The Valorization of Spanish Minority Grapevine Varieties—The Volatile Profile of Their Wines as a Characterization Feature
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Wine Samples
2.3. Volatile Composition
2.3.1. Chemicals
2.3.2. Determination of Volatile Compounds
- Major Volatile Compounds
- Minor Volatile Compounds
2.3.3. Data Analysis
3. Results and Discussion
3.1. Volatile Composition of Wines
3.1.1. Major Volatile Compounds
- Alcohols
- C6 compounds
- Esters and acetates
- Volatile acids
- Carbonyl compounds
- Other compounds
- Glycerol
3.1.2. Minor Volatile Compounds
- Lactones
- Terpenes
- C13-norisoprenoids
3.1.3. Volatile Relationships between Varieties
- Minor compounds
4. Conclusions
5. Patents
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ashenfelter, O.; Storchmann, K. Climate change and wine: A review of the economic implications. J. Wine Econ. 2016, 11, 105–138. [Google Scholar] [CrossRef]
- Van Leeuwen, C.; Friant, P.; Chone, X.; Tregoat, O.; Koundouras, S.; Dubourdieu, D. Influence of climate, soil and cultivar on terroir. Am. J. Enol. Vitic. 2004, 55, 207–217. [Google Scholar] [CrossRef]
- Droulia, F.; Charalampopoulos, I. Future Climate Change Impacts on European Viticulture: A Review on Recent Scientific Advances. Atmosphere 2021, 12, 495. [Google Scholar] [CrossRef]
- Duchêne, E. How can grapevine genetics contribute to the adaptation to climate change? OENO One 2016, 50, 113–124. [Google Scholar] [CrossRef]
- Sadras, V.O.; Moran, M.A. Elevated temperature decouples anthocyanins and sugars in berries of Shiraz and Cabernet Franc. Aust. J. Grape Wine Res. 2012, 18, 115–122. [Google Scholar] [CrossRef]
- Jones, G.V.; White, M.A.; Cooper, O.R.; Storchmann, K. Climate Change and Global Wine Quality. Clim. Chang. 2005, 73, 319–343. [Google Scholar] [CrossRef]
- International Variety Catalogue (VIVC). Available online: https://www.vivc.de/ (accessed on 28 December 2023).
- Organización Internacional de la Viña y el Vino-OIV. Actualidad de la Coyuntura del Sector Vitícola Mundial en 2021. 2022. Available online: https://www.oiv.int/sites/default/files/documents/ES_State%20of%20the%20world%20vine%20and%20wine%20sector%20Abril%202022%20v2.pdf (accessed on 28 December 2023).
- Organización Internacional de la Viña y el Vino-OIV. Distribution of the World´s Grapevine Varieties. 2017. Available online: https://www.oiv.int/es/normas-y-documentos-tecnicos/analisis-estadisticos/enfoque-tematico (accessed on 28 December 2023).
- Duchêne, E.; Huard, F.; Dumas, V.; Schneider, C.; Merdinoglu, D. The challenge of adapting grapevine varieties to climate change. Clim. Res. 2010, 41, 193–204. [Google Scholar] [CrossRef]
- Morales-Castilla, I.; García de Cortázar-Atauri, I.; Cook, B.I.; Lacombe, T.; Parker, A.; Van Leeuwen, C.; Nicholas, K.A.; Wolkovich, E.M. Diversity buffers winegrowing regions from climate change losses. Proc. Natl. Acad. Sci. USA 2020, 117, 2864–2869. [Google Scholar] [CrossRef]
- Teixeira, A.; Eiras-Dias, J.; Castellarin, S.D.; Gerós, H. Berry phenolics of grapevine under challenging environments. Int. J. Mol. Sci. 2013, 14, 18711–18739. [Google Scholar] [CrossRef]
- Wolkovich, E.M.; Burge, D.O.; Walker, M.A.; Nicholas, K.A. Phenological diversity provides opportunities for climate change adaptation in winegrapes. J. Ecol. 2017, 105, 905–912. [Google Scholar] [CrossRef]
- Wolkovich, E.M.; García de Cortázar-Atauri, I.; Morales-Castilla, I.; Nicholas, K.A.; Lacombe, T. From Pinot to Xinomavro in the world’s future wine-growing regions. Nat. Clim. Chang. 2018, 8, 29–37. [Google Scholar] [CrossRef]
- Álvarez-Casas, M.; Pajaro, M.; Lores, M.; García-Jares, C. Polyphenolic composition and antioxidant activity of Galician monovarietal wines from native and experimental non-native white grape varieties. Int. J. Food Prop. 2016, 19, 2307–2321. [Google Scholar] [CrossRef]
- Ferreira, V.; Pinto-Carnide, O.; Mota, T.; Martín, J.P.; Ortiz, J.M.; Castro, I. Identification of minority grapevine cultivars from Vinhos Verdes Portuguese DOC region. Vitis 2015, 54, 53–58. [Google Scholar] [CrossRef]
- García-Muñoz, S.; Asproudi, A.; Cabello, F.; Borsa, D. Aromatic characterization and enological potential of 21 minor varieties (Vitis vinifera L.). Eur. Food Res. Technol. 2011, 233, 473–481. [Google Scholar] [CrossRef]
- Gutiérrez-Gamboa, G.; Liu, S.Y.; Pszczolkowski, P. Resurgence of minority and autochthonous grapevine varieties in South America: A review of their oenological potential. J. Sci. Food Agric. 2019, 100, 465–482. [Google Scholar] [CrossRef]
- Loureiro, M.D.; Moreno-Sanz, P.; Suárez, B. Agronomical characterization of minority grapevine cultivars from Asturias (Spain). Ciência Téc. Vitiv. 2017, 32, 102–114. [Google Scholar] [CrossRef]
- Antolín, M.C.; Toledo, M.; Pascual, I.; Irigoyen, J.J.; Goicoechea, N. The Exploitation of Local Vitis vinifera L. Biodiversity as a Valuable Tool to Cope with Climate Change Maintaining Berry Quality. Plants 2021, 10, 71. [Google Scholar] [CrossRef]
- Cortés, S.; Díaz, E. Characterization of autochthonous monovarietal wines from red Brancellao L. cultivars. J. Food Compos. Anal. 2011, 24, 154–159. [Google Scholar] [CrossRef]
- Vilanova, M.; Genisheva, Z.; Graña, M.; Oliveira, J.M. Determination of odorants in varietal wines from international grape cultivars (Vitis vinifera) grown in NW Spain. S. Afr. J. Enol. Vitic. 2013, 34, 212–222. [Google Scholar] [CrossRef]
- Petronilho, S.; Lopez, R.; Ferreira, V.; Coimbra, M.A.; Rocha, S.M. Revealing the Usefulness of Aroma Networks to Explain Wine Aroma Properties: A Case Study of Portuguese Wines. Molecules 2020, 25, 272. [Google Scholar] [CrossRef]
- Carpentieri, A.; Sebastianelli, A.; Melchiorre, C.; Pinto, G.; Trifuoggi, M.; Lettera, V.; Amoresano, A. Fiano, Greco and Falanghina grape cultivars differentiation by volatiles fingerprinting, a case study. Heliyon 2019, 5, e02287. [Google Scholar] [CrossRef]
- Ghaste, M.; Narduzzi, L.; Carlin, S.; Vrhovsek, U.; Shulaev, V.; Mattivi, F. Chemical composition of volatile aroma metabolites and their glycosylated precursors that can uniquely differentiate individual grape cultivars. Food Chem. 2015, 188, 309–319. [Google Scholar] [CrossRef]
- Slaghenaufi, D.; Guardini, S.; Tedeschi, R.; Ugliano, M. Volatile terpenoids, norisoprenoids and benzenoids as markers of fine scale vineyard segmentation for Corvina grapes and wines. Food Res. Int. 2019, 125, 108507. [Google Scholar] [CrossRef]
- Wu, Y.; Duan, S.; Zhao, L.; Gao, Z.; Luo, M.; Song, S.; Xu, W.; Zhang, C.; Ma, C.; Wang, S. Aroma characterization based on aromatic series analysis in table grapes. Sci. Rep. 2016, 6, 31116. [Google Scholar] [CrossRef]
- Boso, S.; Gago, P.; Santiago, J.-L.; Muñoz-Organero, G.; Cabello, F.; Puertas, B.; Puig, A.; Domingo, C.; Valdés, M.E.; Moreno, D.; et al. Variation in Susceptibility to Downy Mildew Infection in Spanish Minority Vine Varieties. Plants 2023, 12, 2638. [Google Scholar] [CrossRef]
- Muñoz-Organero, G.; Espinosa, F.E.; Cabello, F.; Zamorano, J.P.; Urbanos, M.A.; Puertas, B.; Lara, M.; Domingo, C.; Puig-Pujol, A.; Valdés, M.E.; et al. Phenological Study of 53 Spanish Minority Grape Varieties to Search for Adaptation of Vitiviniculture to Climate Change Conditions. Horticulturae 2022, 8, 984. [Google Scholar] [CrossRef]
- Bouzas-Cid, Y.; Falqué, E.; Orriols, I.; Mirás-Avalos, J.M. Effects of irrigation over three years on the amino acid composition of Treixadura (Vitis vinifera L.) musts and wines, and on the aromatic composition and sensory profiles of its wines. Food Chem. 2018, 240, 707–716. [Google Scholar] [CrossRef]
- López-Vázquez, C.; Bollaín, M.H.; Moser, S.; Orriols, I. Characterization and differentiation of monovarietal grape pomace distillate from native varieties of Galicia. J. Agric. Food Chem. 2010, 58, 9657–9665. [Google Scholar] [CrossRef]
- Peinado, R.A.; Moreno, J.A.; Muñoz, D.; Medina, M.; Moreno, J. Gas chromatographic quantification of major volatile compounds and polyols in wine by direct injection. J. Agric. Food Chem. 2004, 52, 6389–6393. [Google Scholar] [CrossRef]
- Belda, I.; Ruiz, J.; Esteban-Fernández, A.; Navascués, E.; Marquina, D.; Santos, A.; Moreno-Arribas, M.V. Microbial Contribution to Wine Aroma and Its Intended Use for Wine Quality Improvement. Molecules 2017, 22, 189. [Google Scholar] [CrossRef]
- Burin, V.M.; Caliari, V.; Bordignon-Luiz, M.T. Nitrogen compounds in must and volatile profile of white wine: Influence of clarification process before alcoholic fermentation. Food Chem. 2016, 202, 417–425. [Google Scholar] [CrossRef]
- Dubourdieu, D.; Tominaga, T.; Masneuf, I.; Peyrot des Gachons, C.; Murat, M.L. The Role of Yeasts in Grape Flavor Development during Fermentation: The Example of Sauvignon blanc. Am. J. Enol. Vitic. 2006, 57, 81–88. [Google Scholar] [CrossRef]
- Escudero, A.; Arias, I.; Lacau, B.; Astraín, J.; Barón, C.; Fernandez-Zurbano, P.; Ferreira, V. Effects of vineyard ‘potential’ and grape maturation on the aroma-volatile profile of Grenache wines. OENO One 2019, 53, 695–707. [Google Scholar] [CrossRef]
- Jeromel, A.; Korenika, A.M.J.; Tomaz, I. 6—An influence of different yeast species on wine aroma composition. In Fermented beverages; Grumezescu, A.M., Holban, A.M., Eds.; Woodhead Publishing: Sawston, UK, 2019; pp. 171–285. [Google Scholar] [CrossRef]
- Mouret, J.R.; Camarasa, C.; Angenieux, M.; Aguera, E.; Perez, M.; Farines, V.; Sablayrolles, J.M. Kinetic analysis and gas–liquid balances of the production of fermentative aromas during winemaking fermentations: Effect of assimilable nitrogen and temperature. Food Res. Int. 2014, 62, 1–10. [Google Scholar] [CrossRef]
- Vázquez-Pateiro, I.; Mirás-Avalos, J.M.; Falqué, E. Influence of Must Clarification Technique on the Volatile Composition of Albariño and Treixadura Wines. Molecules 2022, 27, 810. [Google Scholar] [CrossRef]
- Rapp, A.; Mandery, H. Wine aroma. Experientia 1986, 42, 873–884. [Google Scholar] [CrossRef]
- Czerny, M.; Christlbauer, M.; Christlbauer, M.; Fischer, A.; Granvogl, M.; Hammer, M.; Hartl, C.; Hernandez, N.M.; Schieberle, P. Re-investigation on odour thresholds of key food aroma compounds and development of an aroma language based on odour qualities of defined aqueous odorant solutions. Eur. Food Res. Technol. 2008, 228, 265–273. [Google Scholar] [CrossRef]
- Sáenz-Navajas, M.-P.; Arias, I.; Ferrero-del-Teso, S.; Fernández-Zurbano, P.; Escudero, A.; Ferreira, V. Chemo-sensory approach for the identification of chemical compounds driving green character in red wines. Food Res. Int. 2018, 109, 138–148. [Google Scholar] [CrossRef]
- Nicolini, G.; Moser, S.; Roman, T.; Mazzi, E.; Larcher, R. Effect of juice turbidity on fermentative volatile compounds in white wines. Vitis 2011, 50, 131–135. [Google Scholar]
- Garde-Cerdán, T.; Jarauta, I.; Salinas, M.R.; Ancín-Azpilicueta, C. Comparative study of the volatile composition in wines obtained from traditional vinification and from the Ganimede method. J. Sci. Food Agric. 2008, 88, 1777–1785. [Google Scholar] [CrossRef]
- García-Carpintero, E.G.; Sánchez-Palomo, E.; Gómez Gallego, M.A.; González-Viñas, M.A. Volatile and sensory characterization of red wines from cv. Moravia Agria minority grape variety cultivated in La Mancha region over five consecutive vintages. Food Res. Int. 2011, 44, 1549–1560. [Google Scholar] [CrossRef]
- Ferreira, V.; Lopez, R. The Actual and Potential Aroma of Winemaking Grapes. Biomolecules 2019, 9, 818. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, J.; Marta, F.; Filomena, S.; Filipa, B.; Isabel, A. C6-alcohols as varietal markers for assessment of wine origin. Anal. Chim. Acta 2006, 563, 300–309. [Google Scholar] [CrossRef]
- Qian, X.; Sun, L.; Xu, X.Q.; Zhu, B.Q.; Xu, H.Y. Differential Expression of VvLOXA Diversifies C6 Volatile Profiles in Some Vitis vinifera Table Grape Cultivars. Int. J. Mol. Sci. 2017, 18, 2705. [Google Scholar] [CrossRef] [PubMed]
- Pineau, B.; Barbe, J.-C.; Van Leeuwen, C.; Dubourdieu, D. Examples of perceptive interactions involved in specific “red-” and “black-berry” aromas in red wines. J. Agric. Food Chem. 2009, 57, 3702–3708. [Google Scholar] [CrossRef]
- Tat, L.; Comuzzo, P.; Battistutta, F.; Zironi, R. Sweet-like off-flavor in Aglianico del Vulture wine: Ethyl phenylacetate as the mainly involved compound. J. Agric. Food Chem. 2007, 55, 5205–5212. [Google Scholar] [CrossRef]
- Hu, K.; Zhao, H.; Kang, X.; Ge, X.; Zheng, M.; Hu, Z.; Tao, Y. Fruity aroma modifications in Merlot wines during simultaneous alcoholic and malolactic fermentations through mixed culture of S. cerevisiae, P. fermentans, and L. brevis. LWT-Food Sci. Technol. 2022, 154, 112711. [Google Scholar] [CrossRef]
- Etievant, P. Wine. In Volatile Compounds in Foods and Beverages; Maarse, H., Ed.; Marcel Dekker: New York, NY, USA, 1991; pp. 483–546. [Google Scholar]
- Díaz-Fernández, Á.; Díaz-Losada, E.; Domínguez, J.M.; Cortés-Diéguez, S. Part II—Aroma Profile of Twenty White Grapevine Varieties: A Chemotaxonomic Marker Approach. Agronomy 2023, 13, 1168. [Google Scholar] [CrossRef]
- Díaz-Fernández, Á.; Díaz-Losada, E.; Cortés-Diéguez, S. Diversity among Traditional Minority Red Grape Varieties According to Their Aromatic Profile. Agronomy 2022, 12, 1799. [Google Scholar] [CrossRef]
- Antal, E.; Kállay, M.; Varga, Z.; Nyitrai-Sárdy, D. Effect of Botrytis cinerea Activity on Glycol Composition and Concentration in Wines. Fermentation 2023, 9, 493. [Google Scholar] [CrossRef]
- Son, H.-S.; Hwang, G.-S.; Ahn, H.-J.; Park, W.-M.; Lee, C.-H.; Hong, Y.-S. Characterization of Wines from Grape Varieties through Multivariate Statistical Analysis of 1H NMR Spectroscopic Data. Food Res. Int. 2009, 42, 1483–1491. [Google Scholar] [CrossRef]
- Lubbers, S.; Verret, C.; Voilley, A. The Effect of Glycerol on the Perceived Aroma of a Model Wine and a White Wine. LWT—Food Sci. Technol. 2001, 34, 262–265. [Google Scholar] [CrossRef]
- Black, C.A.; Paarker, M.; Siebert, T.E.; Capone, D.L.; Francis, I.L. Terpenoids and their role in wine flavour: Recent advances. Aust. J. Grape Wine Res. 2015, 21, 582–600. [Google Scholar] [CrossRef]
- Conde, C.; Silva, P.; Fontes, N.; Dias, A.C.P.; Tavares, R.M.; Sousa, M.J.; Agasse, A.; Delrot, S.; Gerós, H. Biochemical changes throughout grapeberry development and fruit and wine quality. Food Spec. Feature 2007, 1, 1–22. Available online: https://repositorium.sdum.uminho.pt/bitstream/1822/6820/1/Conde%20et%20al.2007%28review%29.pdf (accessed on 7 February 2024).
- Ribéreau-Gayon, P.; Glories, Y.; Maujean, A.; Dubourdieu, D. Varietal aroma. In Handbook of Enology. The Chemistry of Wine Stabilization and Treatments, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2006. [Google Scholar]
- Slaghenaufi, D.; Luzzini, G.; Solis, J.S.; Forte, F.; Ugliano, M. Two Sides to One Story-Aroma Chemical and Sensory Signature of Lugana and Verdicchio Wines. Molecules 2021, 26, 2127. [Google Scholar] [CrossRef] [PubMed]
- Furdíková, K.; Bajnociová, L.; Malík, F.; Špánik, I. Investigation of volatile profile of varietal Gewürztraminer wines using two-dimensional gas chromatography. J. Food Nutr. Res. 2017, 56, 73–85. [Google Scholar]
- Marais, J. Terpenes in the aroma of grapes and wines: A review. S. Afr.J. Enol. Vitic. 1983, 4, 49–58. [Google Scholar] [CrossRef]
- Kozina, B.; Marko, K.; Herjavec, S.; Jero, A.; Orlić, S. Influence of basal leaf removal on the chemical composition of Sauvignon Blanc and Riesling wines. J. Food Agric. Environ. 2008, 6, 28–33. [Google Scholar]
- Fazzalari, F.A. Compilation of Odorand Taste Threshold Values Data; ASTM Data Series, DS Serie A; American Society for Testing and Materials (USA): Conshohocken, PA, USA, 1978. [Google Scholar]
- Porat, R.; Deterre, S.; Giampaoli, P.; Plotto, A. Chapter 1: The flavour of citrus fruits. In Biotechnology in Flavour Production, 2nd ed.; Havkin-Frenkel, D., Dudai, N., Eds.; John Wiley & Sons: Oxford, UK; Wiley: Hoboken, NJ, USA, 2016; Available online: https://www.semanticscholar.org/paper/Chapter-1-The-flavor-of-citrus-fruit-Porat-Deterre/ca8454ef51fb690f671c171afa3aa03a846cf627?utm_source=direct_link (accessed on 14 January 2024).
- Günata, Y.Z.; Bayonove, C.L.; Baumes, R.L.; Cordonnier, R.E. Aroma of grapes. I. Extraction and determination of free and glycosidically bound fraction of some white grape varieties. J. Chromatogr. 1985, 331, 83–90. [Google Scholar] [CrossRef]
- Slaghenaufi, D.; Vanzo, L.; Luzzini, G.; Arapitsas, P.; Marangon, M.; Curioni, A.; Mattivi, F.; Piombino, P.; Moio, L.; Versari, A.; et al. Monoterpenoids and norisoprenoids in Italian red wines: This article is published in cooperation with Macrowine 2021, 23–30 June 2021. OENO One 2022, 56, 185–193. [Google Scholar] [CrossRef]
- Selli, S.; Canbas, A.; Cabaroglu, T.; Erten, H.; Gunata, Z. Aroma components of cv. Muscat of Bomova wines and influence of skin contact treatment. Food Chem. 2006, 94, 319–326. [Google Scholar] [CrossRef]
- Mendes-Pinto, M.M. Carotenoid breakdown products the-norisoprenoids-in wine aroma. Arch. Biochem. Biophys. 2009, 483, 236–245. [Google Scholar] [CrossRef] [PubMed]
- Tomasino, E.; Bolman, S. The potential effect of β-Ionone and β-Damascenone on sensory perception of Pinot Noir wine aroma. Molecules 2021, 26, 1288. [Google Scholar] [CrossRef] [PubMed]
- Puig-Pujol, A.; Domingo, C.; Guerrero, L.; Elorduy, X.; Gomis-Bellmunt, A. Sensory analysis of wines made with minority varieties found in Spain. In Proceedings of the BIO Web of Conferences 43nd World Congress of Vine and Wine, Baja California, Mexico, 31 October–4 November 2023; Volume 56, p. 02027. [Google Scholar]
- Cataldo, E.; Salvi, L.; Paoli, F.; Fucile, M.; Mattii, G.B. Effect of Agronomic Techniques on Aroma Composition of White Grapevines: A Review. Agronomy 2021, 11, 2027. [Google Scholar] [CrossRef]
- Bueno, J.E.; Peinado, R.; Moreno, J.; Medina, M.; Moyano, L.; Zea, L. Selection of volatile aroma compounds by statistical and enological criteria for analytical differentiation of musts and wines of two grape varieties. J. Food Sci. 2003, 68, 158–163. [Google Scholar] [CrossRef]
- Valdés, M.E.; Moreno, D.; Puig-Pujol, A.; Muñoz-Organero, G.; MINORVIN group. Impact of geographical location on the phenolic profile of minority varieties grown in Spain. II: Red grapevines. In Proceedings of the 2nd ClimWine Symposium I XIVth International Terroir Congress, Bordeaux, France, 3–8 July 2022. [Google Scholar]
Variety-Origin | Variety | Wine Elaboration | Geographical Origin | Research Centre |
---|---|---|---|---|
‘Albana-A’ | ‘Albana’ | W | Aragón | CTA |
‘Albana-C’ | ‘Albana’ | W | Cataluña | INCAVI |
‘Albillo del Pozo’ | W | Castilla-La Mancha | IRIAF | |
‘Albilla do Avia’ | W | Galicia | EVEGA | |
‘Bastardo Blanco’ | W | Extremadura | CICYTEX-INTAEX | |
‘Benedicto’ | R | Castilla-La Mancha | IRIAF | |
‘Cadrete-N’ | ‘Cadrete’ (syn. ‘Santafé’) | R | Navarra | EVENA |
‘Santa Fé-A’ | ‘Santa Fé’ (syn. ‘Cadrete’) | R | Aragón | CTA |
‘Callet’ | R | Islas Baleares | UIB | |
‘Castellana Blanca-CM’ | ‘Castellana Blanca’ | W | Castilla-La Mancha | IRIAF |
‘Castellana Blanca-M’ | ‘Castellana Blanca’ | W | Madrid | IMIDRA |
‘Castellana Blanca-N’ | ‘Castellana Blanca’ | W | Navarra | EVENA |
‘Cayetana’ | W | Extremadura | CICYTEX-INTAEX | |
‘Cenicienta’ | R | Castilla y León | ITACYL | |
‘Corchera’ | R | Andalucía | IFAPA | |
‘Diega 1’ | R | Navarra | EVENA | |
‘Diega 2’ | W | Navarra | EVENA | |
‘Estaladiña’ | R | Castilla y León | ITACYL | |
‘Evena 1’ | W | Navarra | EVENA | |
‘Folgasao’ (syn. ‘Cagarrizo’) | W | Extremadura | CICYTEX-INTAEX | |
‘Garró’ | R | Navarra | EVENA | |
‘Gorgollosa’ | R | Islas Baleares | UIB | |
‘Greta’ | W | Aragón | CTA | |
‘Hebén-E’ | ‘Hebén’ | W | Extremadura | CICYTEX-INTAEX |
‘Hebén-M’ | ‘Hebén’ | W | Madrid | IMIDRA |
‘Hondarribi Beltza’ (HB) | R | País Vasco | DV | |
‘Indiana’ | W | Andalucía | IFAPA | |
‘Jarrosuelto-A’ | ‘Jarrosuelto’ | W | Aragón | CTA |
‘Jarrosuelto-CM’ | ‘Jarrosuelto’ | W | Castilla-La Mancha | IRIAF |
‘Jarrosuelto-N’ | ‘Jarrosuelto’ | W | Navarra | EVENA |
‘Mandregue’ | R | Aragón | CTA | |
‘Maquías’ | W | Castilla-La Mancha | IRIAF | |
‘Marco 1 (MC1)—Albariño Tinto’ | W | Galicia | EVEGA | |
‘Marco 2 (MC2)—Albarín Tinto’ | R | Galicia | EVEGA | |
Variety-Origin | Variety | Wine Elaboration | Origin | Research Centre |
‘Melonera’ | R | Andalucía | IFAPA | |
‘Montonera del Casar’ | W | Castilla-La Mancha | IRIAF | |
‘Morate-M’ | ‘Morate’ | R | Madrid | IMIDRA |
‘Morate-N’ | ‘Morate’ | R | Navarra | EVENA |
‘Ratiño’ | W | Galicia | EVEGA | |
‘Rayada Melonera’ | R | Madrid | IMIDRA | |
‘Riera 2’ | R | Cataluña | INCAVI | |
‘Riera 43’ | R | Cataluña | INCAVI | |
‘Riera 46’ | W | Cataluña | INCAVI | |
‘Rufete Serran-CL’ | ‘Rufete Serrano’ (syn. ‘Verdejo Serrano’) | W | Castilla y León | ITACYL |
‘Verdejo Serrano-E’ | ‘Verdejo Serrano’ (syn. ‘Rufete Serrano’) | W | Extremadura | CICYTEX-INTAEX |
‘Sanguina-C’ | ‘Sanguina’ | R | Cataluña | INCAVI |
‘Sanguina-CM’ | ‘Sanguina’ | R | Castilla-La Mancha | IRIAF |
‘Terriza-CM’ | ‘Terriza’ | R | Castilla-La Mancha | IRIAF |
‘Terriza-M’ | ‘Terriza’ | R | Madrid | IMIDRA |
‘Tinto Jeromo-CL’ | ‘Tinto Jeromo’ | R | Castilla y León | ITACYL |
‘Tinto Jeromo-CM’ | ‘Tinto Jeromo’ | R | Castilla-La Mancha | IRIAF |
‘Tortozona Tinta-A’ | ‘Tortozona Tinta’ | R | Aragón | CTA |
‘Tortozona Tinta-CM’ | ‘Tortozona Tinta’ | R | Castilla-La Mancha | IRIAF |
‘Tortozona Tinta-M’ | ‘Tortozona Tinta’ | R | Madrid | IMIDRA |
‘Tortozona Tinta-N’ | ‘Tortozona Tinta’ | R | Navarra | EVENA |
‘Trobat’ | R | Cataluña | INCAVI | |
‘Xafardán (Tinta Oubiña)’ | R | Galicia | EVEGA | |
‘Zamarrica’ | R | Galicia | EVEGA | |
‘Zurieles-CM’ | ‘Zurieles’ | W | Castilla-La Mancha | IRIAF |
‘Zurieles-E’ | ‘Zurieles’ | W | Extremadura | CICYTEX-INTAEX |
Major Volatile Compounds (mg·L−1) | |
---|---|
Alcohols | methanol |
1-butanol | |
2-methyl-1-butanol | |
3-methyl-1-butanol | |
2-methyl-1-propanol | |
propanol | |
2-phenylethanol | |
benzyl alcohol | |
C6 compounds | hexanol |
trans 3-hexen-1-ol | |
cis-3-hexen-1-ol | |
Ethyl Esters | ethyl hexanoate |
ethyl octanoate | |
ethyl decanoate | |
ethyl lactate | |
diethyl succinate | |
Acetates | ethyl acetate |
isoamyl acetate | |
hexyl acetate | |
2-phenylethyl acetate | |
Volatile Acids | acetic acid |
butyric acid | |
isobutyric acid | |
isopentanoic acid | |
hexanoic acid | |
octanoic acid | |
decanoic acid | |
Carbonyl compounds | acetaldehyde |
acetoin | |
Other compounds | glycerol |
acetol | |
2-3-butanediol levo | |
2-3-butanediol meso |
Volatile Compounds (µg·L−1) | |
---|---|
Lactones | γ butyrolactone |
Terpenes | linalool |
trans linalool oxide (furan) | |
cis linalool oxide (furan) | |
trans linalool oxide (pyran) | |
cis linalool oxide (pyran) | |
ho-trienol | |
α terpineol | |
citronelol | |
nerol | |
geraniol | |
hodiol 1 (trans-3,7-dimethyl-1,5-octadiene-3,7-diol) | |
endiol (3,7-dimethyl-1-octen-3,7 diol) | |
C13 norisoprenoids | α damascone |
β damascone | |
β ionone | |
γ ionone |
Alcohols | C6 Compounds | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Compound | methanol | 1 butanol | 2 metil, 1 butanol | 3 metil, 1 butanol | isobutanol | propanol | 2-phenyl ethanol | benzyl alcohol | hexanol | trans 3-hexen-1-ol | cis 3-hexen-1-ol |
Pr > F (Model) | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | 0.050 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
Significance | *** | *** | *** | *** | *** | * | *** | *** | *** | *** | *** |
Esters | Acetates | Carbonyls | |||||||||
Compound | ethyl hexanoate | ethyl octanoate | ethyl decanoate | ethyl lactate | diethyl succinate | isoamyl acetate | hexyl acetate | 2-phenyl ethyl acetate | ethyl acetate | acetaldehyde | acetoin |
Pr > F (Model) | 0.154 | 0.013 | 0.088 | <0.0001 | <0.0001 | 0.053 | 0.836 | 1.000 | <0.0001 | <0.0001 | <0.0001 |
Significance | ns | * | ns | *** | *** | ns | ns | ns | *** | *** | *** |
Acids | Others | ||||||||||
Compound | acetic acid | butyric acid | isobutyric acid | isopentanoic acid | hexanoic acid | octanoic acid | decanoic acid | glycerol | acetol | 2-3-butanediol levo | 2-3-butanediol meso |
Pr > F (Model) | <0.0001 | 0.784 | 0.352 | 0.624 | 0.313 | 0.082 | 0.516 | <0.0001 | 0.001 | <0.0001 | 0.001 |
Significance | *** | ns | ns | ns | ns | ns | ns | *** | *** | *** | *** |
Lactone | Terpenes | ||||||||
---|---|---|---|---|---|---|---|---|---|
Compound | γ butyrolactone | linalool | trans linalool oxide (furan) | cis linalool oxide (furan) | trans linalool oxide (pyran) | cis linalool oxide (pyran) | oh-trienol | α terpineol | citronellol |
Pr > F (Model) | <0.0001 | 0.001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | 0.224 |
Significance | *** | *** | *** | *** | *** | *** | *** | *** | ns |
Terpenes | C13 Norisoprenoids | ||||||||
Compound | nerol | geraniol | hodiol 1 | endiol | α ionone | β ionone | α damascone | β damascone | |
Pr > F (Model) | <0.0001 | <0.0001 | 0.025 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | |
Significance | *** | *** | * | *** | *** | *** | *** | *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Díaz-Fernández, Á.; Cortés-Diéguez, S.; Muñoz-Organero, G.; Cabello, F.; Puertas, B.; Puig-Pujol, A.; Domingo, C.; Valdés-Sánchez, M.E.; Moreno Cardona, D.; Cibriain, J.F.; et al. The Valorization of Spanish Minority Grapevine Varieties—The Volatile Profile of Their Wines as a Characterization Feature. Agronomy 2024, 14, 1033. https://doi.org/10.3390/agronomy14051033
Díaz-Fernández Á, Cortés-Diéguez S, Muñoz-Organero G, Cabello F, Puertas B, Puig-Pujol A, Domingo C, Valdés-Sánchez ME, Moreno Cardona D, Cibriain JF, et al. The Valorization of Spanish Minority Grapevine Varieties—The Volatile Profile of Their Wines as a Characterization Feature. Agronomy. 2024; 14(5):1033. https://doi.org/10.3390/agronomy14051033
Chicago/Turabian StyleDíaz-Fernández, Ángela, Sandra Cortés-Diéguez, Gregorio Muñoz-Organero, Félix Cabello, Belén Puertas, Anna Puig-Pujol, Carme Domingo, M. Esperanza Valdés-Sánchez, Daniel Moreno Cardona, José Félix Cibriain, and et al. 2024. "The Valorization of Spanish Minority Grapevine Varieties—The Volatile Profile of Their Wines as a Characterization Feature" Agronomy 14, no. 5: 1033. https://doi.org/10.3390/agronomy14051033
APA StyleDíaz-Fernández, Á., Cortés-Diéguez, S., Muñoz-Organero, G., Cabello, F., Puertas, B., Puig-Pujol, A., Domingo, C., Valdés-Sánchez, M. E., Moreno Cardona, D., Cibriain, J. F., Dañobeitia-Artabe, O., Rubio-Cano, J. -A., Martínez-Gascueña, J., Mena-Morales, A., Chirivella, C., Usón, J. -J., & Díaz-Losada, E. (2024). The Valorization of Spanish Minority Grapevine Varieties—The Volatile Profile of Their Wines as a Characterization Feature. Agronomy, 14(5), 1033. https://doi.org/10.3390/agronomy14051033