The Influence of Combined Pruning and the Use of Root Application of Two Biostimulants and Foliar Nutrition on the Growth and Flowering of Panicle Hydrangea Plants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Growth Conditions
2.2. Laboratory Analysis of the Presence of the Fungus
2.3. Data Analysis
3. Results
3.1. Analysis of Plant Growth and Flowering
3.2. Analysis of the Presence of the Trichoderma Fungus
4. Discussion
4.1. Plant Growth and Flowering after Applying the Pruning
4.2. Growth and Flowering of Plants after Application of Trichoderma Atroviride
4.3. Growth and Flowering of Plants after Foliar Spraying with Fertilizer
4.4. Growth and Flowering of Plants after Root Application of BlackJak Preparation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Orozco-Obando, W.; Hirsch, G.N.; Wetzstein, H.Y. Genotypic variation in flower induction and development in Hydrangea macrophylla. HortScience 2005, 40, 1695–1698. [Google Scholar] [CrossRef]
- van Gelderen, C.J.; van Gelderen, D.M. Encyclopedia of Hydrangeas; Timber Press: Portland, OR, USA, 2004. [Google Scholar]
- McClintock, E. A monograph of the genus Hydrangea. Proc. Calif. Acad. Sci. 1957, 24, 147–256. [Google Scholar]
- Halcomb, M.; Sandra, R. Hydrangea Production; University of Tennessee: Knoxville, TN, USA, 2010. [Google Scholar]
- Durlak, W.; Marcinek, B.; Szmagara, M.; Dudkiewicz, M.; Konopińska-Mamej, A. Effect of selected preparations on some biometric features of ‘Tardiva’ panicled hydrangea (Hydrangea paniculata Siebold) depending on the irrigation frequency. Acta Sci. Pol. Hortorum Cultus 2019, 18, 39–51. [Google Scholar] [CrossRef]
- Pineda, M.; Yu, B.; Tian, Y.; Morante, N.; Salazar, S.; Hyde, P.T.; Setter, T.L.; Ceballos, H. Effect of pruning young branches on fruit and seed set in Cassava. Front. Plant Sci. 2020, 11, 1107. [Google Scholar] [CrossRef] [PubMed]
- Salih, Z.K.; Ahmed, M.A.; Masouleh, S.S.S.; Sanam, M.A. Pruning intensity and amino acids tryptophan and glycine on growth and flowering of Jasminum sambac. Ornam. Hortic. 2021, 27, 20–25. [Google Scholar] [CrossRef]
- Weraduwage, A.M.; Chen, J.; Weise, S.E.; Sharkey, T.D.; Anozie, F.C.; Morales, A. The relationship between leaf area growth and biomass accumulation in Arabidopsis thaliana. Front. Plant Sci. 2015, 6, 167. [Google Scholar] [CrossRef] [PubMed]
- Persello, S.; Grechi, I.; Boudon, F.; Normand, F. Nature abhors a vacuum: Deciphering the vegetative reaction of the mango tree to pruning. Eur. J. Agron. 2019, 104, 85–96. [Google Scholar] [CrossRef]
- Amarnath, K.S.; Mishra, S.; Singh, R.K. Effect of pruning in pomegranate (Punica granatum L.) for shoot growth, flowering and fruit yield. Curr. J. Appl. Sci. Technol. 2020, 39, 114–123. [Google Scholar] [CrossRef]
- Liu, J.D.; Ye, X.S.; Yu, G.Y.; Kang, X.R.; Wang, X. Effect of pruning on endo-genetic hormone content associated with differentiation of blueberry flower buds. J. Phys. 2021, 2009, 012034. [Google Scholar]
- Ponchia, G.; Simeoni, S.; Zanin, G. Influence of Winter Pruning on Ornamental Plants Grown in Two Kinds of Container. Acta Hortic. 2010, 881, 581–584. [Google Scholar] [CrossRef]
- Zhang, D.; Cai, W.; Zhang, X.; Li, W.; Zhou, Y.; Chen, Y.; Mi, Q.; Jin, L.; Xu, L.; Yu, X.; et al. Different pruning level effects on flowering period and chlorophyll fluorescence parameters of Loropetalum chinense var. rubrum. PeerJ 2022, 10, e13406. [Google Scholar] [CrossRef] [PubMed]
- Chopde, N.; Lokhande, S.; Bhande, M.H.; Warkade, V.P. Impact of time and level of pruning on growth and flowering of Jasminum sambac (L.). Res. Crop. 2017, 18, 123–128. [Google Scholar] [CrossRef]
- Zhang, C.; Jia, M.L.; Song, Z.Q.; Wu, J.; Duan, J.J. Effects of different pruning methods on the yield and quality of cut corolla rose. J. Shanxi Agric. Sci. 2018, 46, 1314–1316. [Google Scholar]
- Hassanein, A.M.A. Improved Quality and Quantity of Winter Flowering in Rose (Rosa spp.) by Controlling the Timing and Type of Pruning Applied in Autumn. World J. Agric. Sci. 2010, 6, 260–267. Available online: http://www.idosi.org/wjas/wjas6(3)/5.pdf (accessed on 20 January 2024).
- Shoresh, M.; Harman, G.E.; Mastouri, F. Induced systemic resistance and plant responses to fungal biocontrol agents. Annu. Rev. Phytopathol. 2010, 48, 21–43. [Google Scholar] [CrossRef] [PubMed]
- Rubio, M.B.; Domínguez, S.; Monte, E.; Hermosa, R. Comparative study of Trichoderma gene expression in interactions with tomato plants using high density oligonucleotide microarrays. Microbiology 2012, 158, 119–128. [Google Scholar] [CrossRef]
- Vinale, F.; Nigro, M.; Sivasithamparam, K.; Flematti, G.; Ghisalberti, E.L.; Ruocco, M.; Lorito, M. Harzianic acid: A novel siderophore from Trichoderma harzianum. FEMS Microbiol. Lett. 2013, 347, 123–129. [Google Scholar] [CrossRef] [PubMed]
- Stewart, A.; Hill, R. Applications of Trichoderma in Plant Growth Promotion. In Biotechnology and Biology of Trichoderma; Gupta, V.K., Schmoll, M., Herrera-Estrella, A., Upadhyay, R.S., Druzhinina, I., Tuohy, M.G., Eds.; Elsevier: Amsterdam, The Netherlands, 2014; pp. 415–428. [Google Scholar]
- Poveda, J.; Baptista, P. Filamentous fungi as biocontrol agents in olive (Olea europaea L.) diseases: Mycorrhizal and endophytic fungi. Crop Prot. 2021, 146, 105672. [Google Scholar] [CrossRef]
- Woo, S.L.; Ruocco, M.; Vinale, F.; Nigro, M.; Marra, R.; Lombardi, N.; Lorito, M. Trichoderma-based products and their widespread use in agriculture. Open Mycol. J. 2014, 8, 71–126. [Google Scholar] [CrossRef]
- Contreras-Cornejo, H.A.; Macías-Rodríguez, L.; Cortés-Penagos, C.; López Bucio, J. Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin dependent mechanism in Arabidopsis. Plant Physiol. 2009, 149, 1579–1592. [Google Scholar] [CrossRef]
- Lorito, M.; Woo, S.L.; Harman, G.E.; Monte, E. Translational Research on Trichoderma: From ’Omics to the Field. Annu. Rev. Phytopathol. 2010, 48, 395–417. [Google Scholar] [CrossRef] [PubMed]
- Samolski, I.; Rincón, A.M.; Pinzón, L.M.; Viterbo, A.; Monte, E. The quid.74 gene from Trichoderma harzianum has a role in root architecture and plant biofertilization. Microbiology 2012, 158, 129–138. [Google Scholar] [CrossRef] [PubMed]
- López-Bucio, J.; Pelagio-Floresa, R.; Herrera-Estrella, A. Trichoderma as biostimulant: Exploiting the multilevel properties of a plant beneficial fungus. Sci. Hortic. 2015, 196, 109–123. [Google Scholar] [CrossRef]
- Di Vaio, C.; Testa, A.; Cirillo, A.; Conti, S. Slow-Release Fertilization and Trichoderma harzianum-Based Biostimulant for the Nursery Production of Young Olive Trees (Olea europaea L.). Agron. Res. 2021, 19, 1396–1405. [Google Scholar] [CrossRef]
- Doni, F.; Zain CR, C.M.; Isahak, A.; Fathurrahman, F.; Anhar, A.; Mohamad, W.N.A.W.; Yusof WM, W.; Uphof, N. A simple, efficient, and farmerfriendly Trichoderma-based biofertilizer evaluated with the SRI rice management system. Org. Agric. 2017, 8, 207–223. [Google Scholar] [CrossRef]
- Bhandari, S.; Pandey, K.R.; Joshi, Y.R.; Lamichhane, S.K. An overview of multifaceted role of Trichoderma spp. for sustainable agriculture. Arch. Agric. Environ. Sci. 2021, 6, 72–79. [Google Scholar] [CrossRef]
- Andrzejak, R.; Janowska, B. Trichoderma spp. Improves flowering, quality, and nutritional status of ornamental plants. Int. J. Mol. Sci. 2022, 23, 15662. [Google Scholar] [CrossRef] [PubMed]
- Bi, G.; Scagel, C.F. Nitrogen uptake and mobilization by hydrangea leaves from foliar sprayed urea in fall depend on plant nitrogen status. HortScience 2008, 43, 2151–2154. [Google Scholar] [CrossRef]
- Bi, G.; Scagel, C.F.; Harkess, R.L. Rate of nitrogen fertigation during vegetative growth and spray application of urea in the fall alters growth and flowering of florists’ hydrangeas. HortScience 2008, 43, 472–477. [Google Scholar] [CrossRef]
- De Clercq, P.; Pauwels, E.; Top, S.; Steppe, K.; Van Labeke, M.C. Effect of Seaweed-Based Biostimulants on Growth and Development of Hydrangea paniculata under Continuous or eriodic Drought tress. Horticulturae 2023, 9, 509. [Google Scholar] [CrossRef]
- Szydło, W.; Pacholczak, A. Effect of Biopreparation Asahi SL and Fertilizer Osmocote 5–6 M on Growth of Hydrangea arborescens ‘Anabelle’. Ann. Wars. Univ. LifeSci. SGGW Hortic. Landsc. Archit. 2010, 31, 3–9. [Google Scholar]
- Fascella, G.; Montoneri, E.; Ginepro, M.; Francavilla, M. Effect of urban biowaste derived soluble substances on growth, photosynthesis and ornamental value of Euphorbia x lomi. Sci. Hortic. 2015, 197, 90–98. [Google Scholar] [CrossRef]
- Demirer, T. Effect of leonardite application on leaf nutrient content and fruit chemical parameters of cherry (Prunus avium L.). J. Plant Nutr. 2019, 42, 2532–2538. [Google Scholar] [CrossRef]
- Olego, M.Á.; Cuesta Lasso, M.; Quiroga, M.J.; Visconti, F.; López, R.; Garzón-Jimeno, E. Effects of Leonardite Amendments on Vineyard Calcareous Soil Fertility, Vine Nutrition and Grape Quality. Plants 2022, 11, 356. [Google Scholar] [CrossRef] [PubMed]
- Jităreanu, C.D.; Slabu, C.; Marta, A.E.; Bologa Covașă, M. The Effect of Biostimulants on the Process of Photosynthesis at the Lettuce. Lucr. Ştiinţifice 2020, 63, 119–124. Available online: https://repository.uaiasi.ro/xmlui/handle/20.500.12811/1116 (accessed on 20 January 2024).
- Jasim, A.H. Effect of soil sulfur fertılızer and some foliar fertilizers on growth and yield of broccoli in salıne soil. Ann. West Univ. Timişoara Biol. 2015, 18, 123–130. [Google Scholar]
- Yahya, A.B.; Al-Sawaf, M.D.; Almura, N.Y. Effect of biofertilizer trichoderma harzianum t-22 application, growing medium and training methods on some chararctrestics for Lantana camara plants. Mesop. J. Agric. 2021, 49, 95–103. [Google Scholar] [CrossRef]
- Cruz LRutz, D.; Fernanda, L.F.; Gerusa, P.; Kist, S.; Maldaner, J. Development and Quality of Gladiolus Stems with the Use of Vermicompost and Trichoderma sp. in Substrate. Ornam. Hortic. 2018, 24, 70–77. [Google Scholar] [CrossRef]
- Prisa, D. Trichoderma harzianum: Biocontrol to Rhizoctonia solani and Biostimulation in Pachyphytum oviferum and Crassula falcata. World J. Adv. Res. Rev. 2018, 3, 11–18. [Google Scholar] [CrossRef]
- Sisodia, A.; Pal, A.; Singh, A.K. Varietal Response and Effect of Trichoderma on Flowering in Gladiolus. J. Pharmacogn. Phytochem. 2018, 7, 3658–3660. [Google Scholar]
- Sofo, A.; Tataranni, G.; Xiloyannis, C.; Dichio, B.; Scopa, A. Direct effects of Trichoderma harzianum strain T-22 on micropropagated shoots of GiSeLa6 (Prunus cerasus) rootstock. Environ. Exp. Bot. 2012, 76, 33–38. [Google Scholar] [CrossRef]
- Harman, G.; Howell, C.; Viterbo AChet, I.; Lorito, M. Trichoderma species—Opportunistic, avirulent plant symbionts. Nat. Rev. Microbiol. 2004, 2, 43–56. [Google Scholar] [CrossRef] [PubMed]
- Ousley, M.A.; Lynch, J.M.; Whipps, J.M. Effect of Trichoderma on Plant Growth: A Balance between Inhibition and Growth Promotion. Microb. Ecol. 1993, 26, 277–285. [Google Scholar] [CrossRef] [PubMed]
- Fiorentino, N.; Ventorino, V.; Woo, S.L.; Pepe, O.; De Rosa, A.; Gioia, L.; Rouphael, Y. Trichoderma-based biostimulants modulate rhizosphere microbial populations and improve N uptake efficiency, yield, and nutritional quality of leafy vegetables. Front. Plant Sci. 2018, 9, 743. [Google Scholar] [CrossRef] [PubMed]
- Tucci, M.; Ruocco, M.; De Masi, L.; De Palma, M.; Lorito, M. The beneficial effect of Trichoderma spp. on tomato is modulated by the plant genotype. Mol. Plant Pathol. 2011, 12, 341–354. [Google Scholar] [CrossRef] [PubMed]
- Avis, T.J.; Gravel, V.; Antoun, H.; Tweddell, R.J. Multifaceted beneficial effects of rhizosphere microorganisms on plant health and productivity. Soil Biol. Bioch. 2008, 40, 1733–1740. [Google Scholar] [CrossRef]
- Di Marco, S.; Osti, F. Effects of Trichoderma applications on vines grown in organic nursery. In Proceedings of the 2nd Conference of the International Society of Organic Agriculture Research ISOFAR, Modena, Italy, 18–20 June 2008. [Google Scholar]
- Zhu, G.; Yang, X.; Lv, M.; Wang, H.; Liu, Z.; Zhang, R. Effects of Trichoderma asperellum on Growth and Leaf Photosynthetic characters of Populus davidiana × P. alba var. pyramidalis Seedlings. Bull. Bot. Res. 2018, 38, 64–74. [Google Scholar]
- Rakibuzzaman, M.; Akand, M.H.; Siddika, M.; Uddin, A.J. Impact of Trichoderma application as bio-stimulator on disease suppression, growth and yield of potato. J. Biosc. Agric. Res. 2021, 27, 2252–2257. [Google Scholar] [CrossRef]
- Świerczyński, S.; Antonowicz, A.; Bykowska, J. The Effect of the Foliar Application of Biostimulants and Fertilisers on the Growth and Physiological Parameters of Maiden Apple Trees Cultivated with Limited Mineral Fertilization. Agronomy 2021, 11, 1216. [Google Scholar] [CrossRef]
- Świerczyński, S.; Bosiacki, M. The Effect of Foliar Spray Treatments with Various Biostimulants and Fertilisers on the Growth of M.9 Rootstock Stoolings. Agronomy 2021, 12, 689. [Google Scholar] [CrossRef]
- Świerczyński, S.; Borowiak, K.; Bosiacki, M.; Urbaniak, M.; Malinowska, A. Estimation of the growth of ‘Vanda’ maiden sweet cherry on three rootstocks and after application of foliar fertilization in a nursery. Acta Sci. Pol. Hortorum Cultus 2019, 18, 109–118. [Google Scholar] [CrossRef]
- Canellas, L.P.; Olivares, F.L.; Aguiar, N.O.; Jones, D.L.; Nebbioso, A.; Mazzei, P. Humic and fulvic acids as biostimulants in horticulture. Sci. Hortic. 2015, 196, 15–27. [Google Scholar] [CrossRef]
- Nardi, S.; Pizzeghello, D.; Schiavon, M.; Ertani, A. Plant biostimulants: Physiological responses induced by protein hydrolyzed-based products and humic substances in plant metabolism. Sci. Agric. 2016, 73, 18–23. [Google Scholar] [CrossRef]
- Barone, V.; Bertoldo, G.; Magro, F.; Broccanello, C.; Puglisi, I.; Baglieri, A.; Stevanato, P. Molecular and morphological changes induced by leonardite-based biostimulant in Beta vulgaris L. Plants 2019, 8, 181. [Google Scholar] [CrossRef]
- Hajizadeh, H.S.; Heidari, B.; Bertoldo, G.; Della Lucia, M.C.; Magro, F.; Broccanello, C.; Baglieri, A.; Puglisi, I.; Squartini, A.; Campagna, G.; et al. Expression profiling of candidate genes in sugar beet leaves treated with leonardite-bsed biostimulant. High Throughput 2019, 8, 18. [Google Scholar] [CrossRef]
Treatment | Concentration Dose per Plant | Application Form | Composition |
---|---|---|---|
Trichoderma atroviride | 10 mL | root application | spore-forming mycelium of the genus Trichoderma atroviride |
BlackJak® Bioagris, Poland | 0.5 mL·L−1 300 mL per plant | root application | leonardite: min. 28%; organic substances: min. 20%; humins; ulmic acids; humic acids; fulvic acids |
Universol® Green | 2 g·L−1 40 mL per plant | foliar application | N 23%, K 8.3%, P 2.6%, Fe 0.1%, Cu 0.1%, Zn 0.1%, Mn 0.4%, B 0.01%, Mo 0.01% |
Treatments | No Pruning | Shoot Pruning | Average |
---|---|---|---|
Trichoderma atroviride | 765.0 a | 1103.7 e | 934.3 c |
BlackJak | 739.7 a | 1036.3 d | 888.0 b |
Universol Green | 762.3 a | 950.0 c | 856.2 b |
Control | 741.3 a | 901.0 b | 821.2 a |
Average | 752.1 a | 997.8 b |
Treatments | No Pruning | Shoot Pruning | Average |
---|---|---|---|
Trichoderma atroviride | 340.0 a | 1325.0 d | 832.5 c |
BlackJak | 367.3 a | 1103.7 b | 735.5 ab |
Universol Green | 347.0 a | 1188.0 c | 767.5 b |
Control | 304.3 a | 1084.3 b | 694.3 a |
Average | 339.7 a | 1175.3 b |
Treatments | No Pruning | Shoot Pruning | Average |
---|---|---|---|
Trichoderma atroviride | 17.2 e | 9.0 b | 13.1 b |
BlackJak | 13.5 c | 4.9 a | 9.2 a |
Universol Green | 15.4 d | 5.2 a | 10.3 a |
Control | 13.9 cd | 4.8 a | 9.4 a |
Average | 13.0 b | 6.0 a |
Treatments | No Pruning | Shoot Pruning | Average |
---|---|---|---|
Trichoderma atroviride | 12.0 e | 6.8 b | 9.4 c |
BlackJak | 11.7 d | 5.9 a | 8.5 b |
Universol Green | 10.9 d | 6.8 b | 8.8 b |
Control | 10.1 c | 5.7 a | 7.9 a |
Average | 11.0 b | 6.3 a |
Treatments | No Pruning | Shoot Pruning | Average |
---|---|---|---|
Trichoderma atroviride | 11.9 e | 6.8 b | 9.4 c |
BlackJak | 11.1 d | 5.9 a | 8.5 b |
Universol Green | 10.9 d | 6.8 b | 8.8 b |
Control | 10.2 c | 5.7 a | 7.9 a |
Average | 11.0 b | 6.3 a |
Treatment | No Pruning | Shoot Pruning | Average |
---|---|---|---|
Trichoderma atroviride | 11.7 c | 7.6 a | 9.6 a |
BlackJak | 11.9 c | 8.1 a | 10.0 a |
Universol Green | 13.1 d | 9.0 b | 11.0 b |
Control | 12.4 cd | 7.5 a | 10.0 a |
Average | 12.3 b | 8.0 a |
Treatments | No Pruning | Shoot Pruning | Average |
---|---|---|---|
Trichoderma atroviride | 396.0 b | 563.0 d | 479.5 bc |
BlackJak | 351.0 b | 553.7 d | 452.3 b |
Universol Green | 455.3 c | 548.7 d | 502.0 c |
Control | 290.0 a | 509.0 d | 399.5 a |
Average | 373.1 a | 543.6 b |
Treatments | No Pruning | Shoot Pruning | Average |
---|---|---|---|
Trichoderma atroviride | 376.3 b | 550.0 f | 463.2 c |
BlackJak | 365.0 b | 468.7 de | 416.8 b |
Universol Green | 431.0 cd | 492.3 e | 461.7 c |
Control | 307.3 a | 398.0 bc | 352.7 a |
Average | 369.9 a | 477.3 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Świerczyński, S.; Świerczyńska, I. The Influence of Combined Pruning and the Use of Root Application of Two Biostimulants and Foliar Nutrition on the Growth and Flowering of Panicle Hydrangea Plants. Agronomy 2024, 14, 687. https://doi.org/10.3390/agronomy14040687
Świerczyński S, Świerczyńska I. The Influence of Combined Pruning and the Use of Root Application of Two Biostimulants and Foliar Nutrition on the Growth and Flowering of Panicle Hydrangea Plants. Agronomy. 2024; 14(4):687. https://doi.org/10.3390/agronomy14040687
Chicago/Turabian StyleŚwierczyński, Sławomir, and Ilona Świerczyńska. 2024. "The Influence of Combined Pruning and the Use of Root Application of Two Biostimulants and Foliar Nutrition on the Growth and Flowering of Panicle Hydrangea Plants" Agronomy 14, no. 4: 687. https://doi.org/10.3390/agronomy14040687
APA StyleŚwierczyński, S., & Świerczyńska, I. (2024). The Influence of Combined Pruning and the Use of Root Application of Two Biostimulants and Foliar Nutrition on the Growth and Flowering of Panicle Hydrangea Plants. Agronomy, 14(4), 687. https://doi.org/10.3390/agronomy14040687