Interaction of Gibberellic Acid and Glyphosate on Growth and Phenolic Metabolism in Soybean Seedlings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Growth Conditions
2.2. Chemical Sources and Purity
2.3. PAL Extraction and Assay
2.4. Total Hydroxyphenolic Compound Content
2.5. Anthocyanin Content
2.6. Statistics
3. Results
3.1. GA and Glyphosate Effects on Growth
3.2. GA and Glyphosate Effects on Chlorophyll and Anthocyanin Levels
3.3. GA and Glyphosate Effects on Hydroxyphenolic Compounds and PAL
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pohanish, R. Gibberellic Acid. In Sittig’s Handbook of Pesticides and Agricultural Chemicals, 2nd ed.; William Andrew: Norwich, NY, USA, 2015; p. 458. [Google Scholar]
- Hedden, P.; Sponsel, V. A Century of Gibberellin Research. J. Plant Growth Regul. 2015, 34, 740–760. [Google Scholar] [CrossRef] [PubMed]
- Kvas, M.; Marasas, W.F.O.; Wingfield, B.D.; Wingfield, M.J.; Steenkamp, E.T. Diversity and Evolution of Fusarium Species in the Gibberella fujikuroi Complex. Fungal Divers. 2009, 34, 1–21. [Google Scholar]
- Summerell, B.A.; Laurence, M.H.; Liew, E.C.Y.; Leslie, J.F. Biogeography and Phylogeography of Fusarium: A Review. Fungal Divers. 2010, 44, 3–13. [Google Scholar] [CrossRef]
- Tupe, A.; Baravkar, A.; Devkate, G. Recent Advances in Gibberellic Acid Formulation Techniques and Economics of Use in Agriculture. J. Pharm. Res. Int. 2022, 34, 33–41. [Google Scholar] [CrossRef]
- Asahina, M.; Iwai, H.; Kikuchi, A.; Yamaguchi, S.; Kamiya, Y.; Kamada, H.; Satoh, S. Gibberellin Produced in the Cotyledon is Required for Cell Division during Reunion in the Cortex of Cut Cucumber and Tomato Hypocotyls. Plant Physiol. 2002, 129, 201–210. [Google Scholar] [CrossRef]
- Sawhney, V.K.; Greyson, R.I. Morphogenesis of the Stamen-Less-2 Mutant in Tomato. II. Modifications of Sex Organs in the Mutant and Normal Flowers. Can. J. Bot. 1973, 51, 2473–2479. [Google Scholar] [CrossRef]
- Weiss, D.; Tunen, A.J.; Halevy, A.H.; Mol, J.N.; Gerats, A.G. Stamens and Gibberellic Acid in the Regulation of Flavonoid Gene Expression in the Corolla of Petunia hybrida. Plant Physiol. 1990, 94, 511–515. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Zhang, A.; Goa, F.; Liang, H.; Li, M.; Zhang, J.; Wang, G.; Qu, H.; Cheng, S.; Ruan, S.; et al. Modification of Wine Phenolic Profiles by Gibberellic Acid Application in Cabernet Gernischt Grapevines before Anthesis. J. Sci. Food Agric. 2022, 103, 1216–1225. [Google Scholar] [CrossRef] [PubMed]
- Lein, D.T.P.; Phuc, T.M.; Tram, P.T.B.; Toan, H.T. Effects of Gibberellic Acid on the Antioxidant Activity of Soybean Seeds (Glycine max L. Merr.) during Germination. Int. J. Food Sci. Nutr. 2016, 1, 16–21. [Google Scholar]
- Pline, W.A.; Edmisten, K.L.; Wilcut, J.W.; Wells, R.; Thomas, J. Glyphosate-Induced Reductions in Pollen Viability and Seed Set in Glyphosate-Resistant Cotton and Attempted Remediation by Gibberellic Acid (GA3). Weed Sci. 2003, 51, 19–27. [Google Scholar] [CrossRef]
- Varma, S.K. Role of gibberellic Acid in the Phenomena of Abscission in Flower Buds and Bolls of Cotton (Gossypium hirsutum L.). Ind. J. Plant Physiol. 1976, 19, 40–46. [Google Scholar]
- Schuler, J.; Colquhoun, J. Influence of Gibberellic Acid on Vegetable Crop and Weed Emergence. Weed Technol. 2022, 36, 808–813. [Google Scholar] [CrossRef]
- Shuai, H.; Meng, Y.; Luo, X.; Chen, F.; Zhou, W.; Dai, Y.; Qi, Y.; Du, J.; Yang, F.; Liu, J.; et al. Exogenous Auxin Represses Soybean Seed Germination through Decreasing the Gibberellin/Abscisic Acid (GA/ABA) Ratio. Sci. Rep. 2017, 7, 12620. [Google Scholar] [CrossRef] [PubMed]
- Narsaiah, D.B.; Harvey, R.G. Alachlor and Gibberellic Acid Interaction on Corn Tissues. Weed Sci. 1977, 25, 197–199. [Google Scholar] [CrossRef]
- Jiang, H.; Deng, X.; Wang, J.; Wang, J.; Peng, J.; Zhou, T. Effects of Gibberellic Acid and N, N-Dimethyl Piperidinium Chloride on the Dose of and Physiological Responses to Prometryn in Black Nightshade (Solanum nigrum L.). PLoS ONE 2014, 9, e93654. [Google Scholar] [CrossRef]
- Dickson, R.L.; Andrews, M.; Field, R.J.; Dickson, E.L. Effect of Water Stress, Nitrogen, and Gibberellic Acid on Fluazifop and Glyphosate Activity on Oats (Avena sativa). Weed Sci. 1990, 38, 54–61. [Google Scholar] [CrossRef]
- Gomes, M.P.; Bicalho, E.M.; Cruz, F.V.S.; Souza, A.M.; Silva, B.M.R.; Goncalves, C.A.; Santos, T.R.S.; Garcia, Q.S. Does Integrative Effects of Glyphosate, Gibberellin and Hydrogen Peroxide Ameliorate the Deleterious Effects of the Herbicide on Sorghum Seed Through Its Germination? Chemosphere 2019, 233, 905–912. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, C.T.; Dang, L.H.; Nguyen, D.T.; Tran, K.P.; Giang., B.L.; Tran, N.Q. Effect of GA3 and Gly Plant Growth Regulators on Productivity and Sugar Content of Sugarcane. Agriculture 2019, 9, 136. [Google Scholar] [CrossRef]
- Dӧğramaci, M.; Anderson, J.V.; Chao, W.S.; Horvath, D.P.; Hernandez, A.G.; Mikel, M.A.; Foley, M.E. Foliar Glyphosate Treatment Alters Transcript and Hormone Profiles in Crown Buds of Leafy Spurge and Induces Dwarfed and Bushy Phenotypes throughout Its Perennial Lifecycle. Plant Genome 2017, 10. [Google Scholar] [CrossRef]
- Sterrett, J.P.; Hodgson, R.H. Enhanced Response of Bean (Phaseolus vulgaris) and Canada Thistle (Cirsium arvense) to Bentazon or Glyphosate by Gibberellin. Weed Sci. 1983, 31, 392–401. [Google Scholar] [CrossRef]
- Etheridge, J.R.; Pawlak, J.A. Compositions and Methods for Residual Weed Control with Flumioxazin and Gibberellic Acid. U.S. Patent 2,014,012,826,1A1, 1 November 2013. [Google Scholar]
- Liu, P.; Guo, Z.H.; Chen, X.; Guo, L.H.; Tian, Y.B.; Qiu, T.H. Research progress on the role of gibberellin in wheat development and stress response. Biotechnol. Adv. 2015, 5, 253–258. [Google Scholar]
- Yu, Q.Q.; Xia, M.L.; Hu, W.H.; Zhang, Y.Y.; Shi, T.S. Effects of several pesticide adjuvants on the penetration of gibberellin on wheat leaves. Jiangsu Agric. Sci. 2019, 47, 125–128. [Google Scholar]
- Zhang, G.; Ma, T.; Cheng, Y.; Wang, J.; Liu, L.; Zhang, B. Effects of Different Environment-Friendly Gibberellic Acid Microcapsules on Herbicide Injury of Wheat. Front. Plant Sci. 2020, 13, 915506. [Google Scholar] [CrossRef] [PubMed]
- Hanson, K.R.; Havir, E.A. An Introduction to the Enzymology of Phenylpropanoid Biosynthesis. Rec. Adv. Phytochem. 1979, 12, 1–137. [Google Scholar]
- Camm, E.L.; Towers, G.H.N. Phenylalanine Ammonia-Lyase. In Progress in Phytochemistry; Harborne, J.B., Swain, T., Eds.; Pergamon: New York, NY, USA, 1977; pp. 169–188. [Google Scholar]
- Whetten, R.W.; Sederoff, R.R. Phenylalanine Ammonia-Lyase from Loblolly Pine: Purification of the Enzyme and Isolation of Complementary DNA Clones. Plant Physiol. 1992, 98, 380–386. [Google Scholar] [CrossRef] [PubMed]
- Holton, T.A.; Cornish, E.C. Genetics and Biochemistry of Anthocyanin Biosynthesis. Plant Cell 1995, 7, 1071–1083. [Google Scholar] [CrossRef] [PubMed]
- Dixon, R.A.; Paiva, N.L. Stress-Induced Phenylpropanoid Metabolism. Plant Cell 1995, 7, 1085–1097. [Google Scholar] [CrossRef]
- Koukol, J.; Conn, E.E. The Metabolism of Aromatic Compounds in Higher Plants. IV. Purification and Properties of the Phenylalanine Deaminase of Hordeum vulgare. J. Biol. Chem. 1961, 236, 2692–2698. [Google Scholar] [CrossRef]
- Bashyal, B.M.; Aggarwal, R.; Sharma, S.; Gupta, S.; Rawat, K.; Singh, D.; Singh, A.K.; Krishnan, S.G. Occurrence, Identification and Pathogenicity of Fusarium Species Associated with Bakanae Disease of Basmati Rice in India. Eur. J. Plant Pathol. 2016, 144, 457–466. [Google Scholar] [CrossRef]
- Siciliano, I.; Carneiro, G.A.; Spadaro, D.; Garibaldi, A.; Gullino, M.L. Jasmonic Acid, Abscisic Acid, and Salicylic Acid are Involved in the Phytoalexin Responses of Rice to Fusarium fujikuroi, A High Gibberellin Producer Pathogen. J. Agric. Food Chem. 2015, 63, 8134–8142. [Google Scholar] [CrossRef]
- Barnes, L.; Jones, R.L. Regulation of Phenylalanine Ammonia-Lyase Activity and Growth in Lettuce by Light and Gibberellic Acid. Plant Cell Environ. 1984, 7, 89–95. [Google Scholar] [CrossRef]
- Reid, P.D.; Havir, E.A.; Marsh, H.V., Jr. L-Phenylalanine Ammonia-Lyase (Maize): Partial Purification and Response to Gibberellic Acid and Cycloheximide of L-Phenylalanine and L-Tyrosine Ammonia-Lyase Activities. Plant Physiol. 1972, 50, 480–484. [Google Scholar] [CrossRef] [PubMed]
- Montero, T.; Mollá, E.; Martín-Cabrejas, M.A.; López-Andréu, F.J. Effects of Gibberellic Acid (GA3) on Strawberry PAL (Phenylalanine Ammonia-Lyase) and TAL (Tyrosine Ammonia-Lyase) Enzyme Activities. J. Sci. Food Agric. 1998, 77, 230–234. [Google Scholar] [CrossRef]
- Cheng, C.K.-C.; Marsh, H.V., Jr. Gibberellic Acid-Promoted Lignification and Phenylalanine Ammonia-Lyase Activity in a Dwarf Pea (Pisum sativum). Plant Physiol. 1968, 43, 1755–1759. [Google Scholar] [CrossRef] [PubMed]
- Duke, S.O.; Hoagland, R.E.; Elmore, C.D. Effects of Glyphosate on Metabolism of Phenolic Compounds. IV. Phenylalanine Ammonia-Lyase Activity, Free Amino Acids, and Soluble Hydroxyphenolic Compounds in Axes of Light-Grown Soybeans. Physiol. Plant. 1979, 46, 307–317. [Google Scholar] [CrossRef]
- Hoagland, R.E.; Duke, S.O. Relationships Between Phenylalanine Ammonia-Lyase Activity and Physiological Responses of Soybean (Glycine max) Seedlings to Herbicides. Weed Sci. 1983, 31, 845–852. [Google Scholar] [CrossRef]
- Hoagland, R.E.; Duke, S.O. Effects of Herbicides on Extractable Phenylalanine Ammonia-Lyase Activity in Light- and Dark-Grown Glycine max (L.) Merr. Seedlings. Weed Sci. 1981, 29, 433–439. [Google Scholar] [CrossRef]
- Hoagland, R.E. Interaction of Indoleacetic Acid and Glyphosate on Phenolic Metabolism in Soybeans. Pest. Biochem. Physiol. 1990, 36, 68–75. [Google Scholar] [CrossRef]
- Hoagland, R.E.; Duke, S.O.; Elmore, C.D. Effects of Glyphosate on Metabolism of Phenolic Compounds. III. Phenylalanine Ammonia-Lyase Activity, Free Amino Acids, and Soluble Hydroxyphenolic Compounds in Axes of Dark-Grown Soybeans. Physiol. Plant. 1979, 46, 357–366. [Google Scholar] [CrossRef]
- Bradford, M.M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Singleton, Y.L.; Rossi, J.A., Jr. Colorimetry of Total Phenolics with Phosphomolybdic Phosphotungstic Acid Reagents. Amer. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Hoagland, R.E. Effects of Glyphosate on Metabolism of Phenolic Compounds. VI. Effects of Glyphosine and Glyphosate Metabolites on Phenylalanine Ammonia-Lyase Activity, Growth and Protein, Chlorophyll and Anthocyanin Levels in Soybean (Glycine max) Seedlings. Weed Sci. 1980, 28, 393–400. [Google Scholar] [CrossRef]
- Steele, R.G.D.; Torrey, J.H.; Dickeys, D.A. Multiple Comparisons. In Principles and Procedures of Statistics: A Biometrical Approach; McGraw Hill: New York, NY, USA, 1997; 666p. [Google Scholar]
- Jaworski, E.G. Mode of action of N-(phosphonomethyl)glycine: Inhibition of Aromatic Amino Acid Biosynthesis. J. Agric. Food Chem. 1972, 20, 1195–1198. [Google Scholar] [CrossRef]
- Hoagland, R.E.; Boyette, C.D. Controlling Herbicide-Susceptible, -Tolerant and -Resistant Weeds with Microbial Bioherbicides. Outlooks Pest Manag. 2016, 27, 256–266. [Google Scholar] [CrossRef]
- Duke, S.O.; Pan, Z.; Bajsa-Hirschel, J.; Boyette, C.D. The Potential Future Roles of Natural Compounds and Microbial Bioherbicides in Weed Management in Crops. Adv. Weed Sci. 2022, 40, e020210054. [Google Scholar] [CrossRef]
- Hoagland, R.E.; Boyette, C.D. Pathogenic Interactions of Alternaria crassa and Phenolic Metabolism in Jimsonweed (Datura stramonium L.) Varieties. Weed Sci. 1994, 42, 44–49. [Google Scholar] [CrossRef]
- Hoagland, R.E. Alternaria cassiae Alters Phenylpropanoid Metabolism in Sicklepod (Cassia obtusifolia). J. Phytopathol. 1991, 130, 177–187. [Google Scholar] [CrossRef]
- Hoagland, R.E. The Mycoherbicide Alternaria cassiae Infects and Alters Phenolic Metabolism of Cassia alata Seedlings. Phytoprotection 1995, 76, 67–74. [Google Scholar] [CrossRef]
- Checker, V.G.; Kushwaha, H.R.; Kumari, P.; Yadav, S. Role of Phytohormones in Plant Defense: Signaling and Cross Talk. In Molecular Aspects of Plant-Pathogen Interaction; Singh, A., Singh, I., Eds.; Springer: Singapore, 2018; pp. 159–184. [Google Scholar]
- Chanclud, E.; Morel, J.-B. Plant Hormones: A Fungal Point of View. Mol. Plant Pathol. 2016, 17, 1289–1297. [Google Scholar] [CrossRef]
- Bhattacharya, A.; Kourmpetli, S.; Ward, D.A.; Thomas, S.G.; Gong, F.; Powers, S.J.; Carrera, E.; Taylor, B.; de Caceres Gonzalez, F.N.; Tudzynski, B.; et al. Characterization of the Fungal Gibberellin Desaturase as a 2-Oxoglutarate-Dependent Dioxygenase and Its Utilization for Enhancing Plant Growth. Plant Physiol. 2012, 160, 837–845. [Google Scholar] [CrossRef]
- Luo, K.; Rocheleau, H.; Qi, P.-F.; Zheng, Y.-L.; Zhao, H.-Y.; Ouellet, T. Indole-3-Acetic Acid in Fusarium graminearum: Identification of Biosynthetic Pathways and Characterization of Physiological Effects. Fungal Biol. 2016, 120, 1135–1145. [Google Scholar] [CrossRef]
- Qi, P.F.; Balcerzak, M.; Rocheleau, H.; Leung, W.; Wei, Y.-M.; Zheng, Y.-L.; Ouellet, T. Jasmonic Acid and Abscisic Acid Play Important Roles in Host-Pathogen Interaction Between Fusarium graminearum and Wheat During the Early Stages of Fusarium Head Blight. Physiol. Mol. Plant Pathol. 2016, 93, 39–48. [Google Scholar] [CrossRef]
- Vrabka, J.; Niehaus, E.-M.; Münsterkötter, M.; Proctor, R.H.; Brown, D.W.; Novák, O.; Pěnčik, A.; Tarkowsk, D.; Tarkowská, D.; Hromadov, K.; et al. Production and Role of Hormones during Interaction of Fusarium Species with Maize (Zea mays L.) Seedlings. Front. Plant Sci. 2019, 9, 1936. [Google Scholar] [CrossRef]
- Barker, S.; Tagu, D. The Roles of Auxins and Cytokinins in Mycorrhizal Symbioses. J. Plant Growth Regul. 2000, 19, 144–154. [Google Scholar] [CrossRef] [PubMed]
- Desjardins, A.E.; Manandhar, H.K.; Plattner, R.D.; Manandhar, G.G.; Poling, S.M.; Maragos, C.M. Fusarium Species from Nepalese Rice and Production of Mycotoxins and Gibberellic Acid by Selected Species. Appl. Environ. Microbiol. 2000, 66, 1020–1025. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.L.; Li, Q.; Deng, Y.W.; Lou, Y.G.; Wang, M.Y.; Zhou, G.X.; Zhang, Y.Y.; He, Z.H. Altered Disease Development in The euiMutants and EuiOver Expressors Indicates that Gibberellins Negatively Regulate Rice Basal Disease Resistance. Molec. Plant Pathol. 2008, 1, 528–537. [Google Scholar]
- Wiemann, P.; Sieber, C.M.; von Bargen, K.W.; Studt, L.; Niehaus, E.M.; Espino, J.J.; Huß, K.; Michielse, C.G.; Albermann, S.; Wagner, D.; et al. Deciphering the Cryptic Genome: Genome-Wide Analyses of the Rice Pathogen Fusarium fujikuroi Reveal Complex Regulation of Secondary Metabolism and Novel Metabolites. PLoS Pathog. 2013, 9, e1003475. [Google Scholar] [CrossRef]
- Puyam, A.; Pannu, P.P.S.; Kaur, J.; Sethi, S. Variability in Production of Gibberellic Acid and Fusaric Acid by Fusarium moniliforme and Their Relationship. J. Plant Pathol. 2017, 99, 103–108. [Google Scholar]
- Buhrow, L.M.; Cram, D.; Tulpan, D.; Foroud, N.A.; Loewen, M.C. Exogenous Abscisic Acid and Gibberellic Acid Elicit Opposing Effects on Fusarium graminearum Infection in Wheat. Phytopathology 2016, 106, 986–996. [Google Scholar] [CrossRef]
- Bari, R.; Jones, J.D.G. Role of Plant Hormones in Plant Defense Responses. Plant. Mol. Biol. 2009, 69, 473–488. [Google Scholar] [CrossRef]
- Ray, S.D.; Laloraya, M.M. Interaction of Gibberellic Acid, Abscisic Acid, and Phenolic Compounds in the Control of Hypocotyl Growth of Amaranthus caudatus Seedlings. Can. J. Bot. 1984, 62, 2047–2052. [Google Scholar] [CrossRef]
- Groszmann, M.; Chandler, P.M.; Ross, J.J.; Swain, S.M. Manipulating Gibberellin Control Over Growth and Fertility as a Possible Target for Managing Wild Radish Weed Populations in Cropping Systems. Front. Plant Sci. 2020, 11, 190. [Google Scholar] [CrossRef] [PubMed]
- Heap, I. The International Survey of Herbicide Resistant Weeds. Available online: www.weedscience.org (accessed on 5 March 2024).
g per Axis | ||
---|---|---|
Treatment | Light | Dark |
Control | 0.64 c | 0.83 c |
GA (10−5 M) | 0.64 c | 0.84 c |
Gly. (5 × 10−4 M) | 0.39 a | 0.69 a |
GA + Gly. (10−5 + 5 × 10−4 M) | 0.52 b | 0.75 b |
Treatment | Light | ||
---|---|---|---|
Root | Hypocotyl | Epicotyl | |
Control | 194 c | 68 b | 220 c |
GA (10−5 M) | 183 c | 110 c | 71 d |
Gly. (5 × 10−4 M) | 93 a | 58 a | 2 a |
GA + Gly. (10−5 + 5 × 10−4 M) | 119 b | 112 c | 7 b |
Dark | |||
Root | Hypocotyl | Epicotyl | |
Control | 200 c | 188 b | 14 b |
GA (10−5 M) | 187 b | 193 b | 49 c |
Gly. (5 × 10−4 M) | 107 a | 169 a | 5 a |
GA + Gly. (10−5 + 5 × 10−4 M) | 108 a | 182 b | 8 ab |
Treatment | Chlorophyll (mg/Hypocotyl) |
---|---|
Control | 0.021 c |
GA (10−5 M) | 0.019 bc |
Gly. (5 × 10−4 M) | 0.010 a |
GA + Gly. (10−5 + 5 × 10−4 M) | 0.014 ab |
Treatment | Light | |||
---|---|---|---|---|
24 h | 48 h | 72 h | 96 h | |
Control | 1. 34 a | 2.10 c | 2.35 c | 2.33 b |
GA (10−5 M) | 1.36 a | 1.90 b | 2.22 b | 2.51 c |
Gly. (5 × 10−4 M) | 1.33 a | 1.70 a | 1.79 a | 1.96 a |
GA + Gly. (10−5 + 5 × 10−4 M) | 1.36 a | 1.92 b | 2.11 b | 2.56 c |
Dark | ||||
24 h | 48 h | 72 h | 96 h | |
Control | 1.84 b | 2.14 b | 2.60 c | 2.39 b |
GA (10−5 M) | 1.81 ab | 2.19 b | 2.44 b | 2.35 b |
Gly. (5 × 10−4 M) | 1.77 a | 1.87 a | 2.02 a | 2.12 a |
GA + Gly. (10−5 + 5 × 10−4 M) | 1.61 a | 2.20 b | 1. 91 a | 2.61 c |
Treatment | A525–585 |
---|---|
Control | 0.210 c |
GA (10−5 M) | 0.210 c |
Gly. (5 × 10−4 M) | 0.102 a |
GA + Gly. (10−5 + 5 × 10−4 M) | 0.170 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hoagland, R.E.; Boyette, C.D. Interaction of Gibberellic Acid and Glyphosate on Growth and Phenolic Metabolism in Soybean Seedlings. Agronomy 2024, 14, 684. https://doi.org/10.3390/agronomy14040684
Hoagland RE, Boyette CD. Interaction of Gibberellic Acid and Glyphosate on Growth and Phenolic Metabolism in Soybean Seedlings. Agronomy. 2024; 14(4):684. https://doi.org/10.3390/agronomy14040684
Chicago/Turabian StyleHoagland, Robert E., and Clyde Douglas Boyette. 2024. "Interaction of Gibberellic Acid and Glyphosate on Growth and Phenolic Metabolism in Soybean Seedlings" Agronomy 14, no. 4: 684. https://doi.org/10.3390/agronomy14040684
APA StyleHoagland, R. E., & Boyette, C. D. (2024). Interaction of Gibberellic Acid and Glyphosate on Growth and Phenolic Metabolism in Soybean Seedlings. Agronomy, 14(4), 684. https://doi.org/10.3390/agronomy14040684