Genome-Wide Association Study on Candidate Genes Associated with Soybean Stem Pubescence and Hilum Colors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Materials and Planting
2.2. Phenotypic Investigation and Analysis
2.3. Genome-Wide Association Study
2.4. Candidate Gene Analysis
2.5. GO Enrichment Analysis for Candidate Genes
3. Results
3.1. Phenotypic Analysis of Stem Pubescence and Hilum Colors throughout the Natural Population
3.2. Genome-Wide Association Study on Soybean Stem Pubescence Color
3.3. Genome-Wide Association Study on Hilum Color
3.4. Candidate Genes of Soybean Stem Pubescence Color
3.5. Candidate Genes of Soybean Hilum Color
4. Discussion
4.1. Glyma.06G202300 and Glyma.03G258700 Are Related to Both Traits
4.2. Analysis of Candidate Genes Modulating Soybean Stem Pubescence Color
4.3. Analysis of Candidate Genes for Soybean Hilum Color
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chowdhury, M.; Telli, H. Migration; Springer: Berlin/Heidelberg, Germany, 2004; pp. 47–59. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, M. A telomere-to-telomere gap-free assembly of soybean genome. Mol. Plant 2023, 16, 1711–1714. [Google Scholar] [CrossRef] [PubMed]
- Sedivy, E.J.; Wu, F. Soybean domestication: The origin, genetic architecture and molecular bases. New Phytol. 2017, 214, 539–553. [Google Scholar] [CrossRef] [PubMed]
- Hammer, K. Das Domestikations syndrom. Kulturpflanze 1984, 32, 11–34. [Google Scholar] [CrossRef]
- Singer, W.M.; Lee, Y.C. Soybean genetics, genomics, and breeding for improving nutritional value and reducing antinutritional traits in food and feed. Plant Genome 2023, 16, e20415. [Google Scholar] [CrossRef] [PubMed]
- Hartman, G.L.; West, E.D. Crops that feed the World 2. Soybean—Worldwide production, use, and constraints caused by pathogens and pests. Food Secur. 2011, 3, 5–17. [Google Scholar] [CrossRef]
- Han, X.R.; Wang, X.D. Strategy for Ensuring China’s Food Security through Planting Industry in the New Era. Strateg. Study CAE 2023, 25, 1–11. [Google Scholar] [CrossRef]
- Qiu, L.J.; Chen, P.Y. The worldwide utilization of the Chinese soybean germplasm collection. Plant Genet. Resour. 2011, 9, 109–122. [Google Scholar] [CrossRef]
- Xie, Y.H. Difference analysis on DUS traits of soybean standard varieties. Soybean Sci. 2007, 2, 284–286. [Google Scholar] [CrossRef]
- Ramteke, R.; Murlidharan, P. Characterization of soybean (Glycine max) varieties as per DUS guidelines. Indian J. Agric. Sci. 2012, 84, 572–577. [Google Scholar] [CrossRef]
- Tsegaw, M.; Zegeye, W.A. Progress and Prospects of the Molecular Basis of Soybean Cold Tolerance. Plants 2023, 12, 459. [Google Scholar] [CrossRef]
- Toda, K.; Yang, D. A single-base deletion in soybean flavonoid 3′-ydroxylase gene is associated with gray pubescence color. Plant Mol. Biol. 2002, 50, 187–196. [Google Scholar] [CrossRef]
- Morrison, M.J.; Voldeng, H.D. Soybean Pubescence Color Influences Seed Yield in Cool-Season Climates. Agron J. 1994, 86, 796–799. [Google Scholar] [CrossRef]
- Lou, Z.Z.; Deng, D. Correlation Analysis between Seed Color and Seed Vigor of Glycine max. J. Chuxiong Norm. Univ. 2023, 38, 147–154. [Google Scholar] [CrossRef]
- Cober, E.R.; Ablett, G.R. Imperfect Yellow Hilum Color in Soybean is Conditioned by II rr TT. Crop Sci. 1998, 38, 940–941. [Google Scholar] [CrossRef]
- Qiu, H.M.; Chen, L. Research progress on genetic regulatory mechanism of seed color in soybean (Glycine max). Acta Agron. Sin. 2021, 47, 2299–2313. [Google Scholar] [CrossRef]
- Takahashi, R.; Asanuma, S. Association of T gene with chilling tolerance in soybean. Crop Sci. 1996, 36, 559–562. [Google Scholar] [CrossRef]
- Takahashi, R.; Benitez, E.R. Soybean maturity and pubescence color genes improve chilling tolerance. Crop Sci. 2005, 45, 1387–1393. [Google Scholar] [CrossRef]
- Toda, K.; Kuroiwa, H. The soybean F3′H protein is localized to the tonoplast in the seed coat hilum. Planta 2012, 236, 79–89. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, N.; Suzuki, C. A pubescence color gene enhances tolerance to cold-induced seed cracking in yellow soybean. Breed Sci. 2021, 71, 467–473. [Google Scholar] [CrossRef] [PubMed]
- Yan, F.; Githiri, S.M. Loss-of-Function Mutation of Soybean R2R3 MYB Transcription Factor Dilutes Tawny Pubescence Color. Front. Plant Sci. 2019, 10, 1809. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Zhao, T.T. Identification of candidate genes for soybean seed coat-related traits using QTL mapping and GWAS. Front. Plant Sci. 2023, 14, 1190503. [Google Scholar] [CrossRef]
- Lv, Y.; Ma, J. Combining GWAS, Genome-Wide Domestication and a Transcriptomic Analysis Reveals the Loci and Natural Alleles of Salt Tolerance in Rice (Oryza sativa L.). Front. Plant Sci. 2022, 13, 912637. [Google Scholar] [CrossRef]
- Zhang, X.; Guan, Z. Combined GWAS and QTL analysis for dissecting the genetic architecture of kernel test weight in maize. Mol. Genet. Genom. 2020, 295, 409–420. [Google Scholar] [CrossRef]
- Korte, A.; Farlow, A. The advantages and limitations of trait analysis with GWAS: A review. Plant Methods 2013, 9, 29. [Google Scholar] [CrossRef]
- Karaagaoglu, E. An Experimental Design Technique: Randomized Block Design. Turk J. Biochem. 2013, 38, 1–4. [Google Scholar] [CrossRef]
- Zhang, W.; Xu, W.J. Comparative selective signature analysis and high-resolution GWAS reveal a new candidate gene controlling seed weight in soybean. Theor. Appl. Genet. 2021, 134, 1329–1341. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhang, Z. GAPIT version 3: Boosting power and accuracy for genomic association and prediction. Genom. Proteom. Bioinform. 2021, 19, 629–640. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.X.; Guo, C. Genome-Wide Analysis of Tandem Repeats in Plants and Green Algae. G3 2014, 4, 67–78. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.J.; Chen, H. TBtools: An Integrative Toolkit Developed for Interactive Analyses of Big Biological Data. Mol. Plant 2020, 13, 1194–1202. [Google Scholar] [CrossRef] [PubMed]
- Yadav, S.P.; Sharma, S.P. Variation for hilum colour and its stability during four crop seasons in soybean (Glycine max). Indian J. Agric. Sci. 2001, 71, 23–26. [Google Scholar]
- Jian, W.; Qiang, Q. Deciphering the myth of cold tolerance in soybean: An overview of molecular breeding applications. Not. Bot. Horti Agrobot. 2023, 51, 13160. [Google Scholar] [CrossRef]
- Toda, K.; Takahashi, R. Difference in chilling-induced flavonoid profiles, antioxidant activity and chilling tolerance between soybean near-isogenic lines for the pubescence color gene. J. Plant Res. 2011, 124, 173–182. [Google Scholar] [CrossRef] [PubMed]
- Shao, Y.B.; Sun, B.C. Breeding Report of an Extremely Early Mature Soybean Variety Mengdou 343. China Seed Ind. 2023, 11, 152–153. [Google Scholar] [CrossRef]
- Hideki, K.; Setsuzo, Y. Correlation of cold-weather tolerance with pubescence color and flowering time in yellow hilum soybeans in hokkaido. Breed Sci. 2004, 54, 303–311. [Google Scholar] [CrossRef]
- Ma, Q.; Xu, J. Knockdown of p-Coumaroyl Shikimate/ Quinate 3′-Hydroxylase Delays the Occurrence of Post-Harvest Physiological Deterioration in Cassava Storage Roots. Int. J. Mol. Sci. 2022, 23, 9231. [Google Scholar] [CrossRef]
- Jeon, H.S.; Jang, E. Pathogen-induced autophagy regulates monolignol transport and lignin formation in plant immunity. Autophagy 2023, 19, 597–615. [Google Scholar] [CrossRef]
- Liu, X.; Bulley, S.M. Kiwifruit bZIP transcription factor AcePosF21 elicits ascorbic acid biosynthesis during cold stress. Plant Physiol. 2023, 192, 982–999. [Google Scholar] [CrossRef] [PubMed]
- Ju, L.Z.; Zhao, T. Genome-Wide Identification and Analysis of Dof Gene Family in Upland Cotton. Cotton Sci. 2020, 32, 279–291. [Google Scholar] [CrossRef]
- Das, P.K.; Shin, D.H. Sugar-hormone cross-talk in anthocyanin biosynthesis. Mol. Cells 2012, 34, 501–507. [Google Scholar] [CrossRef]
- Ruiz-Solaní, N.; Salguero-Linares, J. Arabidopsis metacaspase MC1 localizes in stress granules, clears protein aggregates, and delays senescence. Plant Cell 2023, 35, 3325–3344. [Google Scholar] [CrossRef]
- Xie, Z.; Zhao, S. Phenolic acid-induced phase separation and translation inhibition mediate plant interspecific competition. Nat. Plants 2023, 9, 1481–1499. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Liu, X. Genome-Wide Identification of the AGC Protein Kinase Gene Family Related to Photosynthesis in Rice (Oryza sativa). Int. J. Mol. Sci. 2022, 23, 12557. [Google Scholar] [CrossRef] [PubMed]
- Garcia, A.V.; Al-Yousif, M. Role of AGC kinases in plant growth and stress responses. Cell Mol. Life Sci. 2012, 69, 3259–3267. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.J.; Jiang, S. Advances in the Research of R-SNARE in Plants. Chin. J. Cell Biol. 2023, 45, 786–794. [Google Scholar] [CrossRef]
- Cober, E.R.; Voldeng, H.D. Maturity and pubescence color are associated in short-season soybean. Crop Sci. 1997, 37, 424–427. [Google Scholar] [CrossRef]
- Morrison, M.J.; Voldeng, H.D. Yield of cool-season soybean lines differing in pubescence color and density. Agron. J. 1997, 89, 218–221. [Google Scholar] [CrossRef]
Years | Materials | Brown | Grey | Total |
---|---|---|---|---|
2021 | Cultivar | 84 | 141 | 225 |
Landrace | 12 | 12 | 24 | |
2022 | Cultivar | 86 | 143 | 229 |
Landrace | 13 | 13 | 26 |
Lead SNP | Chromosome | Position | −log10(P) | |
---|---|---|---|---|
2021 | 2022 | |||
Chr01:16865599 | 1 | 16865599 | 12.24 | 11.52 |
Chr03:33490367 | 3 | 33490367 | 7.46 | 7.46 |
Chr03:45233720 | 3 | 45233720 | 8.65 | 8.72 |
Chr04:2543721 | 4 | 2543721 | 6.82 | 6.84 |
Chr05:29526261 | 5 | 29526261 | 7.22 | 7.30 |
Chr06:18749716 | 6 | 18749716 | 14.68 | 14.75 |
Chr10:2513563 | 10 | 2513563 | 6.82 | 6.84 |
Chr12:16902959 | 12 | 16902959 | 8.95 | 9.17 |
Chr13:14374850 | 13 | 14374850 | 7.80 | 7.81 |
Chr15:17862020 | 15 | 17862020 | 7.22 | 7.30 |
Chr16:1440253 | 16 | 1440253 | 8.74 | 8.79 |
Chr20:19692676 | 20 | 19692676 | 8.92 | 9.01 |
Lead SNP | Chromosome | Position | −log10(P) | |
---|---|---|---|---|
2021 | 2022 | |||
Chr06:18749528 | 6 | 18749528 | 6.37 | 7.96 |
Chr06:34516359 | 6 | 34516359 | 6.37 | 5.49 |
Chr07:38116634 | 7 | 38116634 | 7.35 | 6.49 |
Chr08:18381601 | 8 | 18381601 | 5.63 | 5.28 |
Chr09:45711122 | 9 | 45711122 | 6.15 | 5.45 |
Chr11:18166441 | 11 | 18166441 | 5.64 | 5.58 |
Chr14:13707853 | 14 | 13707853 | 5.30 | 5.11 |
Gene ID | Homologs | Functional Annotation |
---|---|---|
Glyma.03G122000 | AT2G40890 | cytochrome P450, family 98, subfamily A, polypeptide 3 |
Glyma.03G123200 | AT2G40950 | Basic-leucine zipper (bZIP) transcription factor family protein |
Glyma.03G258700 | AT4G38620 | myb domain protein 4 |
Glyma.03G258800 | AT3G61850 | Dof-type zinc finger DNA binding family protein |
Glyma.04G030100 | AT1G19630 | cytochrome P450, family 722, subfamily A, polypeptide 1 |
Glyma.06G202300 | AT5G07990 | Cytochrome P450 superfamily protein |
Glyma.15G182600 | AT3G43190 | sucrose synthase 4 |
Gene ID | Homologs | Functional Annotation |
---|---|---|
Glyma.06G202300 | AT5G07990 | Cytochrome P450 superfamily protein |
Glyma.07G210800 | AT3G19130 | RNA-binding protein 47B |
Glyma.09G232400 | AT5G62310 | AGC kinase family protein |
Glyma.09G234700 | AT1G26670 | Vesicle transport v-SNARE family protein |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, M.; Wang, J.; Chen, H.; Jia, Q.; Hu, S.; Xiong, Y.; Zhang, H.; Zhang, W.; Wang, Q.; Su, C. Genome-Wide Association Study on Candidate Genes Associated with Soybean Stem Pubescence and Hilum Colors. Agronomy 2024, 14, 512. https://doi.org/10.3390/agronomy14030512
Zhou M, Wang J, Chen H, Jia Q, Hu S, Xiong Y, Zhang H, Zhang W, Wang Q, Su C. Genome-Wide Association Study on Candidate Genes Associated with Soybean Stem Pubescence and Hilum Colors. Agronomy. 2024; 14(3):512. https://doi.org/10.3390/agronomy14030512
Chicago/Turabian StyleZhou, Miaomiao, Junyan Wang, Huatao Chen, Qianru Jia, Shengyan Hu, Yawen Xiong, Hongmei Zhang, Wei Zhang, Qiong Wang, and Chengfu Su. 2024. "Genome-Wide Association Study on Candidate Genes Associated with Soybean Stem Pubescence and Hilum Colors" Agronomy 14, no. 3: 512. https://doi.org/10.3390/agronomy14030512
APA StyleZhou, M., Wang, J., Chen, H., Jia, Q., Hu, S., Xiong, Y., Zhang, H., Zhang, W., Wang, Q., & Su, C. (2024). Genome-Wide Association Study on Candidate Genes Associated with Soybean Stem Pubescence and Hilum Colors. Agronomy, 14(3), 512. https://doi.org/10.3390/agronomy14030512