The Inclusion of Pigeon Pea Hay Improves the Quality of Giant Cactus Harvested at Different Times
Abstract
:1. Introduction
2. Materials and Methods
2.1. Location and Experimental Design
2.2. Forage Used and Silage Process
2.3. Fermentative Parameters
2.4. Chemical Analysis
2.5. Statistical Analyses
3. Results
3.1. Fermentative Parameters
3.2. Chemical Composition of Silage
4. Discussion
4.1. Fermentative Parameters
4.2. Chemical Composition of the Silage
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, Y.R.; Hessen, D.O.; Samset, B.H.; Stordal, F. Evaluating global and regional land warming trends in the past decades with both MODIS and ERA5-Land land surface temperature data. Remote Sens. Environ. 2022, 280, 113181. [Google Scholar] [CrossRef]
- Refati, D.C.; da Silva, J.L.B.; Macedo, R.S.; Lima, R.D.C.C.; da Silva, M.V.; Pandorfi, H.; Silva, P.C.; Oliveira-Júnior, J.F. Influence of drought and anthropogenic pressures on land use and land cover change in the brazilian semiarid region. J. South Am. Earth Sci. 2023, 126, 104362. [Google Scholar] [CrossRef]
- Cunha, A.P.M.A.; Zeri, M.; Deusdar’a Leal, K.; Costa, L.; Cuartas, L.A.; Marengo, J.A.; Tomasella, J.; Vieira, R.M.; Barbosa, A.A.; Cunningham, C.; et al. Extreme drought events over Brazil from 2011 to 2019. Atmosphere 2019, 10, 642. [Google Scholar] [CrossRef]
- Charmley, E.; Thomas, D.; Bishop-Hurley, G.J. Revisiting tropical pasture intake: What has changed in 50 years? Anim. Prod. Sci. 2023, 63, 1851–1865. [Google Scholar] [CrossRef]
- Tomasella, J.; Vieira, R.M.S.P.; Barbosa, A.A.; Rodriguez, D.A.; de Oliveira Santana, M.; Sestini, M.F. Desertification trends in the Northeast of Brazil over the period 2000–2016. Int. J. Appl. Earth Obs. Geoinf. 2018, 73, 197–206. [Google Scholar] [CrossRef]
- Dias, C.S.M.; Nunes, H.P.; Vouzela, C.F.; Madruga, J.S.; Borba, A.E. Influence of the Season on the Nutritive Value and Gas Production of Opuntia ficus-indica and Agave americana L. in Ruminant Feed. Animals 2023, 13, 1008. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, S.S.; Almeida, R.L.; Santos, N.C.; Pereira, E.M.; Silva, A.P.; Oliveira, H.M.L.; Pasquali, M.A.D.B. New Functional Foods with Cactus Components: Sustainable Perspectives and Future Trends. Foods 2023, 12, 2494. [Google Scholar] [CrossRef]
- Rodrigues, A.M.; Pitacas, F.I.; Reis, C.M.G.; Blasco, M. Nutritional value of opuntia ficus-indica cladodes from Portuguese ecotypes. Bulg. J. Agr. Sci. 2016, 22, 40–45. [Google Scholar]
- Cavalcante, L.A.D.; Santos, G.D.A.; Silva, L.D.; Fagundes, J.L.; Silva, M.D. Response of cactus pear genotypes to different crop densities. Pesqui. Agropecu. Trop. 2014, 44, 424–433. [Google Scholar] [CrossRef]
- Valadares Filho, S.C.; Machado, P.A.S.; Chizotti, M.L.; Amaral, H.F.; Magalhães, K.A.; Rocha Júnior, V.R.; Capelle, E.R. Tabelas Brasileiras de Composição de Alimentos Para Bovinos, 3rd ed.; Universidade Federal de Viçosa: Viçosa, Brasil, 2010; p. 502. [Google Scholar]
- Dubeux, J.C.B., Jr.; dos Santos, M.V.F.; da Cunha, M.V.; dos Santos, D.C.; de Almeida Souza, R.T.; de Mello, A.C.L.; de Souza, T.C. Cactus (Opuntia and Nopalea) nutritive value: A review. Anim. Feed Sci. Technol. 2021, 275, 114890. [Google Scholar] [CrossRef]
- Gomes, G.M.F.; Cândido, M.J.D.; Lopes, M.N.; Galvani, D.B.; Soares, I.; Neiva, J.N.M. Nutritional value of cactus pear grown under different levels of nitrogen and phosphorus and two harvest frequencies. Rev. Bras. Zootec. 2021, 50, e20210002. [Google Scholar] [CrossRef]
- Nobre, I.D.S.; Araújo, G.G.L.D.; Santos, E.M.; Carvalho, G.G.P.D.; de Albuquerque, I.R.R.; Oliveira, J.S.D.; Ribeiro, O.L.; Turco, S.H.N.; Gois, G.C.; Silva, T.G.F.; et al. Cactus pear silage to mitigate the effects of an intermittent water supply for feedlot lambs: Intake, digestibility, water balance and growth performance. Ruminants 2023, 3, 121–132. [Google Scholar] [CrossRef]
- Cruz, G.F.L.; Santos, E.M.; de Araújo, G.G.L.; de Azevedo, P.S.; de Albuquerque, Í.R.R.; Panosso, N.M.; Perazzo, A.F.; Zanine, A.M.; Ferreira, D.J.; Lima, A.G.V.O.; et al. Carcass traits and meat quality of goats fed with cactus pear (Opuntia ficus-indica Mill) silage subjected to an intermittent water supply. Sci. Rep. 2023, 13, 855. [Google Scholar] [CrossRef] [PubMed]
- Muck, R.E.; Nadeau, E.M.G.; McAllister, T.A.; Contreras-Govea, F.E.; Santos, M.C.; Kung Jr, L. Silage review: Recent advances and future uses of silage additives. J. Dairy Sci. 2018, 101, 3980–4000. [Google Scholar] [CrossRef] [PubMed]
- Sá, M.K.N.; de Andrade, A.P.; Magalhães, A.L.R.; de Lima Valença, R.; Campos, F.S.; dos Santos Araújo, F.; de Araújo, G.G.L. Cactus pear silage with Gliricidia Sepium: Food alternative for the semiarid region. Res. Soc. Dev. 2021, 10, e27210212473. [Google Scholar] [CrossRef]
- Furtado, A.J.; Abdalla Filho, A.L.; Bruno, J.F.; Neto, R.P.; Lobo, A.A.G.; da Silva, G.V.; Perna Junior, F.; Alves, T.C.; Berndt, A.; Pedroso, A.F.; et al. Pigeon Pea Intercropped with Tropical Pasture as a Mitigation Strategy for Enteric Methane Emissions of Nellore Steers. Animals 2023, 13, 1323. [Google Scholar] [CrossRef]
- Abebe, B.K. The dietary use of pigeon pea for human and animal diets. Sci. World J. 2022, e4873008. [Google Scholar] [CrossRef] [PubMed]
- Pereira, D.S.; Lana, R.D.P.; Carmo, D.L.D.; Costa, Y.K.S.D. Chemical composition and fermentative losses of mixed sugarcane and pigeon pea silage. Acta Sci. Anim. Sci. 2019, 41, e43709. [Google Scholar] [CrossRef]
- Jobim, C.C.; Nussio, L.G.; Reis, R.A.; Schmidt, P. Methodological advances in evaluation of preserved forage quality. Rev. Bras. Zootec. 2007, 36, 101–119. [Google Scholar] [CrossRef]
- Zanine, A.M.; Santos, E.M.; Dorea, J.R.R.; Dantas, P.A.S.; Silva, T.C.; Pereira, O.G. Evaluation of elephant grass with addition of cassava scrapings. Rev. Bras. Zootec. 2010, 39, 2611–2616. [Google Scholar] [CrossRef]
- Bolsen, K.K.; Sonon, R.N.; Dalke, B.; Ronald, V.P.; Jack, G.R.; Laytimi, A. Evaluation of inoculant and NPN silage additives: A summary of 26 trials and 65 farm-scale silages. Kansas Agric. Exp. Station Res. Rep. 1992, 1, 102–103. [Google Scholar] [CrossRef]
- AOAC—Association of Official Analytical Chemists. Official Methods of Analysis of the Association of Official Analytical Chemists, 18th ed.; Association of Official Analytical Chemists Inc.: Gaithersburg, MD, USA, 2005. [Google Scholar]
- Mertens, D.R. Gravimetric determination of amylase-treated neutral detergent fiber in feeds with refluxing in beakers or crucibles: Collaborative study. J. AOAC Int. 2002, 85, 1217–1240. [Google Scholar] [PubMed]
- Licitra, G.; Hernandez, T.M.; Van Soest, P.J. Standardization of procedures for nitrogen fractionation of ruminant feeds. Anim. Feed Sci. Technol. 1996, 57, 347–358. [Google Scholar] [CrossRef]
- Van Soest, P.V.; Robertson, J.B.; Lewis, B.A.E. Methods for dietary fiber, neutral detergent fiber, and nonstarch poly-saccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Sniffen, C.J.; O’connor, J.D.; Van Soest, P.J.; Fox, D.G.; Russell, J.B. A net carbohydrate and protein system for evaluating cattle diets: II. Carbohydrate and protein availability. J. Anim. Sci. 1992, 70, 3562–3577. [Google Scholar] [CrossRef] [PubMed]
- Cappelle, E.R.; Valadares Filho, S.C.; Silva, J.F.C.; Cecon, P.R. Estimativas do valor energético a partir de características químicas e bromatológicas dos alimentos. Rev. Bras. Zootec. 2001, 30, 1837–1856. [Google Scholar] [CrossRef]
- Wróbel, B.; Nowak, J.; Fabiszewska, A.; Paszkiewicz-Jasińska, A.; Przystupa, W. Dry matter losses in silages resulting from epiphytic microbiota activity—A comprehensive study. Agronomy 2023, 13, 450. [Google Scholar] [CrossRef]
- Reis Filho, R.J.C.D.; Carneiro, M.S.D.S.; Pereira, E.S.; Furtado, R.N.; Morais Neto, L.B.D.; Magalhães, J.A.; Alves, F.G.S.; Lopes, M.N. Biomass components and water use efficiency in cactus pear under different irrigation systems and harvest frequencies. Rev. Bras. Zootec. 2022, 51, e20210093. [Google Scholar] [CrossRef]
- Santos, D.C.; Alves, F.A.L.; Júnior, J.C.B.D. Influence of cladode orientation and planting season on development and chemical composition of forage cactus. Pesq. Agropec. Pernamb. 2019, 24, e2172242019. [Google Scholar] [CrossRef]
- Luna-Zapién, E.A.; Zegbe, J.A.; Meza-Velázquez, J.A.; Contreras-Esquivel, J.C.; Morales-Martínez, T.K. Mucilage Yield, Composition, and Physicochemical Properties of Cultivated Cactus Pear Varieties as Influenced by Irrigation. Agronomy 2023, 13, 419. [Google Scholar] [CrossRef]
- Vieira, É.A.; Alcântara, M.A.; Dos Santos, N.A.; Gondim, A.D.; Iacomini, M.; Mellinger, C.; Cordeiro, A.M.T.M. Mucilages of cacti from Brazilian biodiversity: Extraction, physicochemical and technological properties. Food Chem. 2021, 346, 128892. [Google Scholar] [CrossRef] [PubMed]
- Vieira, É.A.; Cordeiro, A.M.T.M. Bioprospecting and potential of cactus mucilages: A bibliometric review. Food Chem. 2022, 401, 134121. [Google Scholar] [CrossRef]
- Monrroy, M.; García, E.; Ríos, K.; García, J.R. Extraction and physicochemical characterization of mucilage from Opuntia cochenillifera (L.) Miller. J. Chem. 2017, 2017, 4301901. [Google Scholar] [CrossRef]
- Santos, F.N.S.; Santos, E.M.; Oliveira, J.S.; Medeiros, G.R.; Zanine, A.M.; Araújo, G.G.L.; Perazzo, A.F.; Lemos, M.L.P.; Pereira, D.M.; Cruz, G.F.L.; et al. Fermentation profile, microbial populations, taxonomic diversity and aerobic stability of total mixed ration silages based on Cactus and Gliricidia. J. Agric. Sci. 2020, 158, 396–405. [Google Scholar] [CrossRef]
- Goksen, G.; Demir, D.; Dhama, K.; Kumar, M.; Shao, P.; Xie, F.; Echegaray, N.; Lorenzo, J.M. Mucilage polysaccharide as a plant secretion: Potential trends in food and biomedical applications. Int. J. Biol. Macromol. 2023, 230, 123146. [Google Scholar] [CrossRef] [PubMed]
- Borges, E.N.; Araújo, C.A.; Monteiro, B.S.; Silva, A.S.; Albuquerque, L.D.F.; de Araújo, G.G.L.; Campos, F.S.; Gois, G.C.; Souza, R.C.; de Araújo, A.O. Buffel grass pre-dried as a modulator of the fermentation, nutritional and aerobic stability profile of cactus pear silage. N. Z. J. Agr. Res. 2023, 1–16. [Google Scholar]
- Brito, G.S.M.S.; Santos, E.M.; Araújo, G.G.L.; Oliveira, J.S.; Zanine, A.M.; Perazzo, A.F.; Campos, F.S.; Lima, A.G.V.O.; Cavalcanti, H.S. Mixed silages of cactus pear and gliricídia: Chemical composition, fermentation characteristics, microbial population and aerobic stability. Sci. Rep. 2020, 10, 6834. [Google Scholar] [CrossRef]
- Jesus, F.M.; Teixeira, F.A.; Jardim, R.R.; Santos, J.P.; Santos Filho, J.R.; Nascimento, A.A.; Vieira, T.M.; Silva, H.S.; Dilva, S.N.; Porto, E.M.V. Forage palm silage in complete diet. Res. Soc. Dev. 2022, 11, e41911932027. [Google Scholar] [CrossRef]
- Kung, L., Jr.; Shaver, R.D.; Grant, R.J.; Schmidt, R.J. Silage review: Interpretation of chemical, microbial, and organoleptic components of silages. J. Dairy Sci. 2018, 101, 4020–4033. [Google Scholar] [CrossRef]
- Machado, F.S.; Rodríguez, N.M.; Rodrigues, J.A.S.; Ribas, M.N.; Teixeira, A.M.; Ribeiro Júnior, G.O.; Velasco, F.O.; Gonçalves, L.C.; Guimarães Júnior, R.; Pereira, L.G.R. Silage quality of sorghum hybrids in different maturation stages. Arq. Bras. Med. Vet. Zootec. 2012, 64, 711–720. [Google Scholar] [CrossRef]
- Borreani, G.I.O.R.G.I.O.; Tabacco, E.R.N.E.S.T.O.; Schmidt, R.J.; Holmes, B.J.; Muck, R.A. Silage review: Factors affecting dry matter and quality losses in silages. J. Dairy Sci. 2018, 101, 3952–3979. [Google Scholar] [CrossRef]
- Ju, J.; Zhang, G.; Xiao, M.; Dong, C.; Zhang, R.; Du, L.; Zheng, Y.; Wei, M.; Wei, M.; Wu, B. Effects of cellulase and Lactiplantibacillus plantarum on the fermentation quality, microbial diversity, gene function prediction, and in vitro rumen fermentation parameters of Caragana korshinskii silage. Front. Food Sci. Technol. 2023, 2, 1108043. [Google Scholar] [CrossRef]
- Sá, C.; Zanine, A.; Ferreira, D.; Parente, H.; Parente, M.; Santos, E.M.; Lima, A.G.; Santos, F.N.; Pereira, D.; Sousa, F.C.; et al. Corn silage as a total diet with by-products of the babassu agroindustry in the feed of confined ruminants. Agronomy 2023, 13, 417. [Google Scholar] [CrossRef]
- Barros, L.J.A.; Andrade Ferreira, M.; de Oliveira, J.C.V.; Dos Santos, D.C.; Chagas, J.C.C.; Alves, A.M.S.V.; Silva, A.E.M.; Freitas, W.R. Replacement of Tifton hay by spineless cactus in Girolando post-weaned heifers’ diets. Trop. Anim. Health Prod. 2018, 50, 149–154. [Google Scholar] [CrossRef] [PubMed]
- Matias, A.G.S.; Araujo, G.G.L.; Campos, F.S.; Moraes, S.A.; Gois, G.C.; Silva, T.S.; Voltolini, T.V. Fermentation profile and nutritional quality of silages composed of cactus pear and maniçoba for goat feeding. J. Agr. Sci. 2020, 158, 304–312. [Google Scholar] [CrossRef]
- Gusha, J.; Halimani, T.E.; Ngongoni, N.T.; Ncube, S. Effect of feeding cactus-legume silages on nitrogen retention, digestibility and microbial protein synthesis in goats. Anim. Feed Sci. Technol. 2015, 206, 1–7. [Google Scholar] [CrossRef]
Chemical Composition (% DM) | Pigeon Pea Hay | Pigeon Pea Hay Inclusion Level (%) | ||||
---|---|---|---|---|---|---|
0 | 10 | 20 | 30 | 40 | ||
Cactus harvested at 18 months | ||||||
Dry matter (% as fed) | 91.26 | 5.48 | 12.64 | 20.18 | 27.85 | 35.29 |
Ash | 4.35 | 14.60 | 8.26 | 6.09 | 5.61 | 4.71 |
Crude protein | 6.49 | 4.15 | 5.81 | 6.14 | 6.37 | 6.69 |
Ether extract | 1.52 | 2.06 | 1.76 | 1.77 | 1.47 | 1.43 |
Neutral detergent fiber | 72.04 | 21.00 | 49.57 | 65.99 | 63.73 | 65.83 |
Non-fibrous carbohydrates | 16.75 | 58.18 | 34.60 | 20.02 | 22.82 | 21.33 |
Total digestible nutrients | 47.56 | 68.82 | 56.69 | 50.01 | 51.11 | 50.06 |
Cactus harvested at 24 months | ||||||
Dry matter (% as fed) | 91.26 | 6.37 | 14.02 | 22.91 | 34.15 | 37.32 |
Ash | 4.35 | 13.31 | 8.16 | 6.35 | 4.50 | 4.94 |
Crude protein | 7.33 | 4.00 | 7.01 | 7.50 | 7.22 | 7.52 |
Ether extract | 1.46 | 0.89 | 1.33 | 1.57 | 1.66 | 2.12 |
Neutral detergent fiber | 59.70 | 21.75 | 49.83 | 54.78 | 55.97 | 59.70 |
Non-fibrous carbohydrates | 27.17 | 60.05 | 33.67 | 29.80 | 30.09 | 25.72 |
Total digestible nutrients | 53.68 | 67.66 | 57.17 | 55.26 | 55.15 | 54.18 |
Item | Inclusion Level of Pigeon Pea Hay, % (P) | Harvest Time (I) | SEM 1 | p-Value 2 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
P | I | P × I Interaction | ||||||||||
0 | 10 | 20 | 30 | 40 | 18 | 24 | L 3 | Q 4 | ||||
Gas losses (%) 5 | 0.87 | 0.61 | 0.51 | 0.71 | 0.72 | 0.53 | 0.83 | 0.049 | 0.277 | 0.001 | <0.001 | <0.001 |
Effluent losses (kg/ton) 6 | 174.29 | 129.09 | 129.15 | 32.58 | 6.80 | 96.70 | 92.06 | 10.566 | <0.001 | 0.051 | 0.418 | 0.193 |
Dry matter recovery (%) 7 | 76.90 | 91.71 | 88.66 | 87.72 | 89.73 | 90.36 | 83.53 | 1.328 | <0.001 | <0.001 | <0.001 | <0.001 |
pH 8 | 4.15 | 3.73 | 3.70 | 4.16 | 4.15 | 4.06 | 3.90 | 11.814 | 0.032 | <0.001 | 0.006 | <0.001 |
Item | Pigeon Pea Hay Inclusion Level (%) | p-Value 1 | |||||
---|---|---|---|---|---|---|---|
0 | 10 | 20 | 30 | 40 | L 2 | Q 3 | |
Gases losses (%) | |||||||
18 months | 0.98 | 0.58 | 0.83 | 0.37 | 0.39 | <0.001 | 0.012 |
24 months | 0.76 | 0.64 | 0.69 | 1.05 | 1.04 | <0.001 | 0.061 |
p-value | 0.064 | <0.001 | 0.009 | <0.001 | <0.001 | ||
Dry matter recovery (%) | |||||||
18 months | 72.76 | 91.62 | 94.14 | 99.15 | 94.15 | <0.001 | <0.001 |
24 months | 81.04 | 91.81 | 83.19 | 76.30 | 85.32 | <0.001 | <0.001 |
p-value | <0.001 | 0.877 | <0.001 | <0.001 | <0.001 | ||
pH | |||||||
18 months | 4.82 | 4.03 | 3.72 | 3.79 | 3.93 | <0.001 | <0.001 |
24 months | 3.40 | 3.43 | 3.68 | 4.53 | 4.38 | <0.001 | 0.551 |
p-value | <0.001 | <0.001 | 0.717 | <0.001 | <0.001 |
Chemical Composition (% DM) | Inclusion Level of Pigeon Pea Hay, % (P) | Harvest Time (I) | SEM 1 | p-Value 2 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
P | I | P × I Interaction | ||||||||||
0 | 10 | 20 | 30 | 40 | 18 | 24 | L 3 | Q 4 | ||||
Dry matter (% as fed) 5 | 5.58 | 14.88 | 22.09 | 28.01 | 33.98 | 21.03 | 20.79 | 1.734 | <0.001 | <0.001 | 0.416 | <0.001 |
Ash 6 | 17.36 | 8.22 | 6.18 | 5.57 | 5.01 | 9.22 | 7.72 | 0.811 | <0.001 | <0.001 | <0.001 | <0.001 |
Crude protein 7 | 4.29 | 6.01 | 6.81 | 6.91 | 6.72 | 6.05 | 6.25 | 0.189 | <0.001 | <0.001 | 0.003 | <0.001 |
Ether extract 8 | 1.75 | 1.83 | 2.30 | 3.00 | 2.81 | 1.85 | 2.83 | 0.147 | <0.001 | 0.133 | <0.001 | <0.001 |
Neutral detergent fiber 9 | 27.27 | 50.58 | 57.59 | 60.87 | 61.08 | 54.77 | 48.19 | 2.215 | <0.001 | <0.001 | <0.001 | 0.001 |
Acid detergent fiber 10 | 17.80 | 33.08 | 37.49 | 38.74 | 39.78 | 36.41 | 30.34 | 1.432 | <0.001 | <0.001 | <0.001 | 0.536 |
Lignin 11 | 5.21 | 12.80 | 14.09 | 15.61 | 14.98 | 12.68 | 12.40 | 0.722 | <0.001 | <0.001 | 0.354 | 0.030 |
Hemicellulose 12 | 10.10 | 17.70 | 20.08 | 21.23 | 21.44 | 18.30 | 17.92 | 0.769 | <0.001 | <0.001 | 0.272 | 0.136 |
Cellulose 13 | 12.51 | 21.91 | 24.17 | 22.74 | 25.43 | 23.95 | 18.75 | 1.015 | <0.001 | <0.001 | <0.001 | 0.002 |
Non-digestible NDF 14 | 7.82 | 31.54 | 37.86 | 41.71 | 43.33 | 34.21 | 30.70 | 2.273 | <0.001 | <0.001 | <0.001 | 0.010 |
Total carbohydrates 15 | 76.67 | 83.56 | 84.27 | 84.61 | 85.58 | 82.77 | 83.11 | 0.620 | <0.001 | <0.001 | 0.207 | <0.001 |
Non-fibrous carbohydrates 16 | 49.86 | 32.97 | 25.96 | 24.04 | 23.64 | 28.10 | 34.48 | 1.903 | <0.001 | <0.001 | <0.001 | <0.001 |
Total digestible nutrients 17 | 65.05 | 55.85 | 53.37 | 52.66 | 51.34 | 54.21 | 57.10 | 0.861 | <0.001 | <0.001 | <0.001 | 0.606 |
Chemical Composition (% DM) | Pigeon Pea Hay Inclusion Level (%) | p-Value 1 | |||||
---|---|---|---|---|---|---|---|
0 | 10 | 20 | 30 | 40 | L 2 | Q 3 | |
Dry matter (% as fed) | |||||||
18 months | 4.85 | 14.32 | 21.88 | 28.94 | 33.49 | <0.001 | 0.005 |
24 months | 6.32 | 15.44 | 22.29 | 27.07 | 32.80 | <0.001 | <0.001 |
p-value | 0.019 | 0.108 | 0.516 | 0.004 | 0.008 | ||
Ash | |||||||
18 months | 20.59 | 8.63 | 6.24 | 5.67 | 4.96 | <0.001 | <0.001 |
24 months | 14.13 | 7.80 | 6.12 | 5.46 | 5.06 | <0.001 | <0.001 |
p-value | <0.001 | 0.064 | 0.769 | 0.596 | 0.801 | ||
Crude protein | |||||||
18 months | 5.21 | 5.65 | 6.37 | 6.53 | 6.47 | <0.001 | <0.001 |
24 months | 3.37 | 6.37 | 7.24 | 7.28 | 6.98 | <0.001 | <0.001 |
p-value | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | ||
Ether extract | |||||||
18 months | 1.72 | 1.58 | 1.92 | 2.32 | 1.73 | <0.001 | <0.001 |
24 months | 1.79 | 2.09 | 2.69 | 3.68 | 3.90 | <0.001 | 0.579 |
p-value | 0.526 | <0.001 | <0.001 | <0.001 | <0.001 | ||
Neutral detergent fiber | |||||||
18 months | 28.01 | 54.53 | 61.15 | 64.59 | 65.55 | <0.001 | <0.001 |
24 months | 26.52 | 46.64 | 54.02 | 57.15 | 56.61 | <0.001 | <0.001 |
p-value | 0.215 | <0.001 | <0.001 | <0.001 | <0.001 | ||
Non-Digestible NDF | |||||||
18 months | 9.25 | 32.74 | 37.33 | 44.13 | 47.58 | <0.001 | <0.001 |
24 months | 6.40 | 30.35 | 38.38 | 39.30 | 39.08 | <0.001 | <0.001 |
p-value | 0.092 | 0.154 | 0.583 | 0.011 | <0.001 | ||
Lignin | |||||||
18 months | 5.87 | 13.56 | 13.37 | 15.81 | 14.80 | <0.001 | <0.001 |
24 months | 4.54 | 12.04 | 14.82 | 15.42 | 15.16 | <0.001 | <0.001 |
p-value | 0.062 | 0.036 | 0.043 | 0.565 | 0.596 | ||
Hemicellulose | |||||||
18 months | 13.82 | 25.02 | 26.61 | 24.41 | 29.91 | <0.001 | 0.001 |
24 months | 11.21 | 18.79 | 21.74 | 21.07 | 20.95 | <0.001 | <0.001 |
p-value | 0.023 | <0.001 | <0.001 | 0.002 | <0.001 | ||
Total carbohydrates | |||||||
18 months | 72.45 | 83.80 | 85.19 | 85.64 | 86.76 | <0.001 | <0.001 |
24 months | 80.89 | 83.31 | 83.36 | 83.58 | 84.39 | <0.001 | 0.014 |
p-value | <0.001 | 0.409 | 0.004 | 0.001 | <0.001 | ||
Non-fibrous carbohydrates | |||||||
18 months | 44.40 | 29.28 | 24.89 | 20.74 | 21.21 | <0.001 | <0.001 |
24 months | 55.32 | 36.67 | 27.02 | 27.35 | 26.06 | <0.001 | <0.001 |
p-value | <0.001 | <0.001 | 0.073 | <0.001 | 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saldanha, R.B.; de Carvalho, G.G.P.; Rodrigues, C.S.; Silva, T.V.B.S.; Pina, D.d.S.; Alba, H.D.R.; Santos, S.A.; Tosto, M.S.L.; Romão, C.d.O. The Inclusion of Pigeon Pea Hay Improves the Quality of Giant Cactus Harvested at Different Times. Agronomy 2024, 14, 1039. https://doi.org/10.3390/agronomy14051039
Saldanha RB, de Carvalho GGP, Rodrigues CS, Silva TVBS, Pina DdS, Alba HDR, Santos SA, Tosto MSL, Romão CdO. The Inclusion of Pigeon Pea Hay Improves the Quality of Giant Cactus Harvested at Different Times. Agronomy. 2024; 14(5):1039. https://doi.org/10.3390/agronomy14051039
Chicago/Turabian StyleSaldanha, Rodrigo B., Gleidson G. P. de Carvalho, Carlindo S. Rodrigues, Tarcizio V. B. S. Silva, Douglas dos S. Pina, Henry D. R. Alba, Stefanie A. Santos, Manuela S. L. Tosto, and Claudio de O. Romão. 2024. "The Inclusion of Pigeon Pea Hay Improves the Quality of Giant Cactus Harvested at Different Times" Agronomy 14, no. 5: 1039. https://doi.org/10.3390/agronomy14051039
APA StyleSaldanha, R. B., de Carvalho, G. G. P., Rodrigues, C. S., Silva, T. V. B. S., Pina, D. d. S., Alba, H. D. R., Santos, S. A., Tosto, M. S. L., & Romão, C. d. O. (2024). The Inclusion of Pigeon Pea Hay Improves the Quality of Giant Cactus Harvested at Different Times. Agronomy, 14(5), 1039. https://doi.org/10.3390/agronomy14051039