A Comprehensive Assessment of the Morphological Development of Inflorescence, Yield Potential, and Growth Attributes of Summer-Grown, Greenhouse Cherry Tomatoes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Greenhouse Structure and Management
2.2. Plant Material and Cultivation Procedure
2.3. Irrigation and Nutrient Solution
2.4. Experimental Design, Harvest, and Statistical Analysis
2.5. Data Collection
2.5.1. Inflorescence Development (Phenology)
2.5.2. Yield and Phenotypic Traits
2.5.3. Plant Morphological Traits and Weekly Growth Rate
3. Results
3.1. Inflorescence Development (Phenology)
3.2. Yield and Phenotypic Traits
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tsouvaltzis, P.; Gkountina, S.; Siomos, A.S. Quality Traits and Nutritional Components of Cherry Tomato in Relation to the Harvesting Period, Storage Duration and Fruit Position in the Truss. Plants 2023, 12, 315. [Google Scholar] [CrossRef] [PubMed]
- Viuda-Martos, M.; Sanchez-Zapata, E.; Sayas-Barberá, E.; Sendra, E.; Perez-Alvarez, J.A.; Fernández-López, J. Tomato and tomato byproducts. Human health benefits of lycopene and its application to meat products: A review. Crit. Rev. Food Sci. Nutr. 2014, 54, 1032–1049. Available online: http://www.ncbi.nlm.nih.gov/pubmed/24499120 (accessed on 2 November 2023). [CrossRef] [PubMed]
- Van Ploeg, D.; Heuvelink, E. Influence of sub-optimal temperature on tomato growth and yield: A review. J. Hortic. Sci. Biotechnol. 2005, 80, 652–659. [Google Scholar] [CrossRef]
- Went, F.W. Plant growth under controlled conditions. The relation between age, light, variety and thermoperiodicity of tomatoes. Am. J. Bot. 1945, 32, 469–479. [Google Scholar] [CrossRef]
- Preczenhak, A.P.; Resende, J.T.; Chagas, R.R.; Silva, P.R.; Schwarz, K.; Morales, R.G. Agronomic characterization of minitomato genotypes. Hortic. Bras. 2014, 32, 348–356. [Google Scholar] [CrossRef]
- Ahmad, F.; Kusumiyati, K.; Soleh, M.A.; Khan, M.R.; Sundari, R.S. Watering Volume and Growing Design’s Effect on the Productivity and Quality of Cherry Tomato (Solanum lycopersicum cerasiformae) Cultivar Ruby. Agronomy 2023, 13, 2417. [Google Scholar] [CrossRef]
- Gruda, N.; Tanny, J. Protected crops. In Horticulture: Plants for People and Places, Volume 1: Production Horticulture; Springer: Berlin/Heidelberg, Germany, 2014; pp. 327–405. [Google Scholar]
- Shamshiri, R.R.; Jones, J.W.; Thorp, K.R.; Ahmad, D.; Man, H.C.; Taheri, S. Review of optimum temperature, humidity, and vapour pressure deficit for microclimate evaluation and control in greenhouse cultivation of tomato: A review. Int. Agrophysics 2018, 32, 287–302. [Google Scholar] [CrossRef]
- Hartung, J.; Wagener, J.; Ruser, R.; Piepho, H.P. Blocking and re-arrangement of pots in greenhouse experiments: Which approach is more effective? Plant Methods 2019, 15, 1–11. [Google Scholar] [CrossRef]
- Dreccer, M.F.; Molero, G.; Rivera-Amado, C.; John-Bejai, C.; Wilson, Z. Yielding to the image: How phenotyping reproductive growth can assist crop improvement and production. Plant Sci. 2019, 282, 73–82. [Google Scholar] [CrossRef] [PubMed]
- Kaboré, K.; Konaté, K.; Sanou, A.; Dakuyo, R.; Sama, H.; Santara, B.; Compaoré, E.W.R.; Dicko, M.H. Tomato by-products, a source of nutrients for the prevention and reduction of malnutrition. Nutrients 2022, 14, 2871. [Google Scholar] [CrossRef] [PubMed]
- Blackman, B.K. Changing responses to changing seasons: Natural variation in the plasticity of flowering time. Plant Physiol. 2017, 173, 16–26. [Google Scholar] [CrossRef] [PubMed]
- Hairin, N.E.; Zaharah, S.S.; Mat Su, A.S. Effect of Elevated Co2 and Shading on Growth, Physiological Changes, Yield and Quality of Cherry Tomato (Solanum lycopersicum Var. Cerasiforme) in Tropical Climate. Int. J. Acad. Res. Econ. Manag. Sci. 2021, 10, 44–51. [Google Scholar] [CrossRef] [PubMed]
- Uzun, S. The quantitative effects of temperature and light on the number of leaves preceding the first fruiting inflorescence on the stem of tomato (Lycopersicon esculentum, Mill.) and aubergine (Solanum melongena L.). Sci. Hortic. 2006, 109, 142–146. [Google Scholar] [CrossRef]
- Lucidos, J.G.; Ryu, K.B.; Younis, A.; Kim, C.K.; Hwang, Y.J.; Son, B.G.; Lim, K.B. Different day and night temperature responses in Lilium hansonii in relation to growth and flower development. Hortic. Environ. Biotechnol. 2013, 54, 405–411. [Google Scholar] [CrossRef]
- Jagadish, S.V.K.; Bahuguna, R.N.; Djanaguiraman, M.; Gamuyao, R.; Prasad, P.V.V.; Craufurd, P.Q. Implications of high temperature and elevated CO2 on flowering time in plants. Front. Plant Sci. 2016, 7, 913. [Google Scholar] [CrossRef]
- Khanal, B. Effect of Day and Night Temperature on Pollen Characteristics, Fruit Quality and Storability Of Tomato. Master’s Thesis, Norwegian University of Life Sciences, Ås, Norway, 2012. [Google Scholar]
- Kubota, C.; Kroggel, M.; Torabi, M.; Dietrich, K.A.; Kim, H.J.; Fonseca, J.; Thomson, C.A. Changes in selected quality attributes of greenhouse tomato fruit as affected by pre-and postharvest environmental conditions in year-round production. HortScience 2012, 47, 1698–1704. [Google Scholar] [CrossRef]
- Arshad, A.; Jerca, I.O.; Chan, S.; Cîmpeanu, S.M.; Teodorescu, R.I.; Țiu, J.; Bădulescu, L.; Drăghici, E.M. Study regarding the influence of some climatic parameters from the greenhouse on the tomato production and fruits quality. Sci. Pap. Ser. B Hortic. 2023, 67, 295–306. [Google Scholar]
- De Koning, A.N.M. Development and Dry Matter Distribution in Glasshouse Tomato: A Quantitative Approach. Ph.D. Thesis, Wageningen Agricultural University, Wageningen, The Netherlands, 1994; 240p. [Google Scholar]
- Rangaswamy, T.C.; Sridhara, S.; Ramesh, N.; Gopakkali, P.; El-Ansary, D.O.; Mahmoud, E.A.; Abdelmohsen, S.A.; Abdelbacki, A.M.; Elansary, H.O.; Abdel-Hamid, A.M. Assessing the impact of higher levels of CO2 and temperature and their interactions on tomato (Solanum lycopersicum L.). Plants 2021, 10, 256. [Google Scholar] [CrossRef]
- Pimenta, T.M.; Souza, G.A.; Brito, F.A.; Teixeira, L.S.; Arruda, R.S.; Henschel, J.M.; Zsögön, A.; Ribeiro, D.M. The impact of elevated CO2 concentration on fruit size, quality, and mineral nutrient composition in tomato varies with temperature regimen during growing season. Plant Growth Regul. 2023, 100, 519–530. [Google Scholar] [CrossRef]
- Ushio, A.; Hara, H.; Fukuta, N. Promotive effect of CO2 enrichment on plant growth and flowering of Eustoma grandiflorum (Raf.) Shinn. under a winter culture regime. J. Jpn. Soc. Hortic. Sci. 2014, 83, 59–63. [Google Scholar] [CrossRef]
- Higashide, T. Prediction of tomato yield on the basis of solar radiation before anthesis under warm greenhouse conditions. HortScience 2009, 44, 1874–1878. [Google Scholar] [CrossRef]
- Adams, S.R.; Cockshull, K.E.; Cave, C.R.J. Effect of temperature on the growth and development of tomato fruits. Ann. Bot. 2001, 88, 869–877. [Google Scholar] [CrossRef]
- Naing, A.H.; Jeon, S.M.; Park, J.S.; Kim, C.K. Combined effects of supplementary light and CO2 on rose growth and the production of good quality cut flowers. Can. J. Plant Sci. 2016, 96, 503–510. [Google Scholar] [CrossRef]
- Jerca, I.O.; Cîmpeanu, S.M.; Teodorescu, R.I.; Țiu, J.; Postamentel, M.; Arshad, A.; Bădulescu, L.; Drăghici, E.M. The effect of improving the climatic conditions in the greenhouse on the cheramy tomato hybrid grown in greenhouse conditions. Sci. Pap. Ser. B Hortic. 2023, 67, 341–348. [Google Scholar]
- Karim, M.F.; Hao, P.; Nordin, N.H.B.; Qiu, C.; Zeeshan, M.; Khan, A.A.; Shamsi, I.H. Effects of CO2 enrichment by fermentation of CRAM on growth, yield and physiological traits of cherry tomato. Saudi J. Biol. Sci. 2020, 27, 1041. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Gui, Y.; Zhao, T.; Ishii, M.; Eguchi, M.; Xu, H.; Li, T.; Iwasaki, Y. Determining the relationship between floral initiation and source–sink dynamics of tomato seedlings affected by changes in shading and nutrients. HortScience 2020, 55, 457–464. [Google Scholar] [CrossRef]
- Anwarzai, N.; Kattegoudar, J.; Anjanappa, M.; Sood, M.; Reddy, B.A.; Kumar, S.M. 2020, Evaluation of Cherry Tomato (Solanum lycopersicum L. var. cerasiforme) Genotypes for Growth and Yield Parameters. Int. J. Curr. Microbiol. App. Sci. 2020, 9, 459–466. [Google Scholar]
- Dileman, J.A.; Heuvelink, E. Factors affecting the number of leaves preceding the first inflorescence in tomato. J. Hortic. Sci. 1992, 67, 1–10. [Google Scholar] [CrossRef]
- Egea, I.; Estrada, Y.; Flores, F.B.; Bolarín, M.C. Improving production and fruit quality of tomato under abiotic stress: Genes for the future of tomato breeding for a sustainable agriculture. Environ. Exp. Bot. 2022, 204, 105086. [Google Scholar] [CrossRef]
- Sharaf-Eldin, M.A.; Yaseen, Z.M.; Elmetwalli, A.H.; Elsayed, S.; Scholz, M.; Al-Khafaji, Z.; Omar, G.F. Modifying walk-in tunnels through solar energy, fogging, and evaporative cooling to mitigate heat stress on tomato. Horticulturae 2023, 9, 77. [Google Scholar] [CrossRef]
- Ipgri, E.C.P.; GR, A. Descriptors for Allium (Allium spp.); International Plant Genetic Resources Institute: Rome, Italy, 2001; Volum 6. [Google Scholar]
- Garcia, M.L.; Medrano, E.; Sanchez-Guerrero, M.C.; Lorenzo, P. Climatic effects of two cooling systems in greenhouses in the Mediterranean area: External mobile shading and fog system. Biosyst. Eng. 2011, 108, 133–143. [Google Scholar] [CrossRef]
- Park, S.J.; Jiang, K.; Schatz, M.C.; Lippman, Z.B. Rate of meristem maturation determines inflorescence architecture in tomato. Proc. Natl. Acad. Sci. 2012, 109, 639–644. [Google Scholar] [CrossRef]
- Baudoin, W.; Nono-Womdim, R.; Lutaladio, N.; Hodder, A.; Castilla, N.; Leonardi, C.; De Pascale, S.; Qaryouti, M.; Duffy, R. Good Agricultural Practices for Greenhouse Vegetable Crops: Principles for Mediterranean Climate Areas; FAO: Geneva, Switzerland, 2013. [Google Scholar]
- Sato, S.; Peet, M.M.; Thomas, J.F. Physiological factors limit fruit set of tomato (Lycopersicon esculentum Mill.) under chronic, mild heat stress. Plant Cell Environ. 2000, 23, 719–726. [Google Scholar] [CrossRef]
- Brukhin, V.; Hernould, M.; Gonzalez, N.; Chevalier, C.; Mouras, A. Flower development schedule in tomato Lycopersicon esculentum cv. sweet cherry. Sex. Plant Reprod. 2003, 15, 311–320. [Google Scholar] [CrossRef]
- Saito, T.; Ito, H. Studies on the growth and fruiting in the tomato. IX Effects of the early environmental conditions and the cultural treatments on the morphological and physiological development of flowers and the flower drop. J. Jpn. Soc. Hortic. Sci. 1967, 36, 195–205. [Google Scholar] [CrossRef]
- Pessarakli, M.M.; Dris, R. Pollination and breeding of eggplants. J. Food Agric. Environ. 2004, 2, 218–219. [Google Scholar]
- Marr, C.; Hillyer, I. Effect of light intensity on pollination and fertilization of field and greenhouse tomatoes. In Proceedings of the American Society for Horticultural Science, Alexandria, VA, USA, 1 January 1968; pp. 526–530. [Google Scholar]
- Ozores-Hampton, M.; Fnu, K.; McAvoy, G. Blossom Drop and Reduced Fruit Set in Tomato; Tomato Institute: New York, NY, USA, 2011. [Google Scholar]
- Pieken, A.J.F. A review of pollination and fruit set in the tomato. J. Hortic. Sci. 1984, 59, I-13. [Google Scholar]
- Bertin, N. Competition for assimilates and fruit position affect fruit set in indeterminate greenhouse tomato. Ann. Bot. 1995, 75, 55–65. [Google Scholar] [CrossRef] [PubMed]
- Quinet, M.; Angosto, T.; Yuste-Lisbona, F.J.; Blanchard-Gros, R.; Bigot, S.; Martinez, J.P.; Lutts, S. Tomato fruit development and metabolism. Front. Plant Sci. 2019, 10, 1554. [Google Scholar] [CrossRef] [PubMed]
- Hou, X.; Zhang, W.; Du, T.; Kang, S.; Davies, W.J. Responses of water accumulation and solute metabolism in tomato fruit to water scarcity and implications for main fruit quality variables. J. Exp. Bot. 2020, 71, 1249–1264. [Google Scholar] [CrossRef] [PubMed]
- Islam, S.; Khan, S.; Garner, J.O. Elevated atmospheric CO2 concentration enhances carbohydrate metabolism in developing Lycopersicon esculentum Mill. cultivars. Int. J. Agric. Biol. 2006, 8, 157–161. [Google Scholar]
- Jones, J.B. Instructions for Growing Tomatoes in the Garden and Green-House; GroSystems: Anderson, SC, USA, 2013. [Google Scholar]
- Bertin, N.; Génard, M. Tomato quality as influenced by preharvest factors. Sci. Hortic. 2018, 233, 264–276. [Google Scholar] [CrossRef]
- Zhang, D.; Zhongdian, Z.; Jianming, L.; Yibo, C.; Qingjie, D.; Tonghua, P. Regulation of vapor pressure deficit by 663 greenhouse micro-fog systems improved growth and productivity of tomato via enhancing photosynthesis during summer 664 season. PLoS ONE 2015, 10, e0133919. [Google Scholar]
- Jayawardena, D.M.; Heckathorn, S.A.; Bista, D.R.; Boldt, J.K. Elevated carbon dioxide plus chronic warming causes dramatic increases in leaf angle in tomato, which correlates with reduced plant growth. Plant Cell Environ. 2019, 42, 1247–1256. [Google Scholar] [CrossRef] [PubMed]
- Mitterbauer, E. Identification of factors limiting fruit set in tomato (Solanum lycopersicum L.) with the aim of genetic improvement of heat tolerance. 2008. Available online: https://www.repo.uni-hannover.de/bitstream/handle/123456789/7146/587667001.pdf?sequence=1 (accessed on 30 January 2024).
- Sánchez-González, M.J.; Sánchez-Guerrero, M.C.; Medrano, E.; Porras, M.E.; Baeza, E.J.; Lorenzo, P. Influence of pre-harvest factors on quality of a winter cycle, high commercial value, tomato cultivar. Sci. Hortic. 2015, 189, 104–111. [Google Scholar] [CrossRef]
- Rosales, M.A.; Cervilla, L.M.; Sánchez-Rodríguez, E.; Rubio-Wilhelmi, M.D.M.; Blasco, B.; Ríos, J.J.; Soriano, T.; Castilla, N.; Romero, L.; Ruiz, J.M. The effect of environmental conditions on nutritional quality of cherry tomato fruits: Evaluation of two experimental Mediterranean greenhouses. J. Sci. Food Agric. 2011, 91, 152–162. [Google Scholar] [CrossRef] [PubMed]
- Mamatha, H.; Srinivasa Rao, N.K.; Laxman, R.H.; Shivashankara, K.S.; Bhatt, R.M.; Pavithra, K.C. Impact of elevated CO2 on growth, physiology, yield, and quality of tomato (Lycopersicon esculentum Mill) cv. Arka Ashish. Photosynthetica 2014, 52, 519–528. [Google Scholar] [CrossRef]
- Shivashankara, K.S.; Srinivasa Rao, N.K.; Geetha, G.A. Impact of Climate Change on Fruit and Vegetable Quality. In Climate Resilient Horticulture: Adaptation and Mitigation Strategies; Springer: Berlin/Heidelberg, Germany, 2013; pp. 237–244. [Google Scholar]
- Barker, J.C. Effects of day and night humidity on yield and fruit quality of glasshouse tomatoes (Lycopersicon esculentum Mill.). J. Hortic. Sci. 1990, 65, 323–331. [Google Scholar] [CrossRef]
Number of Inflorescence | Flower Bud Initiation Date | Flower Bud Stage to Developed Stage (4–5 mm) | Developed Stage to Anthesis Stage | Anthesis Stage to Fruit Setting Stage | Fruit Setting Stage to Fruit Maturation Stage | Fruit Maturation Stage to Fruit Ripening Stage | Harvest Date | Days between Sowing Date and Flower Bud Initiation (DSF) | Days between Flower Bud Initiation and Harvest Date (DFH) | Days of 50% of Flowering (DAP) |
---|---|---|---|---|---|---|---|---|---|---|
Inflo. 1 | 12 May 2023 | 8–12 | 4 to 8 | 3 to 5 | 20 to 25 | 5 to 8 | 10 July 2023 | 68 | 55–60 | 28.5 |
Inflo. 2 | 17 May 2023 | 10–14 | 5 to 10 | 3 to 5 | 18 to 24 | 7 to 10 | 16 July 2023 | 74 | 55–60 | 31 |
Inflo. 3 | 23 May 2023 | 8–12 | 5 to 10 | 2 to 4 | 18 to 24 | 6 to 10 | 22 July 2023 | 80 | 58–60 | 27 |
Inflo. 4 | 29 May 2023 | 8–12 | 4 to 8 | 2 to 4 | 20 to 25 | 5 to 8 | 27 July 2023 | 87 | 55–60 | 26.5 |
Inflo. 5 | 4 June 2023 | 8–12 | 4 to 8 | 3 to 5 | 20 to 25 | 5 to 8 | 4 August 2023 | 89 | 60–65 | 27.5 |
Inflo. 6 | 8 June 2023 | 10–14 | 5 to 10 | 3 to 5 | 20 to 25 | 5 to 8 | 9 August 2023 | 99 | 60–65 | 30 |
Inflo. 7 | 13 June 2023 | 10–14 | 6 to 12 | 3 to 5 | 20 to 25 | 5 to 8 | 16 August 2023 | 104 | 63–68 | 30.5 |
Inflo. 8 | 18 June 2023 | 8 to 12 | 6 to 12 | 4 to 6 | 18 to 24 | 7 to 10 | 21 August 2023 | 108 | 60–65 | 28 |
Inflo. 9 | 22 June 2023 | 7 to 10 | 6 to 12 | 3 to 5 | 26 to 30 | 7 to 10 | 28 August 2023 | 113 | 63–68 | 32 |
Inflo. 10 | 29 June 2023 | 7–10 | 6 to 12 | 4 to 6 | 26 to 30 | 7 to 10 | 4 September 2023 | 118 | 63–68 | 31.5 |
Days for Flower Bud to Developed Stage | Days for Developed Stage to Anthesis Stage | Days for Anthesis Stage to Fruit Bud Stage | Days for Fruit Setting to Fruit Maturation Stage | Days for Fruit Maturation to Fruit Ripening Stage | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Number of Days (Class Limits) | I | II | III | I | II | III | I | II | III | I | II | III | I | II | III |
6–10 | 8–12 | 10–14 | 4–8 | 5–10 | 6–12 | 2–4 | 3–5 | 4–6 | 18–24 | 20–25 | 26–30 | 5–8 | 6–10 | 7–10 | |
Inflorescence Frequency | 2 | 4 | 4 | 3 | 3 | 4 | 2 | 6 | 2 | 3 | 5 | 2 | 5 | 1 | 4 |
Percentage Distribution | 20% | 40% | 40% | 30% | 30% | 40% | 20 | 60 | 20 | 30% | 50% | 20% | 50% | 10% | 40% |
Mean | 10–14 | 5–10 | 3–5 | 20–25 | 6–10 | ||||||||||
Median Class | III | II | II | II | I | ||||||||||
Mode | Shared between I, II | III | II | II | I | ||||||||||
Standard Deviation | ±29.85 | ±20.06 | ±15.71 | ±68.82 | ±24.46 |
Inflorescence | Inflorescence Length (cm) | Total Mass (TFY) (G) | Average Fruit Mass (AFW)(g) | Number of Fruits (TNFI) | Fruit Dry Matter (%) | Fruit Firmness (N/cm2) | Fruit Diameter (%) | Fruit Keeping Days |
---|---|---|---|---|---|---|---|---|
Mean, SD | Mean, SD | Mean, SD | Mean, SD | Mean, SD | Mean, SD | Mean, SD | Mean, SD | |
1 | 23.40 ± 1.31 | 175.54 ± 19.09 | 12.56 ± 0.801 | 13.00 ± 1.00 | 10.29 ± 0.23 | 7.21 ± 0.69 | 26.93 ± 1.60 | 6.5 ± 2.08 |
2 | 30.07 ± 4.44 | 211.69 ± 18.94 | 13.12 ± 0.69 | 12.66 ± 0.57 | 9.97 ± 0.38 | 7.92 ± 0.16 | 27.50 ± 2.10 | 6.0 ± 1.73 |
3 | 37.18 ± 5.00 | 220.29 ± 13.49 | 13.74 ± 0.80 | 15.33 ± 0.7 | 9.11 ± 0.39 | 7.74 ± 0.54 | 29.98 ± 2.18 | 7 ± 1.52 |
4 | 51.71 ± 2.81 | 405.06 ± 10.81 | 13.11 ± 1.49 | 31.00 ± 6.53 | 10.82 ± 0.33 | 6.66 ± 0.53 | 29.25 ± 2.48 | 5.7 ± 2.00 |
5 | 50.75 ± 4.08 | 446.65 ± 9.55 | 14.71 ± 2.74 | 30.66 ± 4.04 | 9.38 ± 0.52 | 6.11 ± 0.81 | 27.51 ± 4.52 | 5.66 ± 2.00 |
6 | 47.07 ± 5.05 | 316.27 ± 12.95 | 12.04 ± 1.14 | 27.33 ± 4.04 | 9.02 ± 0.27 | 5.75 ± 0.51 | 27.47 ± 0.98 | 5 ± 2.51 |
7 | 43.33 ± 5.53 | 248.86 ± 14.39 | 12.88 ± 0.16 | 18.66 ± 3.78 | 9.74 ± 0.76 | 5.49 ± 0.06 | 24.0 ± 1.89 | 5.66 ± 1.52 |
8 | 35.28 ± 4.60 | 360.57 ± 22.95 | 11.53 ± 0.14 | 31.66 ± 3.21 | 9.68 ± 0.69 | 4.91 ± 0.05 | 26.47 ± 1.68 | 6 ± 2.51 |
9 | 31.48 ± 6.35 | 138.76 ± 14.39 | 11.02 ± 1.53 | 14.33 ± 2.08 | 10.15 ± 0.58 | 5.41 ± 0.30 | 27.0 ± 0.89 | 5.33 ± 1.52 |
10 | 28.21 ± 5.86 | 195.43 ± 23.95 | 10.08 ± 1.83 | 20.66 ± 4.75 | 10.73 ± 1.01 | 5.07 ± 0.32 | 24.41 ± 2.13 | 6 ± 2.51 |
Anova | *** | *** | ** | *** | ** | *** | ns | ns |
Plant population density | 288 plants/160.00 m2 or 3 plants/100 cm2 | |
General appearance of the population | Good | |
Cropping system | Monoculture | |
Environment and Site | ||
Country of evaluation | Romania | |
Site (research institute) | Research Center for Quality Control of Horticultural Products, University of Agronomic Sciences and Veterinary Medicine of Bucharest, coordinates 44.4710° N, 26.0656° 480 E. | |
Plant Descriptors | ||
Plant characteristics | Plant growth type | Indeterminate |
Plant size | Large | |
Stem internode length | Large at the top of stem (7 to 10 cm), intermediate in the middle (5–7 cm), large at the base (6 to 8.5) | |
No. of leaves under 1st inflorescence | Many (7 to 8) | |
Leaf attitude | Semi-erect | |
Leaf type | Standard | |
Leaf colour | Green, dark green. | |
Stem thickness | Medium at top, strong at base and middle | |
Inflorescence and Fruit | ||
Inflorescence | Inflorescence type | Both (partly uniparous, partly multiparous) |
Pedicel length | 10 to 56 cm | |
Corolla colour | Yellow | |
Flower pattern | Basipetal manner | |
Days of 50 percent of flowering DAP | 26 to 33 days | |
Fruit | Shape | Round or circular |
Weight | 5 g to 22 g | |
Fruit size | Small | |
Locule | Multilocular | |
Fruit size homogeneity | Intermediate | |
Exterior colour of mature fruit | Green | |
Fruit shoulder shape | Slightly depressed | |
Green shoulder size (before ripening) | Medium | |
Green shoulder (before ripening) | Present | |
Green stripes (before maturity) | Present | |
Firmness | Medium |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jerca, I.O.; Cîmpeanu, S.M.; Teodorescu, R.I.; Drăghici, E.M.; Nițu, O.A.; Sannan, S.; Arshad, A. A Comprehensive Assessment of the Morphological Development of Inflorescence, Yield Potential, and Growth Attributes of Summer-Grown, Greenhouse Cherry Tomatoes. Agronomy 2024, 14, 556. https://doi.org/10.3390/agronomy14030556
Jerca IO, Cîmpeanu SM, Teodorescu RI, Drăghici EM, Nițu OA, Sannan S, Arshad A. A Comprehensive Assessment of the Morphological Development of Inflorescence, Yield Potential, and Growth Attributes of Summer-Grown, Greenhouse Cherry Tomatoes. Agronomy. 2024; 14(3):556. https://doi.org/10.3390/agronomy14030556
Chicago/Turabian StyleJerca, Ionuț Ovidiu, Sorin Mihai Cîmpeanu, Răzvan Ionuț Teodorescu, Elena Maria Drăghici, Oana Alina Nițu, Sigurd Sannan, and Adnan Arshad. 2024. "A Comprehensive Assessment of the Morphological Development of Inflorescence, Yield Potential, and Growth Attributes of Summer-Grown, Greenhouse Cherry Tomatoes" Agronomy 14, no. 3: 556. https://doi.org/10.3390/agronomy14030556
APA StyleJerca, I. O., Cîmpeanu, S. M., Teodorescu, R. I., Drăghici, E. M., Nițu, O. A., Sannan, S., & Arshad, A. (2024). A Comprehensive Assessment of the Morphological Development of Inflorescence, Yield Potential, and Growth Attributes of Summer-Grown, Greenhouse Cherry Tomatoes. Agronomy, 14(3), 556. https://doi.org/10.3390/agronomy14030556