nematode genera to physical and chemical disturbances. Ecol. Appl. 2002, 12, 565–575. [Google Scholar] [CrossRef]
- Räty, M.; Huhta, V. Earthworms and pH affect communities of nematodes and enchytraeids in forest soil. Biol. Fert. Soils 2003, 38, 52–58. [Google Scholar] [CrossRef]
- Yao, L.; Ruan, M.Y.; Yea, S.W.; Cai, S.Q. DNA topoisomerase 2-associated proteins PATL1 and PATL2 regulate the biogenesis of hERG K+ channels. Proc. Natl. Acad. Sci. USA 2023, 120, e2216146120. [Google Scholar] [CrossRef]
N0P0 | N1P1 | N2P1 | N3P1 | N1P2 | N1P3 | p-Value | |
---|---|---|---|---|---|---|---|
Aglenchus | 8.0 ± 4.5 | 13.1 ± 7.1 | 8.8 ± 3.6 | 3.2 ± 3.2 | 8.0 ± 6.6 | 2.8 ± 2.8 | 0.696 |
Boleodorus | 10.8 ± 2.5 | 2.3 ± 0.5 | 0.0 ± 0.0 | 4.2 ± 2.9 | 16.9 ± 2.9 | 11.7 ± 3.3 | 0.171 |
Tylenchus | 2.3 ± 1.2 | 1.4 ± 0.0 | 0.9 ± 0.5 | 0.0 ± 0.0 | 0.9 ± 0.9 | 3.3 ± 1.7 | 0.289 |
Malenchus | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.5 ± 0.5 | 0.5 ± 0.5 | 0.514 |
Lelenchus | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.5 ± 0.5 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.416 |
Helicotylenchus | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.5 ± 0.5 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.416 |
Rotylenchus | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.5 ± 0.5 | 0.5 ± 0.5 | 0.514 |
Longidorella | 0.0 ± 0.0 | 0.5 ± 0.5 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.416 |
Xiphinema | 0.0 ± 0.0 | 0.5 ± 0.5 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.416 |
Dorylaimellus | 0.0 ± 0.0 | 0.5 ± 0.5 | 0.5 ± 0.5 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.513 |
Axonchium | 0.0 ± 0.0 | 0.5 ± 0.5 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.5 ± 0.5 | 0.0 ± 0.0 | 0.514 |
Mesorhabditis | 2.3 ± 0.5 | 5.6 ± 1.4 | 20.8 ± 3.7 | 14.8 ± 4.1 | 7.0 ± 2.2 | 9.9 ± 5.1 | 0.257 |
Protorhabditis | 1.4 ± 0.8 | 2.8 ± 1.4 | 10.2 ± 0.5 | 7.9 ± 2.4 | 3.3 ± 1.2 | 3.8 ± 0.5 | 0.319 |
Monhystera | 0.0 ± 0.0 | 0.5 ± 0.5 | 0.0 ± 0.0 | 0.5 ± 0.5 | 0.9 ± 0.5 | 0.0 ± 0.0 | 0.262 |
Anaplectus | 0.9 ± 0.5 | 0.5 ± 0.5 | 2.3 ± 1.7 | 2.8 ± 0.8 | 2.8 ± 2.2 | 3.3 ± 1.2 | 0.439 |
Plectus | 1.4 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.9 ± 0.5 | 0.9 ± 0.9 | 0.075 |
Acrobeloides | 6.1 ± 2.9 | 13.1 ± 2.3 | 19.4 ± 4.2 | 34.3 ± 10.8 | 9.4 ± 2.9 | 16.4 ± 2.3 | 0.561 |
Cephalobus | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.5 ± 0.5 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.416 |
Eucephalobus | 5.6 ± 2.4 | 2.8 ± 0.8 | 2.8 ± 0.8 | 6.9 ± 1.4 | 4.2 ± 1.4 | 6.1 ± 1.2 | 0.219 |
Prismatolaimus | 0.9 ± 0.5 | 2.8 ± 0.8 | 2.3 ± 1.2 | 8.8 ± 3.2 | 6.1 ± 0.5 | 2.8 ± 0.8 | 0.103 |
Alaimus | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.9 ± 0.5 | 0.5 ± 0.5 | 0.9 ± 0.5 | 0.0 ± 0.0 | 0.156 |
Ditylenchus | 0.5 ± 0.5 | 0.0 ± 0.0 | 0.9 ± 0.9 | 1.4 ± 1.4 | 0.0 ± 0.0 | 1.9 ± 1.2 | 0.474 |
Aphelenchoides | 0.5 ± 0.5 | 0.5 ± 0.5 | 0.9 ± 0.9 | 4.2 ± 0.8 | 5.6 ± 0.0 | 1.9 ± 0.9 | 0.026 |
Aphelenchus | 0.5 ± 0.5 | 12.7 ± 2.2 | 6.9 ± 3.5 | 13.0 ± 1.2 | 6.1 ± 3.3 | 14.1 ± 7.8 | 0.079 |
Filenchus | 16.9 ± 3.5 | 16.9 ± 2.8 | 16.2 ± 6.4 | 30.6 ± 7.3 | 28.6 ± 11.1 | 73.2 ± 18.6 | 0.094 |
Tylencholaimellus | 28.2 ± 5.3 | 19.7 ± 4.5 | 8.8 ± 1.2 | 17.1 ± 10.2 | 13.6 ± 5.2 | 13.1 ± 6.3 | 0.307 |
Tylencholaimus | 12.7 ± 2.2 | 14.6 ± 3.8 | 5.1 ± 3.2 | 2.3 ± 0.5 | 0.9 ± 0.9 | 0.5 ± 0.5 | 0.281 |
Dorylaimoides | 6.6 ± 1.7 | 3.8 ± 1.2 | 3.2 ± 1.7 | 1.9 ± 1.2 | 0.0 ± 0.0 | 0.5 ± 0.5 | 0.042 |
Enchodelus | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.5 ± 0.5 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.416 |
Eudorylaimus | 0.9 ± 0.9 | 2.3 ± 0.9 | 1.9 ± 1.2 | 1.4 ± 0.8 | 1.9 ± 1.2 | 2.3 ± 0.5 | 0.643 |
Microdorylaimus | 0.9 ± 0.5 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.059 |
Mesodorylaimus | 5.6 ± 1.6 | 3.3 ± 0.5 | 4.6 ± 1.7 | 1.9 ± 0.9 | 1.4 ± 0.8 | 0.5 ± 0.5 | 0.065 |
Prodorylaimus | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.9 ± 0.9 | 0.0 ± 0.0 | 0.416 |
Tripyla | 0.5 ± 0.5 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.416 |
labronema | 0.0 ± 0.0 | 0.0 ± 0.0 | 1.4 ± 1.4 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.416 |
Clarkus | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.5 ± 0.5 | 0.0 ± 0.0 | 0.416 |
Nygolaimus | 0.0 ± 0.0 | 2.8 ± 2.2 | 0.0 ± 0.0 | 1.4 ± 0.8 | 0.9 ± 0.5 | 0.9 ± 0.9 | 0.342 |
Aporcelaimus | 7.5 ± 1.2 | 4.2 ± 0.8 | 1.9 ± 1.2 | 2.8 ± 1.4 | 3.3 ± 1.9 | 1.4 ± 0.8 | 0.103 |
Pp | Ba | Fu | Om | Pr | To | ||
---|---|---|---|---|---|---|---|
Nitrogen | N0P0 | 1.2 ± 0.2 | 3.9 ± 1.0 b | 8.7 ± 1.5 | 4.4 ± 1.5 | 54.2 ± 8.8 a | 72.4 ± 7.7 a |
N1P1 | 1.7 ± 0.7 | 6.5 ± 0.8 ab | 8.2 ± 0.9 | 3.7 ± 0.2 | 33.1 ± 5.8 ab | 53.2 ± 7.8 ab | |
N2P1 | 0.5 ± 0.3 | 12.6 ± 2.5 ab | 4.2 ± 0.7 | 4.0 ± 1.1 | 15.2 ± 7.4 b | 36.6 ± 8.0 b | |
N3P1 | 0.4 ± 0.1 | 17.6 ± 4.7 a | 7.0 ± 1.9 | 2.0 ± 1.1 | 21.3 ± 10.0 ab | 48.4 ± 7.7 ab | |
Phosphorus | N0P0 | 1.2 ± 0.2 | 3.9 ± 1.0 b | 8.7 ± 1.5 | 4.4 ± 1.5 | 54.2 ± 8.8 a | 72.4 ± 7.7 |
N1P1 | 1.7 ± 0.7 | 6.5 ± 0.8 ab | 8.2 ± 0.9 | 3.7 ± 0.2 | 33.1 ± 5.8 ab | 53.2 ± 7.8 | |
N1P2 | 1.7 ± 0.5 | 7.5 ± 2.1 ab | 5.3 ± 1.9 | 2.6 ± 1.1 | 24.9 ± 13.5 ab | 41.9 ± 15.7 | |
N1P3 | 1.2 ± 0.3 | 9.8 ± 0.7 a | 8.0 ± 1.6 | 1.8 ± 0.0 | 11.0 ± 5.0 b | 31.9 ± 2.6 |
TN | TC | C/N | NO3−-N | NH4+-N | TP | AP | TK | AK | WT | pH | |
---|---|---|---|---|---|---|---|---|---|---|---|
Pp | −0.480 * | −0.21 | 0.393 | −0.019 | −0.052 | 0.209 | 0.391 | 0.259 | 0.219 | 0.572 * | 0.617 ** |
Ba | 0.295 | 0.155 | −0.199 | −0.12 | 0.307 | −0.022 | −0.055 | 0.175 | −0.038 | −0.719 ** | −0.323 |
Fu | −0.002 | −0.039 | −0.063 | 0.11 | 0.651 ** | 0.359 | 0.469 * | 0.381 | 0.103 | 0.301 | 0.048 |
Om | −0.198 | −0.443 | −0.442 | −0.245 | −0.533 * | −0.501 * | −0.602 ** | −0.688 ** | 0.066 | 0.01 | −0.318 |
Pr | −0.336 | −0.472 * | −0.264 | −0.246 | −0.308 | −0.239 | −0.345 | −0.479 * | 0.131 | 0.294 | −0.113 |
To | 0.006 | −0.108 | −0.191 | −0.072 | 0.744 ** | 0.288 | 0.403 | 0.438 | 0.171 | −0.087 | −0.075 |
H’ | 0.395 | 0.25 | −0.205 | −0.027 | −0.357 | −0.167 | −0.363 | −0.372 | 0.093 | −0.077 | 0.074 |
TD | −0.008 | −0.026 | −0.034 | −0.258 | −0.686 ** | −0.328 | −0.470 * | −0.547 * | −0.003 | −0.015 | 0.088 |
PPI | −0.177 | −0.034 | 0.228 | −0.123 | −0.113 | 0.03 | −0.064 | −0.018 | 0.296 | −0.05 | 0.161 |
MI | −0.342 | −0.443 | −0.220 | −0.229 | −0.566 * | −0.507 * | −0.493 * | −0.533 * | −0.037 | 0.479 * | −0.054 |
EI | 0.088 | −0.024 | −0.176 | −0.256 | −0.094 | −0.071 | −0.118 | −0.227 | 0.273 | −0.613 ** | −0.151 |
SI | −0.196 | −0.353 | −0.295 | −0.342 | −0.689 ** | −0.589 * | −0.612 ** | −0.733 ** | 0.104 | 0.155 | −0.126 |
CI | −0.102 | 0.019 | 0.193 | 0.337 | 0.292 | 0.261 | 0.36 | 0.365 | −0.201 | 0.662 ** | 0.258 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ni, X.; Zhu, X.; Feng, Q.; Zhao, D.; Huang, W.; Pan, F. Effect of Application Rates of N and P Fertilizers on Soil Nematode Community Structure in Mollisols. Agronomy 2024, 14, 507. https://doi.org/10.3390/agronomy14030507
Ni X, Zhu X, Feng Q, Zhao D, Huang W, Pan F. Effect of Application Rates of N and P Fertilizers on Soil Nematode Community Structure in Mollisols. Agronomy. 2024; 14(3):507. https://doi.org/10.3390/agronomy14030507
Chicago/Turabian StyleNi, Xuerong, Xiangming Zhu, Qingxiu Feng, Dan Zhao, Weiwei Huang, and Fengjuan Pan. 2024. "Effect of Application Rates of N and P Fertilizers on Soil Nematode Community Structure in Mollisols" Agronomy 14, no. 3: 507. https://doi.org/10.3390/agronomy14030507
APA StyleNi, X., Zhu, X., Feng, Q., Zhao, D., Huang, W., & Pan, F. (2024). Effect of Application Rates of N and P Fertilizers on Soil Nematode Community Structure in Mollisols. Agronomy, 14(3), 507. https://doi.org/10.3390/agronomy14030507