Water-Retaining Agent as a Sustainable Agricultural Technique to Enhance Mango (Mangifera indica L.) Productivity in Tropical Soils
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site of Mango Orchard
2.2. Experimental Design
2.3. Soil Analysis
2.4. Leaf Analysis
2.5. Determination of Fruit Quality
2.6. Economic Evaluation
2.7. Data Processing
3. Results
3.1. Soil Nutrient Availability and Leaf Mineral Content
3.2. Mango Fruit Yield and Quality
3.3. Economic Evaluation
3.4. Multivariate Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- FAO. Crop Prospects and Food Situation—Quarterly Global Report No. 3, September 2022; FAO: Rome, Italy, 2022. [Google Scholar] [CrossRef]
- Liu, B.; Xin, Q.; Zhang, M.; Chen, J.; Lu, Q.; Zhou, X.; Li, X.; Zhang, W.; Feng, W.; Pei, H.; et al. Research progress on mango post-harvest ripening physiology and the regulatory technologies. Foods 2022, 12, 173. [Google Scholar] [CrossRef]
- Fu, H.; Li, J. Research on Hainan specialty tropical fruit brand construction under the background of rural revitalization. Brand Res. 2019, 4, 43–45. [Google Scholar]
- Hui, D.; Yang, X.; Deng, Q.; Liu, Q.; Wang, X.; Yang, H.; Ren, H. Soil C: N: P stoichiometry in tropical forests on Hainan Island of China: Spatial and vertical variations. Catena 2021, 201, 105228. [Google Scholar] [CrossRef]
- Wang, J.; Elbagory, M.; He, Y.; Zhang, X.; Hui, Y.; Eissa, M.A.; Ding, Z.; El-Nahrawy, S.; Omara, A.E.D.; Zoghdan, M.G.; et al. Modeling of p-loss risk and nutrition for mango (Mangifera indica L.) in sandy calcareous soils: A 4-years field trial for sustainable p management. Horticulturae 2022, 8, 1064. [Google Scholar] [CrossRef]
- Wang, J.; Ding, Z.; Alotaibi, M.O.; He, Y.; Hui, Y.; Eissa, M.A.; Ghoneim, A.M.; Rekaby, S.A. Azolla (Azolla pinnata) Mitigated Water Stress and Enhanced Fruit Yield of Mango Plants (Mangifera indica L.) in Arid-degraded Soil. J. Soil Sci. Plant Nutr. 2023, 23, 1173–1184. [Google Scholar] [CrossRef]
- Azam, M.; Qadri, R.; Aslam, A.; Khan, M.I.; Khan, A.S.; Anwar, R.; Ghani, M.A. Effects of different combinations of N, P and K at different time interval on vegetative, reproductive, yield and quality traits of mango (Mangifera indica L.) cv. Dusehri. Braz. J. Biol. 2021, 82, e235612. [Google Scholar] [CrossRef]
- Wang, J.; Ding, Z.; AL-Huqail, A.A.; Hui, Y.; He, Y.; Reichman, S.M.; Ghoneim, A.M.; Eissa, M.A.; Abou-Zaid, E.A. Potassium source and biofertilizer influence K release and fruit yield of Mango (Mangifera indica L.): A three-year field study in sandy soils. Sustainability 2022, 14, 9766. [Google Scholar] [CrossRef]
- Liang, Z.; Hongping, Z.; Linyun, X.; Weidong, Y.; Minghong, S.; Jian, Z.; Zhong, X. Parameter optimization of the spiral fertiliser discharger for mango orchards based on the discrete element method and genetic algorithm. Front. Plant Sci. 2023, 14, 1169091. [Google Scholar]
- Ge, Y.; Abdulkreem AL-Huqail, A.; Zhou, Z.; Ali, E.F.; Ghoneim, A.M.; Eissa, M.; El-Sharkawy, M.S.; Ding, Z. Plant growth stimulating bacteria and filter mud cake enhance soil quality and productivity of Mango (Mangifera indica L.). J. Soil Sci. Plant Nutr. 2022, 22, 3068–3080. [Google Scholar] [CrossRef]
- Huang, W.; Lai, H.; Du, J.; Zhou, C.; Liu, Z.; Ni, Q. Effect of polymer water retaining agent on physical properties of silty clay. Chem. Biol. Technol. Agric. 2022, 9, 47. [Google Scholar] [CrossRef]
- Xu, Y.; Gao, Y.; Li, W.; Chen, S.; Li, Y.; Shi, Y. Effects of compound water retention agent on soil nutrients and soil microbial diversity of winter wheat in saline-alkali land. Chem. Biol. Technol. Agric. 2023, 10, 2. [Google Scholar] [CrossRef]
- Yang, Y.H.; Wu, J.C.; Zhao, S.W. Effects of different macromolecule absorbent resins on the moisture characteristics of major soil type on loess plateau. Asian J. Chem. 2014, 26, 17. [Google Scholar] [CrossRef]
- Corradini, E.; Moura, L.H.C. Mattoso A preliminary study of the incorparation of NPK fertilizer into chitosan nanoparticles. Express Polym. Lett. 2010, 4, 509–515. [Google Scholar] [CrossRef]
- Chang, L.; Xu, L.; Liu, Y.; Qiu, D. Superabsorbent polymers used for agricultural water retention. Polym. Test. 2021, 94, 107021. [Google Scholar] [CrossRef]
- Kong, W.; Li, Q.; Li, X. A biodegradable biomass-based polymeric composite for slow release and water retention. J. Environ. Manag. 2019, 230, 190–198. [Google Scholar] [CrossRef]
- Zhang, M.; Yang, P.; Lan, G. High crosslinked sodium carboxyl methylstarch-g-poly (acrylic acid-co-acrylamide) resin for heavy metal adsorption: Its characteristics and mechanisms. Environ. Sci. Pollut. Res. 2020, 27, 38617–38630. [Google Scholar] [CrossRef]
- Cai, D.; Zhao, X. A brief discussion on the application and prospects of water-retaining agents in southern fruit tree areas. South. China Fruit Trees 2000, 29, 50. [Google Scholar]
- Yang, Y.; Zhang, S.; Wu, J.; Gao, C.; Lu, D.; Tang, D.W. Effect of long term application of super absorbent polymer on soil structure, soil enzyme activity, photosynthetic characteristics, water and nitrogen use of winter wheat. Front. Plant Sci. 2022, 13, 998494. [Google Scholar] [CrossRef]
- Yang, Y.H.; Wu, J.C.; Zhao, S.W.; Gao, C.M.; Pan, X.Y.; Tang, D.W.S. Effects of long-term super absorbent polymer and organic manure on soil structure and organic carbon distribution in different soil layers. Soil Tillage Res. 2021, 206, 104781. [Google Scholar] [CrossRef]
- Zhang, P.; Fan, J.; Cheng, N. Effects of integrated water and fertilizer reduction fertilization on mango yield, quality and fertilizer consumption. China Soil Fertil. 2019, 2, 114–118. [Google Scholar]
- Burt, R. Soil Survey Laboratory Methods Manual; Soil Survey Investigations Report, No. 42, Version 4.0; Natural Resources Conservation Service, United States Department of Agriculture: Washington, DC, USA, 2004.
- AOAC. AOAC Official Methods of Analysis, 21st ed.; Association of Official Analytical Chemists: Gaithersburg, MD, USA, 2019. [Google Scholar]
- Xiao, Y.; Duan, Z.; Su, F. Study on rational application of nitrogen fertilizer in different planting ways of maize. J. Maize Sci. 2002, 10, 78–80. [Google Scholar]
- Zhang, F.; Wang, J.; Zhang, W. Current situation and ways to improve fertilizer utilization efficiency of major food crops in China. Acta Soil Sci. 2008, 45, 915–924. [Google Scholar]
- Baak, H. The effects of super absorbent polymer application on the physiological and biochemical properties of tomato (Solanum lycopersicum L.) plants grown by soilless agriculture technique. Appl. Ecol. Environ. Res. 2020, 18, 5907–5921. [Google Scholar] [CrossRef]
- Thombare, N.S.; Mishra, M.Z.; Siddiqui, U.; Jha, D.; Singh, G.R. Design and development of guar gum-based novel, superabsorbent and moisture retaining hydrogels for agricultural applications. Carbohydr. Polym. 2018, 185, 169–178. [Google Scholar] [CrossRef]
- Wen, X.X.; Zhang, D.Q.; Liao, Y.C.; Jia, Z.K.; Ji, S.Q. Effects of water-collecting and -retaining techniques on photosynthetic rates, yield, and water use efficiency of millet grown in a semiarid region. J. Integr. Agric. 2012, 11, 1119–1128. [Google Scholar] [CrossRef]
- Zheng, H.; Mei, P.; Wang, W.; Yin, Y.; Li, H.; Zheng, M.; Ou, X.; Cui, Z. Effects of super absorbent polymer on crop yield, water productivity and soil properties: A global meta-analysis. Agric. Water Manag. 2023, 282, 108290. [Google Scholar] [CrossRef]
Growth Period | Time | CRF (kg ha−1) | RRF and WRARRF (kg ha−1) | Frequency | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Urea | CF-I | CF-II | KS | Urea | CF-I | CF-II | KS | |||
Shooting | 25 August–15 October | 200 | 500 | - | - | 160 | 400 | - | - | 5 times |
Flowering | 5 November–5 December | 60 | 360 | 90 | 48 | 288 | 72 | 3 times | ||
Fruit expansion | 20 January–10 March | - | - | 500 | 150 | - | - | 400 | 120 | 5 times |
Total | 260 | 860 | 500 | 240 | 208 | 688 | 400 | 192 | 13 |
Growth Season | Treatment | WRA | Fertilizers | Other | Total |
---|---|---|---|---|---|
2022 | CRF | 0 | 1085 | 8295 | 9380 |
RRF | 168 | 868 | 8295 | 9331 | |
WRARRF | 168 | 868 | 8295 | 9331 | |
2023 | CRF | 0 | 1193.5 | 9205 | 10,399 |
RRF | 0 | 954.8 | 9205 | 10,160 | |
WRARRF | 0 | 954.8 | 9205 | 10,160 |
Growth Season | Treatment | N (g kg−1) | P (g kg−1) | K (g kg−1) |
---|---|---|---|---|
2022 | CRF | 50.54 ± 1.37 A | 38.04 ± 0.36 A | 72.82 ± 1.09 A |
RRF | 46.32 ± 0.33 B | 34.29 ± 0.57 C | 67.99 ± 0.66 B | |
WRARRF | 50.02 ± 0.85 A | 36.26 ± 0.37 B | 71.74 ± 1.05 A | |
2023 | CRF | 54.52 ± 1.11 a | 37.59 ± 0.78 a | 74.42 ± 1.00 a |
RRF | 49.87 ± 0.68 b | 34.73 ± 0.61 c | 68.80 ± 0.82 b | |
WRARRF | 54.62 ± 0.89 a | 36.23 ± 0.42 b | 73.67 ± 1.25 a | |
Treatment | * | * | * | |
Year | * | ns | ns | |
Treatment × Year | * | ns | ns |
Growth Season | Treatment | N (mg kg−1) | P (mg kg−1) | K (mg kg−1) |
---|---|---|---|---|
2022 | CRF | 16.26 ± 0.18 C | 1.13 ± 0.08 B | 10.48 ± 0.24 B |
RRF | 17.03 ± 0.54 B | 1.11 ± 0.03 B | 10.37 ± 0.53 B | |
WRARRF | 18.02 ± 0.19 A | 1.18 ± 0.09 A | 11.23 ± 0.39 A | |
2023 | CRF | 17.00 ± 0.67 b | 1.16 ± 0.06 b | 10.95 ± 0.38 |
RRF | 18.07 ± 0.78 ab | 1.15 ± 0.06 b | 10.94 ± 0.58 | |
WRARRF | 18.84 ± 0.32 a | 1.23 ± 0.05 a | 11.69 ± 0.68 | |
Treatment | ** | * | * | |
Year | ns | ns | ns | |
Treatment × Year | * | ns | ns |
Growth Season | Treatment | Fruit Weight (g) | Fruit Number per Plant | Yield (kg plant−1) | Yield (kg ha−1) |
---|---|---|---|---|---|
2022 | CRF | 167.9 ± 3.2 | 197 ± 9 B | 33.3 ± 1.3 B | 16,667 ± 633 B |
RRF | 165.5 ± 3.1 | 194 ± 7 B | 32.4 ± 1.4 B | 16,200 ± 726 B | |
WRARRF | 162.1 ± 4.0 | 224 ± 11 A | 36.3 ± 1.2 A | 18,133 ± 625 A | |
2023 | CRF | 169.2 ± 2.5 | 206 ± 8 b | 34.7 ± 1.9 b | 17,333 ± 971 b |
RRF | 168.8 ± 2.1 | 200 ± 12 b | 33.6 ± 1.3 b | 16,800 ± 638 b | |
WRARRF | 165.9 ± 2.1 | 233 ± 16 a | 39.1 ± 1.2 a | 19,567 ± 585 a | |
Treatment | ns | ** | ** | ** | |
Year | ns | ** | ** | ** | |
Treatment × Year | * | ** | ** | ** |
Growth Season | Treatment | TSS | SA | VC (mg/100 g) | TA (%) | TSS/TA | SA/TA | FTI | ER |
---|---|---|---|---|---|---|---|---|---|
2022 | CRF | 17.42 ± 0.55 B | 13.13 ± 0.47 B | 23.26 ± 1.25 B | 0.39 ± 0.02 A | 44.30 ± 0.62 C | 33.39 ± 0.27 C | 1.56 ± 0.06 B | 67.95 ± 3.73 |
RRF | 18.63 ± 0.92 A | 15.69 ± 0.44 A | 24.27 ± 1.02 B | 0.37 ± 0.02 B | 50.81 ± 0.57 B | 42.81 ± 0.66 B | 1.63 ± 0.06 A | 71.74 ± 4.85 | |
WRARRF | 19.71 ± 0.69 A | 16.16 ± 0.28 A | 25.69 ± 0.53 A | 0.34 ± 0.01 C | 57.40 ± 0.76 A | 47.10 ± 1.05 A | 1.61 ± 0.07 A | 70.89 ± 3.27 | |
2023 | CRF | 17.27 ± 0.76 b | 13.27 ± 0.41 c | 23.22 ± 1.05 b | 0.38 ± 0.02 a | 45.46 ± 1.67 c | 34.93 ± 1.03 c | 1.59 ± 0.08 b | 68.13 ± 5.66 |
RRF | 18.87 ± 0.84 a | 15.90 ± 0.31 b | 24.44 ± 0.67 b | 0.35 ± 0.01 b | 53.91 ± 1.04 b | 45.43 ± 0.52 b | 1.69 ± 0.08 a | 72.44 ± 3.39 | |
WRARRF | 19.94 ± 0.63 a | 16.73 ± 0.43 a | 25.89 ± 1.34 a | 0.32 ± 0.02 c | 61.70 ± 1.13 a | 51.79 ± 1.13 a | 1.68 ± 0.08 a | 71.12 ± 4.28 | |
Treatment | * | * | * | * | * | * | ** | * | |
Year | ns | ns | ns | ns | ns | ns | ns | ns | |
Treatment × Year | ns | ns | ns | ns | ns | ns | ns | * |
Growth Season | Treatment | Gross Return (USA Dollar ha−1) | Output–Input Ratio | VCR of WRA |
---|---|---|---|---|
2022 | CRF | 14000 ± 532 B | 1.49 ± 0.06 B | - |
RRF | 13608 ± 610 B | 1.46 ± 0.07 B | - | |
WRARRF | 15232 ± 525 A | 1.63 ±0.06 A | 9.7 | |
2023 | CRF | 15531 ± 870 b | 1.49 ± 0.08 b | - |
RRF | 15053 ± 572 b | 1.48 ± 0.06 b | - | |
WRARRF | 17532 ± 525 a | 1.73 ± 0.05 a | 24.4 | |
Treatment | ** | ** | ||
Year | ** | ** | ||
Treatment × Year | ** | ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zang, X.; Yun, T.; Wang, L.; Zhan, R.; Ding, Z.; Ma, W.; Eissa, M.A.; Jing, T.; Liu, Y.; Xie, J.; et al. Water-Retaining Agent as a Sustainable Agricultural Technique to Enhance Mango (Mangifera indica L.) Productivity in Tropical Soils. Agronomy 2024, 14, 530. https://doi.org/10.3390/agronomy14030530
Zang X, Yun T, Wang L, Zhan R, Ding Z, Ma W, Eissa MA, Jing T, Liu Y, Xie J, et al. Water-Retaining Agent as a Sustainable Agricultural Technique to Enhance Mango (Mangifera indica L.) Productivity in Tropical Soils. Agronomy. 2024; 14(3):530. https://doi.org/10.3390/agronomy14030530
Chicago/Turabian StyleZang, Xiaoping, Tianyan Yun, Lixia Wang, Rulin Zhan, Zheli Ding, Weihong Ma, Mamdouh A. Eissa, Tao Jing, Yongxia Liu, Jianghui Xie, and et al. 2024. "Water-Retaining Agent as a Sustainable Agricultural Technique to Enhance Mango (Mangifera indica L.) Productivity in Tropical Soils" Agronomy 14, no. 3: 530. https://doi.org/10.3390/agronomy14030530
APA StyleZang, X., Yun, T., Wang, L., Zhan, R., Ding, Z., Ma, W., Eissa, M. A., Jing, T., Liu, Y., Xie, J., & He, Y. (2024). Water-Retaining Agent as a Sustainable Agricultural Technique to Enhance Mango (Mangifera indica L.) Productivity in Tropical Soils. Agronomy, 14(3), 530. https://doi.org/10.3390/agronomy14030530