Effects of Long-Term Rice–Crayfish Coculture Systems on Soil Nutrients, Carbon Pools, and Rice Yields in Northern Zhejiang Province, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site and Treatments
2.2. Soil and Plant Measurements
2.3. Methods of Statistical Analysis of Data
3. Results
3.1. Effect of Rice–Crayfish Coculture System on Soil Nutrients
3.2. Effects of Rice–Crayfish Coculture System on Soil Carbon Pools
3.3. Effect of Rice–Crayfish Coculture System on Rice Yield
3.4. Correlation Analysis
4. Discussion
4.1. Rice–Crayfish Coculture System Altered Soil Nutrient Status
4.2. Rice–Crayfish Coculture System Weakened Soil Carbon Pools
4.3. Rice–Crayfish Coculture System Reduced the Rice Yield
4.4. Relationships between Soil Nutrient Status and Carbon Pools
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mi, S.X.; Tan, X.L.; Tan, J.Y.; Jiang, L.X.; Wang, Z.K. Analysis of influencing factors of rice planting area evolution in Dongting Lake Area during 1987–2017. J. Nat. Resour. 2020, 35, 2499–2510. [Google Scholar] [CrossRef]
- Xu, C.C.; Ji, L.; Chen, Z.D.; Fang, F.P. Analysis of China’s Rice Industry in 2022 and the Outlook for 2023. China Rice 2023, 29, 1–4. [Google Scholar]
- Wang, Y.C.; Li, J.; Wang, X.D. Change Law and Trend of Grain Production in China Since the Founding of the People’s Republic of China. J. Agric. Sci. Technol. 2021, 23, 1–11. [Google Scholar]
- Cai, C.; Li, G.; Zhu, J.Q.; Peng, L.; Li, J.F.; Wu, Q.X. Effects of Rice-crawfish Rotation on Soil Physicochemical Properties in Jianghan Plain. Acta Pedol. Sin. 2019, 56, 217–226. [Google Scholar]
- Che, Y.; Cheng, S.; Tian, J.Y.; Tao, Y.; Liu, Q.Y.; Xing, Z.P.; Dou, Z.; Xu, Q.; Hu, Y.J.; Guo, B.W.; et al. Characteristics and differences of rice yield, quality, and economic benefits under different modes of comprehensive planting-breeding in paddy fields. Acta Agron. Sin. 2021, 47, 1953–1965. [Google Scholar]
- Yu, X.J.; Hao, X.J.; Dang, Z.Q.; Yang, L.K. Report on the Development of China’s Integrated Rice and Fishery Breeding Industry. Chin. Fish. 2023, 8, 19–26. [Google Scholar]
- Jiang, R.; Xu, Q.; Li, J.Y.; Dai, L.X.; Ao, D.C.; Dou, Z.; Gao, H. Sensitivity and uncertainty analysis of carbon footprint evaluation: A case study of rice-crayfish coculture in China. Chin. J. Eco-Agric. 2022, 30, 1577–1587. [Google Scholar]
- Wang, R.; Zhu, J.; Jin, T.; Liu, Z.Y. Characteristics of ammonia oxidation microbial abundance and community structure in paddy soils of rice–crayfish symbiosis farming system. J. Plant Nutr. Fertil. 2019, 25, 1887–1899. [Google Scholar]
- Chen, D.; Wei, W.; Chen, L.D.; Ma, B.J.; Li, H. Response of soil nutrients to terracing and environmental factors in the Loess Plateau of China. Geogr. Sustain. 2024, 5, 230–240. [Google Scholar] [CrossRef]
- Huang, B.; Zhang, L.; Cao, Y.; Yang, Y.; Wang, P.; Li, Z.; Lin, Y. Effects of land-use type on soil organic carbon and carbon pool management index through arbuscular mycorrhizal fungi pathways. Glob. Ecol. Conserv. 2023, 43, e02432. [Google Scholar] [CrossRef]
- Linsen, D.; Wang, H.; Zhang, Z.; Zhou, Y.Y.; Xiao, Z.Y.; Muhammad, S.; Avelino, N.D.; Sun, G.; Yu, Y.L.; Xiao, Z.H.; et al. Effects of long-term rice-crayfish farming on soil CNP storage and stoichiometry. Soil Tillage Res. 2024, 235, 105882. [Google Scholar]
- Hou, J.; Zhang, D.Y.; Zhu, J.Q. Nutrient accumulation from excessive nutrient surplus caused by shifting from rice monoculture to rice-crayfish rotation. Environ. Pollut. 2021, 271, 116367. [Google Scholar] [CrossRef] [PubMed]
- Si, G.; Peng, C.; Yuan, J.; Xu, X.; Zhao, S.; Xu, D.; Wu, J. Changes in soil microbial community composition and organic carbon fractions in an integrated rice-crayfish farming system in subtropical China. Sci. Rep. 2017, 7, 2856. [Google Scholar] [CrossRef]
- Lv, T.; Wang, C.; Xu, Y.; Zhou, X.; Huang, F.; Yu, L. Impact of Integrated rice-crayfish farming on soil aggregates and organic matter distribution. Agronomy 2024, 14, 16. [Google Scholar] [CrossRef]
- Bashir, M.A.; Liu, J.; Geng, Y.; Wang, H.; Pan, J.; Zhang, D.; Abdur, R.; Muhammad, A.; Liu, H. Co-culture of rice and aquatic animals: An integrated system to achieve production and environmental sustainability. J. Clean. Prod. 2020, 249, 119310. [Google Scholar] [CrossRef]
- Wu, Y.Y.; Li, Y.; Niu, L.H.; Wang, L.F.; Zhang, H.J. Nutrient status of integrated rice-crayfish system impacts the microbial nitrogen-transformation processes in paddy fields and rice yields. Sci. Total Environ. 2022, 836, 155706. [Google Scholar] [CrossRef]
- Zhang, C.M.; Mi, W.J.; Xu, Y.Z.; Zhou, W.Z.; Bi, Y.H. Long-term integrated rice-crayfish culture disrupts the microbial communities in paddy soil. Aquac. Rep. 2023, 29, 101515. [Google Scholar] [CrossRef]
- Li, Q.; Xu, L.; Xu, L.; Qian, Y.; Jiao, Y.; Bi, Y.; Zhang, T.; Zhang, W.; Liu, Y. Influence of consecutive integrated rice-crayfish culture on phosphorus fertility of paddy soils. Land Degrad. Dev. 2018, 29, 3413–3422. [Google Scholar] [CrossRef]
- Zhou, H.; Ge, T.; Li, H.; Fang, T.; Li, H.; Shi, W.; Zhang, R.; Dong, X. A multi-Medium analysis of human health risk of toxic elements in rice-crayfish system: A case study from Middle reach of Yangtze River, China. Foods 2022, 11, 1160. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, M.; Zhao, Y.Y.; Zhang, A.Y.; Peng, D.H.; Lu, F.; Dai, C.C. Destruction of the soil microbial ecological environment caused by the over-utilization of the rice-crayfish co-cropping pattern. Sci. Total Environ. 2021, 788, 147794. [Google Scholar] [CrossRef]
- Luo, W.; Zhou, Z.L.; Zhao, Y.L.; Yang, Z.B.; Zhang, M.F. Analysis on the Contents of Protein and Amino Acids in Cherax quadricarinatus during different embryonic development stage. J. East China Norm. Univ. (Nat. Sci.) 2004, 1, 88–92. [Google Scholar]
- Jens, K.; Maximilian, K.; Chau, M.K.; Gianna, B.; Zita, S.; Wulf, A. Land use change from permanent rice to alternating rice-shrimp or permanent shrimp in the coastal Mekong Delta, Vietnam: Changes in the nutrient status and binding forms. Sci. Total Environ. 2020, 703, 134758. [Google Scholar]
- Xu, R.; Yang, T.; Han, G.M.; Wu, L.M.; Zhang, J.H.; Kou, X.M.; Wang, S.H. Effect of rice-crayfish cultivation mode on the accumulation of soil reducing substances and nutrients. Chin. J. Ecol. 2022, 41, 925–932. [Google Scholar]
- Chen, S.W.; Jiang, Y.; Wang, J.P.; Cao, C.G. Situation and countermeasures of integrated rice-crayfish farming in Hubei Province. J. Huazhong Agric. Univ. 2020, 39, 1–7. [Google Scholar]
- Li, L.N.; Yan, L.L.; Cao, C.G.; Jiang, Y.; Liu, J.P. Effects of straw returning and crayfish feeding on rice growth and nutrient uptake in rice-crayfish ecosystem. J. Huangzhong Agric. Univ. 2020, 39, 8–16. [Google Scholar]
- Chen, L.; Wan, W.T.; Liu, B.; Xu, W.J.; Gu, Z.M. Effects of rice-crayfish integrated system on microbial diversity and communitystructurein paddy water. J. Huazhong Agric. Univ. 2022, 41, 141–151. [Google Scholar]
- Xu, X.Y.; Zhang, M.M.; Peng, C.L.; Si, G.H.; Zhou, J.X.; Xie, Y.Y.; Yuan, J.F. Effect of rice-crayfish co-culture on greenhouse gases emission in straw-puddled paddy fields. Chin. J. Eco-Agric. 2017, 25, 1591–1603. [Google Scholar]
- Tao, X.F.; Li, B.; Yu, Z.X.; Hou, Y.R.; Wang, L.; Zhu, J. Effects of rice-crayfish integrated model on root exudates and microorganisms of rice during grain filling. J. Fish. China 2022, 46, 2122–2133. [Google Scholar]
- He, J.; Zhang, X.Z.; Jiang, Z.J.; Jiang, Y.; Luo, S.H. Effects of rice-crayfish integrated mode on water environment. Jiangsu Agric. Sci. 2019, 47, 213–215. [Google Scholar]
- Cao, C.G.; Jiang, Y.; Wang, J.P.; Yuan, P.L.; Chen, S.W. “Dual character” of rice-crayfish culture and strategies for its sustainable development. Chin. J. Eco-Agric. 2017, 25, 1245–1253. [Google Scholar]
- Si, G.H.; Peng, C.L.; Xu, X.Y.; Xu, D.B.; Yuan, J.F.; Li, J.H. Effect of integrated rice-crayfish farming system on soil physico-chemical properties in waterlogged paddy soils. Chin. J. Eco-Agric. 2017, 25, 61–68. [Google Scholar]
- Li, B.X.; Wang, B.J.; Huai, Y.; Shen, Y.Q.; Zhang, H.M.; Cheng, W.D. Effects of integrated rice-Redclaw Crayfish farming system on soil nutrients, carbon pool and rice quality. Acta Agric. Zhejiangensis 2021, 33, 688–696. [Google Scholar]
- Zhang, Y.; Wu, X.B. Research on the impact of the “crayfish-rice cultivation” model on national food security: Based on asurvey in Qianjiang City, Hubei Province. Hubei Agric. Sci. 2021, 60, 201–204. [Google Scholar]
- Lu, R.K. The Analysis Method of Soil Agricultural Chemistry; China Agricultural Science and Technology Press: Beijing, China, 2000; pp. 146–190. [Google Scholar]
- Jiang, P.K.; Xu, Q.F.; Xu, Z.H.; Cao, Z.H. Seasonal changes in soil labile organic carbon pools within a Phyllostachyspraecox stand under high rate fertilization and winter mulch in subtropical China. For. Ecol. Manag. 2006, 236, 30–36. [Google Scholar] [CrossRef]
- Blair, G.J.; Lefroy, R.D.B.; Lisle, L. Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems. Aust. J. Agric. Res. 1995, 46, 1459–1466. [Google Scholar] [CrossRef]
- Vance, E.D.; Brookes, P.C.; Jenkinson, D.S. Microbial biomass measurements in forest soils: The use of the chloroform fumigation-incubation method in strongly acid soils. Soil. Biol. Biochem. 1987, 19, 697–702. [Google Scholar] [CrossRef]
- Nielsen, S.N.; Anastácio, P.M.; Frias, A.F.; Marques, J.C. CRISP-crayfish rice integrated system of production. 5. Simulation of nitrogen dynamics. Ecol. Model. 1999, 123, 41–52. [Google Scholar] [CrossRef]
- Si, G.H.; Yuan, J.F.; Peng, C.L.; Xia, X.G.; Cheng, J.P.; Xu, X.Y.; Jia, P.A.; Xie, Y.Y.; Zhou, J.X. Nitrogen and phosphorus cycling characteristics and balance of the integrated rice-crayfish system. Chin. J. Eco-Agric. 2019, 27, 1309–1318. [Google Scholar]
- Liu, X.X.; Zhang, H.H.; Zhu, Q.Y.; Ye, J.Y.; Zhu, Y.X.; Jing, X.T.; Du, Y.X.; Zhou, M.; Lin, X.Y.; Zheng, S.J.; et al. Phloem iron remodels root development in response to ammonium as the major nitrogen source. Nat. Commun. 2022, 13, 561. [Google Scholar] [CrossRef]
- Wang, A.; Hao, X.L.; Chen, W.L.; Luo, X.S.; Huang, Q.Y. Rice-crayfish co-culture increases microbial necromass’ contribution to the soil nitrogen pool. Environ. Res. 2023, 216, 114708. [Google Scholar] [CrossRef]
- Wu, X.C.; Jiang, Q.Q.; Ma, T.; Wu, Y.X. Release risk of soil phosphorus under different farming systems: Indoor experiments and in-situ measurement. Soil. Tillage Res. 2024, 240, 106106. [Google Scholar] [CrossRef]
- Antonio, R.S.R.; Paul, W.H.D.C.; Davey, L.J. typology of extreme flood events leads to differential impacts on soil functioning. Soil. Biol. Biochem. 2019, 129, 153–168. [Google Scholar]
- Yu, Y.; Zhao, Y.T.; Chang, Q.Z. Spatial-temporal variability of soil readily available nutrients incultivated land of Weibei tableland area. Acta Pedol. Sin. 2015, 52, 1251–1261. [Google Scholar]
- Ball, K.R.; Malik, A.A.; Muscarella, C.; Blankinship, J.C. Irrigation alters biogeochemical processes to increase both inorganic and organic carbon in arid-calcic cropland soils. Soil Biol. Biochem. 2023, 187, 109189. [Google Scholar] [CrossRef]
- Hu, Q.Y.; Liu, T.Q.; Ding, H.N.; Li, C.F.; Yu, M.; Liu, J.; Cao, C.G. The effects of straw returning and nitrogen fertilizer application on soil labile organic carbon fractions and carbon pool management index in a rice-wheat rotation system. Pedobiologia 2023, 101, 150913. [Google Scholar] [CrossRef]
- Zhang, Z.; Du, L.S.; Xiao, Z.Y.; Li, C.W.; Wang, Z.C.; Zhou, P.Y.; Sun, G.; Ye, Y.Y.; Hu, T.; Wang, H. Rice-crayfish farming increases soil organic carbon. Agric. Ecosyst. Environ. 2022, 329, 107857. [Google Scholar] [CrossRef]
- Sun, G.; Sun, M.; Du, L.S.; Zhang, Z.; Wang, Z.C.; Zhang, G.B.; Nie, S.A.; Xu, H.Q.; Wang, H. Ecological rice-cropping systems mitigate global warming A meta-analysis. Sci. Total Environ. 2021, 789, 147900. [Google Scholar] [CrossRef]
- Wei, L.; Ge, T.D.; Zhu, Z.K.; Luo, Y.; Yang, Y.H.; Xiao, M.Y.; Yan, Z.F.; Li, Y.H.; Wu, J.S.; Yokoa, K. Comparing carbon and nitrogen stocks in paddy and upland soils: Accumulation, stabilisation mechanisms, and environmental drivers. Geoderma 2021, 398, 115121. [Google Scholar] [CrossRef]
- Fontaine, S.; Barot, S.; Barré, P.; Mary, B.; Rumpel, C. Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature 2007, 450, 277–280. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Liu, L.; Qin, S.; Yang, G.B.; Fang, K.; Zhu, B.; Yakov, K.; Chen, P.D.; Xu, Y.P.; Yang, Y.H. Regulation of priming effect by soil organic matter stability over a broad geographic scale. Nat. Commun. 2019, 10, 5112. [Google Scholar] [CrossRef] [PubMed]
- Dien, L.D.; Hiep, L.H.; Hao, N.V.; Sammut, J.; Burford, M.A. Comparing nutrient budgets in integrated rice-shrimp ponds and shrimp grow-out ponds. Aquaculture 2018, 484, 250–258. [Google Scholar] [CrossRef]
- Si, G.H.; Yuan, J.F.; Xu, X.Y.; Zhao, S.J.; Peng, C.L.; Wu, J.S.; Zhou, Z.Q. Effects of an integrated rice-crayfish farming system on soil organic carbon, enzyme activity, and microbial diversity in waterlogged paddy soil. Acta Ecol. Sin. 2018, 38, 29–35. [Google Scholar] [CrossRef]
- Cai, S.; Xu, S.; Zhang, D.; Geisen, S.; Zhu, H. Soil microbial biomass and bacterial diversity enhanced through fallow cover cropping in rice–fish coculture. Agronomy 2024, 14, 456. [Google Scholar] [CrossRef]
- Li, J.H.; Zhang, R.; Cheng, B.H.; Ye, L.F.; Li, W.J.; Shi, X.M. Effects of nitrogen and phosphorus additions on decomposition and accumulation of soil organic carbon in alpine meadows on the Tibetan Plateau. Land Degrad. Dev. 2021, 32, 1467–1477. [Google Scholar] [CrossRef]
- Lu, X.; Hou, E.; Guo, J.; Gilliam, F.S.; Li, J.; Tang, S.; Kuang, Y. Nitrogen addition stimulates soil aggregation and enhances carbon storage in terrestrial ecosystems of China: A meta-analysis. Glob. Change Biol. 2021, 27, 2780–2792. [Google Scholar] [CrossRef]
- Huang, X.Y.; Li, Y.X.; Lin, H.Y.; Wen, X.T.; Liu, J.; Yuan, Z.F.; Fu, C.; Zheng, B.F.; Gong, L.Q.; Zhan, H.; et al. Flooding dominates soil microbial carbon and phosphorus limitations in Poyang Lake wetland, China. Catena 2023, 232, 107468. [Google Scholar] [CrossRef]
- Feng, J.; Pan, R.; Hu, H.W.; Huang, Q.Y.; Zheng, J.L.; Tan, W.F.; Liu, Y.R.; Manuel, D. Effects of integrated rice-crayfish farming on soil biodiversity and functions. Sci. Bull. 2023, 68, 2311–2315. [Google Scholar] [CrossRef]
- Chen, Y.L.; Yu, P.H.; Wang, L.; Chen, Y.Y.; Edwin, H.W.C. The impact of rice-crayfish field on socio-ecological system in traditional farming areas: Implications for sustainable agricultural landscape transformation. J. Clean. Prod. 2024, 434, 139625. [Google Scholar] [CrossRef]
- Liu, T.Q.; Li, C.F.; Tan, W.F.; Wang, J.P.; Feng, J.H.; Hu, Q.Y.; Cao, C.G. Rice-crayfish co-culture reduces ammonia volatilization and increases rice nitrogen uptake in central China. Agric. Ecosyst. Environ. 2022, 330, 107869. [Google Scholar] [CrossRef]
- Xu, Q.; Dai, L.X.; Zhou, Y.; Dou, Z.; Gao, W.Y.; Yuan, X.C.; Gao, H.; Zhang, H.C. Effect of nitrogen application on greenhouse gas emissions and nitrogen uptake by plants in integrated rice-crayfish farming. Sci. Total Environ. 2023, 905, 167629. [Google Scholar] [CrossRef] [PubMed]
- Guilherme, M.T.; Luan, C.; Paula, S.A.; Estéfani, S.; Carlos, H.P.M.; Catarine, M.; Aldo, M.J. Variability to flooding tolerance in barnyardgrass and early flooding benefits on weed management and rice grain yield. Field Crops Res. 2023, 300, 108999. [Google Scholar]
- Wang, X.; Jing, Z.H.; He, C.; Liu, Q.Y.; Jia, H.; Qi, J.Y.; Zhang, H.L. Breeding rice varieties provides an effective approach to improve productivity and yield sensitivity to climate resources. Eur. J. Agron. 2021, 124, 126239. [Google Scholar] [CrossRef]
- Taylor, P.G.; Townsend, A.R. Stoichiometric control of organic carbon-nitrate relationships from soils to the sea. Nature 2010, 464, 1178–1181. [Google Scholar] [CrossRef]
- Zhao, X.; Xu, C.M.; Wang, D.Y.; Chen, S.; Ji, C.L.; Chen, L.P.; Zhang, X.F. Effect of rhizosphere dissolved oxygen on nitrogen utilisation of rice. Chin. Rice Sci. 2013, 27, 647–652. [Google Scholar]
- Chen, X.B.; Hu, Y.J.; Xia, Y.H.; Zheng, S.M.; Ma, C.; Rui, Y.C.; He, H.B.; Huang, D.Y.; Zhang, Z.H.; Ge, T.D.; et al. Contrasting pathways of carbon sequestration in paddy and upland soils. Glob. Change Biol. 2021, 27, 2478–2490. [Google Scholar] [CrossRef]
Mode | Crayfish Fly Release Date | Rice Planting Date | Crayfish Catch Start Date | Crayfish Catch Finish Date | Rice Harvest Date |
---|---|---|---|---|---|
CK | - | 19 June 2018 | - | - | 15 November 2018 |
- | 18 June 2019 | - | - | 26 November 2019 | |
- | 24 June 2020 | - | - | 30 November 2020 | |
- | 27 June 2021 | - | - | 20 November 2021 | |
- | 22 June 2022 | - | - | 24 November 2022 | |
RS | 29 May 2018 | 19 June 2018 | 9 October 2018 | 5 November 2018 | 15 November 2018 |
28 May 2019 | 18 June 2019 | 6 October 2019 | 16 November 2019 | 26 November 2019 | |
18 May 2020 | 24 June 2020 | 1 October 2020 | 20 November 2020 | 30 November 2020 | |
23 May 2021 | 27 June 2021 | 5 October 2021 | 10 November 2021 | 20 November 2021 | |
20 May 2022 | 22 June 2022 | 3 October 2022 | 14 November 2022 | 24 November 2022 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, B.; Zhang, H.; Chen, G.; Cheng, W.; Shen, Y. Effects of Long-Term Rice–Crayfish Coculture Systems on Soil Nutrients, Carbon Pools, and Rice Yields in Northern Zhejiang Province, China. Agronomy 2024, 14, 1014. https://doi.org/10.3390/agronomy14051014
Wang B, Zhang H, Chen G, Cheng W, Shen Y. Effects of Long-Term Rice–Crayfish Coculture Systems on Soil Nutrients, Carbon Pools, and Rice Yields in Northern Zhejiang Province, China. Agronomy. 2024; 14(5):1014. https://doi.org/10.3390/agronomy14051014
Chicago/Turabian StyleWang, Baojun, Hongmei Zhang, Gui Chen, Wangda Cheng, and Yaqiang Shen. 2024. "Effects of Long-Term Rice–Crayfish Coculture Systems on Soil Nutrients, Carbon Pools, and Rice Yields in Northern Zhejiang Province, China" Agronomy 14, no. 5: 1014. https://doi.org/10.3390/agronomy14051014
APA StyleWang, B., Zhang, H., Chen, G., Cheng, W., & Shen, Y. (2024). Effects of Long-Term Rice–Crayfish Coculture Systems on Soil Nutrients, Carbon Pools, and Rice Yields in Northern Zhejiang Province, China. Agronomy, 14(5), 1014. https://doi.org/10.3390/agronomy14051014