Quantitative Relationship of Plant Height and Leaf Area Index of Spring Maize under Different Water and Nitrogen Treatments Based on Effective Accumulated Temperature
Abstract
:1. Introduction
2. Materials and Methods
2.1. Physical Overview of the Experimental Area
2.2. Experimental Materials and Experimental Design
2.3. Sample Collection and Measurement
2.4. Characteristic Parameters of the Logistic Equation and Validation of Its Effectiveness
2.4.1. The Logistic Model and Its Characteristic Parameters
2.4.2. Model Validity Test
2.4.3. Statistical Data Analysis
3. Results
3.1. Analysis of the Correlation between the Plant Height and LAI of Spring Maize under Different Water and Nitrogen Treatments
3.2. Dynamics of Plant Height in Spring Maize and Its Effective Accumulated Temperature Model
3.2.1. Dynamics of Plant Height in Spring Maize as Influenced by Effective Accumulated Temperature under Different Water and Nitrogen Treatments
3.2.2. Establishment and Validation of a Growth Model for Spring Maize Plant Height
3.2.3. Analysis of Characteristic Parameters in the Model Equation for Plant Height in Spring Maize
3.3. Dynamics of the LAI in Spring Maize and Its Effective Accumulated Temperature Model
3.3.1. Dynamics of the LAI in Spring Maize as Influenced by Effective Accumulated Temperature under Different Water and Nitrogen Treatments
3.3.2. Establishment and Validation of a Growth Model for Spring Maize LAI
3.3.3. Analysis of Characteristic Parameters in the Model Equation for LAI in Spring Maize
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hammad, H.M.; Abbas, F.; Ahmad, A.; Farhad, W.; Wilkerson, C.J.; Hoogenboom, G. Evaluation of Timing and Rates for Nitrogen Application for Optimizing Maize Growth and Development and Maximizing Yield. Agron. J. 2018, 110, 565–571. [Google Scholar] [CrossRef]
- Zhan, X.X.; Kong, F.L.; Liu, Q.L.; Lan, T.Q.; Liu, Y.Q.; Xu, J.Z.; Ou, Q.; Chen, L.; Kessel, G.; Kempenaar, C.; et al. Maize basal internode development significantly affects stalk lodging resistance. Field Crops Res. 2022, 286, 108611. [Google Scholar] [CrossRef]
- Gu, L.M.; Liu, T.N.; Zhao, J.; Dong, S.T.; Liu, P.; Zhang, J.W.; Zhao, B. Nitrate leaching of winter wheat grown in lysimeters as affected by fertilizers and irrigation on the North China Plain. J. Integr. Agric. 2015, 14, 374–388. [Google Scholar] [CrossRef]
- Hocaoğlu, O.; Gönülal, E.; Akçura, M. Modelling the Effect of Irrigation Deficit on Maize Growth with Logistic Regression. Commun. Soil Sci. Plant Anal. 2023, 54, 1293–1305. [Google Scholar] [CrossRef]
- Li, C.; Luo, X.Q.; Li, Y.; Wang, N.J.; Zhang, T.B.; Dong, Q.G.; Feng, H.; Zhang, W.X.; Siddique, K.H.M. Ridge planting with transparent plastic mulching improves maize productivity by regulating the distribution and utilization of soil water, heat, and canopy radiation in arid irrigation area. Agric. Water Manag. 2023, 280, 108230. [Google Scholar] [CrossRef]
- Ran, J.J.; Ran, H.; Ma, L.F.; Jennings, S.A.; Yu, T.G.; Deng, X.; Yao, N.; Hu, X.T. Quantifying water productivity and nitrogen uptake of maize under water and nitrogen stress in arid Northwest China. Agric. Water Manag. 2023, 285, 108370. [Google Scholar] [CrossRef]
- Ding, D.Y.; Feng, H.; Zhao, Y.; Hill, R.L.; Yan, H.M.; Chen, H.X.; Hou, H.J.; Chu, X.S.; Liu, J.C.; Wang, N.J.; et al. Effects of continuous plastic mulching on crop growth in a winter wheat-summer maize rotation system on the Loess Plateau of China. Agric. For. Meteorol. 2019, 271, 385–397. [Google Scholar] [CrossRef]
- Sepaskhah, A.R.; Fahandezh-saadi, S.; Zand-parsa, S. Logistic model application for prediction of maize yield under water and nitrogen management. Agric. Water Manag. 2011, 99, 51–57. [Google Scholar] [CrossRef]
- Cai, J.B.; Chang, H.F.; Chen, H.; Zhang, B.Z.; Wei, Z.; Peng, Z.G. Simulation of maize dry matter accumulation in normalized logistic model with different effective accumulated temperatures in field. Trans. Chin. Soc. Agric. Mach. 2020, 51, 263–271, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Gong, X.J.; Qian, C.R.; Yu, Y.; Jiang, Y.B.; Hao, Y.B.; Li, L.; Ge, X.L. Effects of different sowing date on grain yield and yield components of spring maize. J. Maize Sci. 2019, 27, 108–113, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Luan, Q.; Guo, J.P.; Ma, Y.L.; Zhang, L.M.; Wang, J.X. A general model for estimating leaf area index of maize. Chin. J. Agrometeorol. 2020, 41, 506–519, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Wang, Y.J.; Zhang, J.H.; Wang, Q.J.; Su, L.J.; Feng, J. Comparative analysis of growth models of aboveground dry biomass of grape. Agric. Res. Arid. Areas 2013, 31, 257–263, (In Chinese with English Abstract). [Google Scholar]
- Chen, D.L.; Chen, H.W.T. Using the Köppen classification to quantify climate variation and change: An example for 1901–2010. Environ. Dev. 2013, 6, 69–79. [Google Scholar] [CrossRef]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef]
- USDA. Soil Taxonomy-A Basic System of Soil Classification for Making and Interpreting Soil Surveys, 2nd ed.; USDA: Washington, DC, USA, 1999. Available online: https://www.nrcs.usda.gov/ (accessed on 10 October 2023).
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration Guidelines for Computing Crop Water Requirements, Fao Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998; Available online: https://www.fao.org/home/en (accessed on 23 January 2022).
- Liang, W.Q. Research on Evapotranspiration and Crop Coefficients of Winter Wheat and Summer Maize. Master’s Thesis, Northwest Sci-Tech University of Agriculture and Forestry, Xianyang, China, 2012. (In Chinese with English Abstract). [Google Scholar]
- Miedema, P. The effects of low temperature on Zea mays. Adv. Agron. 1982, 35, 93–128. [Google Scholar] [CrossRef]
- Yu, Q.; Liu, J.D.; Zhang, Y.Q.; Li, J. Simulation of rice biomass accumulation by an extended logistic model including influence of meteorological factors. Int. J. Biometeorol. 2002, 46, 185–191. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Z.; Lei, H.; Jin, C.; Pan, H.; Lian, Y. Relationship between the dynamic characteristics of tomato plant height and leaf area index with yield, under aerated drip irrigation and nitrogen application in greenhouses. Agronomy 2023, 13, 116. [Google Scholar] [CrossRef]
- Chen, P.P.; Gu, X.B.; Li, Y.N.; Qiao, L.R.; Li, Y.P.; Fang, H.; Yin, M.H.; Zhou, C.M. Effects of residual film on maize root distribution, yield and water use efficiency in Northwest China. Agric. Water Manag. 2022, 260, 107289. [Google Scholar] [CrossRef]
- Wang, K.J.; Yang, Q.Q.; Wang, J.; Lu, Y.M.; Wang, X.P.; Kang, J.H. Synergistic effects of water and nitrogen on photosynthetic characteristics and yield of maize. Soil. Fertil. Sci. China 2023, 7, 48–55, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Kresović, B.; Tapanarova, A.; Tomić, Z.; Životić, L.; Vujović, D.; Sredojević, Z.; Gajić, B. Grain yield and water use efficiency of maize as influenced by different irrigation regimes through sprinkler irrigation under temperate climate. Agric. Water Manag. 2016, 169, 34–43. [Google Scholar] [CrossRef]
- Amin, M.T.; Anjum, L.; Alazba, A.A.; Rizwan, M. Effect of the irrigation frequency and quality on yield, growth and water productivity of maize crops. Qual. Assur. Saf. Crops Foods 2015, 7, 721–730. [Google Scholar] [CrossRef]
- Cui, J.J.; Mak-Mensah, E.; Wang, J.W.; Li, Q.; Huang, L.; Song, S.; Zhi, K.K.; Zhang, J. Interactive effects of drip irrigation and nitrogen fertilization on wheat and maize yield: A meta-analysis. J. Soil. Sci. Plant Nutr. 2024. [Google Scholar] [CrossRef]
- Kong, D.Y.; Yang, S.; Hang, S.Q.; Li, X.B.; Yang, Q.Y. Dynamic simulation of maize leaf area index in Hetao region. Chin. J. Agrometeorol. 2014, 35, 281–286, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Li, Z.P.; Song, M.D.; Feng, H. Dynamic characteristics of leaf area index and plant height of winter wheat influenced by irrigation and nitrogen coupling and their relationships with yield. Trans. CSAE 2017, 33, 195–202, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Chen, Y.; Xu, M.Z.; Wang, Y.H.; Bai, Y.L.; Lu, Y.L.; Wang, L. Quantitative study on effective accumulated temperature and dry matter and nitrogen accumulation of summer maize under different nitrogen supply levels. Sci. Agric. Sin. 2022, 55, 2973–2987, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Karyoti, A.; Bartzialis, D.; Sakellariou-makrantonaki, M.; Danalatos, N. Effects of irrigation and green manure on corn (Zea mays L.) biomass and grain yield. J. Soil Sci. Plant Nutr. 2018, 18, 820–832. [Google Scholar] [CrossRef]
- Xu, C.; Zhao, H.X.; Li, Q.; Liu, X.L.; Zhang, Z.A.; Bian, S.F. Study on dry matter accumulation and leaf response to light and CO2 of maize under irrigation quota. Cereal Res. Commun. 2020, 48, 173–178. [Google Scholar] [CrossRef]
- Zhang, Z.Z.; Zhou, N.B.; Xing, Z.P.; Liu, B.L.; Tian, J.Y.; Wei, H.Y.; Gao, H.; Zhang, H.C. Effects of temperature and radiation on yield of spring wheat at different latitudes. Agriculture 2022, 12, 627. [Google Scholar] [CrossRef]
Year | W1N0 | W1N1 | W1N2 | W1N3 | W2N0 | W2N1 | W2N2 | W2N3 | W3N0 | W3N1 | W3N2 | W3N3 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
2022 | 0.994 ** | 0.996 ** | 0.997 ** | 0.995 ** | 0.996 ** | 0.996 ** | 0.995 ** | 0.995 ** | 0.996 ** | 0.995 ** | 0.996 ** | 0.989 ** |
2023 | 0.994 ** | 0.993 ** | 0.995 ** | 0.993 ** | 0.995 ** | 0.995 ** | 0.996 ** | 0.991 ** | 0.995 ** | 0.997 ** | 0.992 ** | 0.981 ** |
Treatment | 2022 | 2023 |
---|---|---|
Model Equation | Model Equation | |
W1N0 | y = 306.88/(1 + 418.16 × exp(−0.0069x)) | y = 309.97/(1 + 1414.70 × exp(−0.0078x)) |
W1N1 | y = 316.05/(1 + 325.05 × exp(−0.0067x)) | y = 325.77/(1 + 892.90 × exp(−0.0075x)) |
W1N2 | y = 321.10/(1 + 342.88 × exp(−0.0068x)) | y = 328.46/(1 + 575.73 × exp(−0.0075x)) |
W1N3 | y = 325.35/(1 + 370.76 × exp(−0.0069x)) | y = 333.42/(1 + 892.44 × exp(−0.0082x)) |
W2N0 | y = 316.21/(1 + 248.64 × exp(−0.0064x)) | y = 317.72/(1 + 700.10 × exp(−0.0073x)) |
W2N1 | y = 323.98/(1 + 329.45 × exp(−0.0068x)) | y = 344.08/(1 + 1041.23 × exp(−0.0078x)) |
W2N2 | y = 341.95/(1 + 289.00 × exp(−0.0067x)) | y = 354.46/(1 + 799.38 × exp(−0.0081x)) |
W2N3 | y = 331.82/(1 + 225.40 × exp(−0.0065x)) | y = 346.76/(1 + 117.79 × exp(−0.0057x)) |
W3N0 | y = 323.46/(1 + 175.99 × exp(−0.0061x)) | y = 327.49/(1 + 621.65 × exp(−0.0073x)) |
W3N1 | y = 329.37/(1 + 169.25 × exp(−0.0061x)) | y = 343.72/(1 + 1479.20 × exp(−0.0086x)) |
W3N2 | y = 337.38/(1 + 166.02 × exp(−0.0061x)) | y = 348.89/(1 + 292.21 × exp(−0.0069x)) |
W3N3 | y = 334.40/(1 + 156.33 × exp(−0.0061x)) | y = 348.79/(1 + 377.82 × exp(−0.0073x)) |
Year | Test Parameter | W1N0 | W1N1 | W1N2 | W1N3 | W2N0 | W2N1 | W2N2 | W2N3 | W3N0 | W3N1 | W3N2 | W3N3 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2022 | R2 | 0.9970 | 0.9967 | 0.9973 | 0.9973 | 0.9966 | 0.9957 | 0.9971 | 0.9969 | 0.9982 | 0.9982 | 0.9974 | 0.9973 |
NRMSE (%) | 3.29 | 3.19 | 3.07 | 3.25 | 3.22 | 3.63 | 3.03 | 3.03 | 2.48 | 2.36 | 2.62 | 2.73 | |
2023 | R2 | 0.9989 | 0.9986 | 0.9989 | 0.9962 | 0.9993 | 0.9987 | 0.9978 | 0.9997 | 0.9993 | 0.9978 | 0.9989 | 0.9985 |
NRMSE (%) | 4.11 | 2.73 | 2.29 | 3.61 | 2.25 | 3.16 | 3.03 | 0.98 | 1.97 | 3.20 | 2.33 | 2.61 |
Treatment | 2022 | 2023 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
V1 | T1 | T2 | T3 | V2 | V1 | T1 | T2 | T3 | V2 | |
W1N0 | 0.5294 ab | 874.76 a | 683.90 a | 1065.63 a | 0.4641 ab | 0.6044 b | 910.55 a | 741.70 a | 1079.39 a | 0.5300 b |
W1N1 | 0.5294 ab | 863.28 ab | 666.72 ab | 1059.84 ab | 0.4642 ab | 0.6108 b | 905.93 a | 730.34 ab | 1081.52 a | 0.5356 b |
W1N2 | 0.5459 ab | 858.44 bc | 664.77 abc | 1052.11 abc | 0.4786 ab | 0.6159 b | 847.42 cd | 671.82 d | 1023.01 bc | 0.5400 b |
W1N3 | 0.5612 ab | 857.33 bc | 666.46 abc | 1048.19 bc | 0.4921 ab | 0.6835 ab | 828.53 de | 667.93 d | 989.14 c | 0.5993 ab |
W2N0 | 0.5059 ab | 861.88 ab | 656.1 abcd | 1067.65 a | 0.4436 ab | 0.5798 bc | 897.43 ab | 717.02 bc | 1077.83 a | 0.5084 bc |
W2N1 | 0.5508 ab | 852.56 bc | 658.89 abcd | 1046.23 abc | 0.4829 ab | 0.6710 ab | 890.79 b | 721.95 abc | 1059.63 ab | 0.5883 ab |
W2N2 | 0.5728 a | 845.74 cd | 649.17 bcde | 1042.30 bc | 0.5022 a | 0.7178 a | 825.16 e | 662.58 d | 987.75 c | 0.6293 a |
W2N3 | 0.5392 ab | 833.52 de | 630.91 cdef | 1036.13 c | 0.4728 ab | 0.4941 c | 836.65 cde | 605.60 f | 1067.69 a | 0.4333 c |
W3N0 | 0.4933 b | 847.61 cd | 631.72 def | 1063.51 abc | 0.4325 b | 0.5977 b | 881.15 b | 700.74 c | 1061.55 a | 0.5240 b |
W3N1 | 0.5023 b | 841.21 de | 625.31 ef | 1057.10 abc | 0.4404 b | 0.7390 a | 848.75 c | 695.62 c | 1001.89 c | 0.6479 a |
W3N2 | 0.5145 ab | 838.05 cd | 622.16 ef | 1053.95 abc | 0.4511 ab | 0.6018 b | 822.82 ef | 631.96 e | 1013.69 c | 0.5277 b |
W3N3 | 0.5100 ab | 828.19 e | 612.30 f | 1044.09 c | 0.4471 ab | 0.6365 ab | 812.93 f | 632.53 e | 993.34 c | 0.5581 ab |
Treatment | 2022 | 2023 |
---|---|---|
Model Equation | Model Equation | |
W1N0 | y = 5.02/(1 + 997.35 × exp(−0.0078x)) | y = 5.03/(1 + 2901.57 × exp(−0.0092x)) |
W1N1 | y = 5.23/(1 + 1073.33 × exp(−0.0078x)) | y = 5.34/(1 + 2914.38 × exp(−0.0092x)) |
W1N2 | y = 5.46/(1 + 756.57 × exp(−0.0076x)) | y = 5.58/(1 + 5098.09 × exp(−0.0101x)) |
W1N3 | y = 5.38/(1 + 728.17 × exp(−0.0076x)) | y = 5.65/(1 + 1768.09 × exp(−0.0088x)) |
W2N0 | y = 5.35/(1 + 780.72 × exp(−0.0075x)) | y = 5.35/(1 + 2043.46 × exp(−0.0088x)) |
W2N1 | y = 5.53/(1 + 534.18 × exp(−0.0071x)) | y = 5.49/(1 + 2203.48 × exp(−0.0090x)) |
W2N2 | y = 6.21/(1 + 1236.49 × exp(−0.0080x)) | y = 6.33/(1 + 2230.72 × exp(−0.0090x)) |
W2N3 | y = 5.88/(1 + 1215.18 × exp(−0.0082x)) | y = 5.97/(1 + 1323.12 × exp(−0.0086x)) |
W3N0 | y = 5.53/(1 + 591.49 × exp(−0.0073x)) | y = 5.52/(1 + 1427.75 × exp(−0.0085x)) |
W3N1 | y = 5.75/(1 + 482.23 × exp(−0.0071x)) | y = 5.76/(1 + 1652.25 × exp(−0.0087x)) |
W3N2 | y = 6.15/(1 + 476.88 × exp(−0.0071x)) | y = 6.19/(1 + 546.84 × exp(−0.0074x)) |
W3N3 | y = 6.05/(1 + 1210.14 × exp(−0.0084x)) | y = 6.18/(1 + 1168.35 × exp(−0.0087x)) |
Year | Test Parameter | W1N0 | W1N1 | W1N2 | W1N3 | W2N0 | W2N1 | W2N2 | W2N3 | W3N0 | W3N1 | W3N2 | W3N3 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2022 | R2 | 0.9874 | 0.9916 | 0.9932 | 0.9879 | 0.9911 | 0.9915 | 0.9921 | 0.9898 | 0.9912 | 0.9896 | 0.9912 | 0.9858 |
NRMSE (%) | 6.04 | 5.14 | 4.46 | 5.81 | 5.19 | 5.02 | 5.20 | 5.67 | 4.98 | 5.39 | 5.00 | 6.59 | |
2023 | R2 | 0.9936 | 0.9934 | 0.9928 | 0.9907 | 0.9943 | 0.9931 | 0.9952 | 0.9930 | 0.9926 | 0.9937 | 0.9922 | 0.9908 |
NRMSE (%) | 4.78 | 4.92 | 5.40 | 5.70 | 4.65 | 4.99 | 4.82 | 5.41 | 5.14 | 4.80 | 5.37 | 5.69 |
Treatment | 2022 | 2023 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
V1 | T1 | T2 | T3 | V2 | V1 | T1 | T2 | T3 | V2 | |
W1N0 | 0.0098 b | 885.27 ab | 716.43 ab | 1054.11 ab | 0.0086 b | 0.0116 c | 866.63 a | 723.48 a | 1009.78 ab | 0.0101 c |
W1N1 | 0.0102 b | 894.68 a | 725.84 a | 1063.52 ab | 0.0089 b | 0.0123 abc | 867.11 a | 723.96 a | 1010.26 ab | 0.0108 abc |
W1N2 | 0.0104 b | 872.21 abc | 698.93 cd | 1045.49 ab | 0.0091 b | 0.0141 ab | 845.21 ab | 714.82 a | 975.60 bc | 0.0124 ab |
W1N3 | 0.0101 b | 878.74 abc | 703.14 bcd | 1054.33 ab | 0.0088 b | 0.0124 abc | 849.73 ab | 700.08 abc | 999.39 abc | 0.0109 abc |
W2N0 | 0.0100 b | 888.03 abc | 712.43 abc | 1063.62 ab | 0.0088 b | 0.0118 bc | 866.18 a | 716.53 a | 1015.84 ab | 0.0103 bc |
W2N1 | 0.0098 b | 884.61 abc | 699.12 cd | 1070.10 a | 0.0086 b | 0.0124 abc | 855.31 a | 708.98 ab | 1001.64 ab | 0.0108 abc |
W2N2 | 0.0124 a | 890.00 ab | 725.38 a | 1054.62 ab | 0.0109 a | 0.0142 a | 856.68 ab | 710.35 ab | 1003.00 abc | 0.0125 a |
W2N3 | 0.0121 a | 866.18 c | 705.57 abc | 1026.78 b | 0.0106 a | 0.0128 abc | 835.78 bc | 682.65 bcd | 988.92 bc | 0.0113 abc |
W3N0 | 0.0101 b | 874.33 abc | 693.93 cd | 1054.74 ab | 0.0088 b | 0.0117 c | 854.57 ab | 699.63 abc | 1009.51 ab | 0.0103 bc |
W3N1 | 0.0102 b | 870.20 bc | 684.71 d | 1055.69 ab | 0.0089 b | 0.0125 abc | 851.71 ab | 700.34 abc | 1003.09 ab | 0.0110 abc |
W3N2 | 0.0109 b | 868.63 abc | 683.14 d | 1054.12 ab | 0.0096 b | 0.0115 c | 851.91 ab | 673.95 cd | 1029.88 a | 0.0100 c |
W3N3 | 0.0127 a | 845.06 d | 688.28 d | 1001.84 c | 0.0111 a | 0.0134 abc | 811.88 c | 660.50 d | 963.25 c | 0.0118 abc |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, T.; Zhao, J.; Fu, Q. Quantitative Relationship of Plant Height and Leaf Area Index of Spring Maize under Different Water and Nitrogen Treatments Based on Effective Accumulated Temperature. Agronomy 2024, 14, 1018. https://doi.org/10.3390/agronomy14051018
Yang T, Zhao J, Fu Q. Quantitative Relationship of Plant Height and Leaf Area Index of Spring Maize under Different Water and Nitrogen Treatments Based on Effective Accumulated Temperature. Agronomy. 2024; 14(5):1018. https://doi.org/10.3390/agronomy14051018
Chicago/Turabian StyleYang, Tingrui, Jinghua Zhao, and Qiuping Fu. 2024. "Quantitative Relationship of Plant Height and Leaf Area Index of Spring Maize under Different Water and Nitrogen Treatments Based on Effective Accumulated Temperature" Agronomy 14, no. 5: 1018. https://doi.org/10.3390/agronomy14051018