Effects of Grain Sprout Fertilizer Application Rate on Yield and Its Composition of Hybrid Middle Rice–Ratoon Rice System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site and Materials
2.2. Experimental Design
2.3. Indexes and Measurement Methods
2.3.1. SPAD Values
2.3.2. N Accumulation
2.3.3. Yield and Its Components
2.4. Statistical Analysis
3. Results
3.1. Yield and Its Components of the Main Crop
3.2. Yield and Its Components of the Ratoon Crop
3.3. Accurate Quantification of Grai-n and Bud-Promoting Fertilizers under Different Locations
3.4. Prediction of the Highly Efficient N Application Rate of the Grain- and Bud-Promoting Fertilizer
4. Discussion
4.1. Nitrogen Management Methods for Rice–Ratoon Rice
4.2. Prediction Method of the Highly Efficient N Application Rate of Grain- and Bud-Promoting Fertilizer
4.3. Technical Approaches for High-Yield Rice–Ratoon Rice Systems
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sheng, Y.; Song, L. Agricultural production and food consumption in China: A long-term projection. Chin. Econ. Rev. 2019, 53, 15–29. [Google Scholar] [CrossRef]
- Cassman, K.; Dobermann, A.; Walters, D.; Yang, H. Meeting cereal demand while protecting natural resources and improving environmental quality. Annu. Rev. Environ. Resour. 2003, 28, 315–358. [Google Scholar] [CrossRef]
- Xie, W.; Ata-Ul-Karim, S.; Shiotsu, F.; Kato, Y. Crop productivity in a rice–ratoon-rice system vs. a single-crop system in central Japan. Field Crops Res. 2023, 303, 109140. [Google Scholar] [CrossRef]
- Shen, X.; Zhang, L.; Zhang, J. Ratoon rice production in central China: Environmental sustainability and food production. Sci. Total Environ. 2020, 764, 142850. [Google Scholar] [CrossRef]
- Peng, S. Reflection on China’s rice production strategies during the transition period. Sci. Sin. Vitae 2014, 44, 845–850. [Google Scholar] [CrossRef]
- Fitri, R.; Erdiman, K.; Yamaoka, K. SALIBU technology in Indonesia: An alternative for efficient use of agricultural resources to achieve sustainable food security. Paddy Water Environ. 2019, 17, 403–410. [Google Scholar] [CrossRef]
- Tanaka, R.; Hakata, M.; Nakano, H. Grain yield response to cultivar and harvest time of the first crop in rice ratooning in southwestern Japan. Crop Sci. 2022, 621, 455–465. [Google Scholar] [CrossRef]
- Dong, H.; Chen, Q.; Wang, W.; Peng, S.; Huang, J.; Cui, K.; Nie, L. The growth and yield of a wet-seeded rice-ratoon rice system in central china. Field Crops Res. 2017, 208, 55–59. [Google Scholar] [CrossRef]
- Yang, D.; Peng, S.; Zheng, C.; Xiang, H.; Huang, J.; Cui, K.; Wang, F. Effects of nitrogen fertilization for bud initiation and tiller growth on yield and quality of rice ratoon crop in central China. Field Crops Res. 2021, 272, 108286. [Google Scholar] [CrossRef]
- Yu, X.; Guo, Y.; Yang, G.; Zhang, Z.; Liang, Y.; Zheng, C.; Xu, L.; Yuan, S.; Wang, F.; Huang, J.; et al. Nitrogen response of regenerated tillers varied among node positions in ratoon rice. Field Crops Res. 2022, 289, 108717. [Google Scholar] [CrossRef]
- Wang, Y.; Zheng, C.; Xiao, S.; Sun, Y.; Huang, J.; Peng, S. Agronomic responses of ratoon rice to nitrogen management in central China. Field Crops Res. 2019, 241, 107569. [Google Scholar] [CrossRef]
- Lin, W.; Chen, H.; Zhang, Z.; Xu, Q.; Tu, N.; Fang, C.; Ren, W. Research and prospect on physio-ecological properties of ratoon rice yield formation and its key cultivation technology. Chin. J. Eco-Agric. 2015, 23, 392–401. [Google Scholar]
- Cao, Y.; Zhu, J.; Hou, J. Yield Gap of Ratoon Rice and Their Influence Factors in China. Sci. Agric. Sin. 2020, 53, 707–719. [Google Scholar]
- Lin, W. Developmental status and problems of rice ratooning. J. Integr. Agr. 2019, 18, 246–247. [Google Scholar] [CrossRef]
- Huang, J.; Wu, J.; Chen, H.; Zhang, Z.; Fang, C.; Shao, C.; Lin, W.; Weng, P.; Muhammad, U.; Lin, W. Optimal management of nitrogen fertilizer in the main rice crop and its carrying-over effect on ratoon rice under mechanized cultivation in Southeast China. J. Integr. Agric. 2022, 21, 351–364. [Google Scholar]
- Wang, Y.; Li, X.; Lee, T.; Peng, S.; Dou, F. Effects of nitrogen management on the ratoon crop yield and head rice yield in South USA. J. Integr. Agric. 2021, 20, 1457–1464. [Google Scholar] [CrossRef]
- Mengel, D.; Wilson, F. Water management and nitrogen fertilization of ratoon crop rice. Agron. J. 1981, 73, 1008–1010. [Google Scholar] [CrossRef]
- Begum, M.; Hasana, K.; Hossain, S.; Hossain, M. Effect of culm cutting height and nitrogenous fertilizer on the yield of ratoon of late boro rice. Agron. J. 2002, 3, 136–138. [Google Scholar]
- Lal, B.; Gautam, P.; Nayak, A.; Raja, R.; Panda, B.; Tripathi, R.; Shahid, M.; Chatterjee, D.; Bhattacharyya, P.; Bihari, P.; et al. Agronomic manipulation in main season and ratoon rice influences growth, productivity, and regeneration ability in tropical lowlands. Field Crops Res. 2023, 294, 108872. [Google Scholar] [CrossRef]
- Zou, J.; Pang, Z.; Li, Z.; Guo, C.; Lin, H.; Li, Z.; Chen, H.; Huang, J.; Chen, T.; Xu, H. The underlying mechanism of variety-water-nitrogen-stubble damage interaction on yield formation of ratoon rice with low stubble height under mechanized harvesting. J. Integr. Agric. 2023, 23, 806–823. [Google Scholar] [CrossRef]
- Xu, F.; Xiong, H.; Zhu, Y.; Zhang, L.; Wan, X.; Liu, M.; Wang, G. Relationship between the efficient amount of nitrogen application for grain filling and the SPAD value at full panicle stage in mid-season hybrid rice. Acta Agron. Sin. 2007, 33, 449–454. [Google Scholar]
- Xu, F.; Xiong, H.; Zhu, Y.; Zhang, L.; Guo, X. Estimation of efficient rate of nitrogen application for promoting ratooning bud development using chlorophyll meter reading (SPAD Value) of flag leaf at the full heading stage of main crop in mid-season hybrid rice. Chin. J. Rice Sci. 2009, 23, 51–56. [Google Scholar] [CrossRef]
- Yu, D.; Zhang, Y.; Zhao, Y.; Li, X.; Jiang, Z.; Chen, S. Nitrogen application technique of ratoon rice with machine harvest in low cutting. Chin. Agric. Sci. Bull. 2013, 29, 210–214. [Google Scholar]
- Ju, C.; Buresh, R.; Wang, Z.; Zhang, H.; Liu, L.; Yang, J.; Zhang, J. Root and shoot traits for rice varieties with higher grain yield and higher nitrogen use efficiency at lower nitrogen rates application. Field Crops Res. 2015, 175, 47–55. [Google Scholar] [CrossRef]
- Zheng, C.; Wang, Y.; Yuan, S.; Xiao, S.; Sun, Y.; Huang, J.; Peng, S. Heavy soil drying during mid-to-late grain filling stage of the main crop to reduce yield loss of the ratoon crop in a mechanized rice ratooning system. Crop J. 2022, 10, 280–285. [Google Scholar] [CrossRef]
- Zheng, C.; Wang, Y.; Xu, W.; Yang, D.; Yang, G.; Yang, C.; Hung, J.; Peng, S. Border effects of the main and ratoon crops in the rice ratooning system. J. Integr. Agric. 2023, 22, 80–91. [Google Scholar] [CrossRef]
- He, H.; Weng, G.; Guo, L.; Zhang, D. Research progress on factors affecting axillary bud germination of ratoon rice. Fujian Rice Wheat Sci. Tech. 2008, 26, 61–63. [Google Scholar]
- Zhang, W.; Duana, X.; Yao, X.; Liu, Q.; Xia, R.; Zhang, X.; Luo, X.; Tang, Y.; Yao, Y.; Li, J. Progress and challenges of rice ratooning technology in Chongqing Municipality, China. Crop Environ. 2023, 2, 137–146. [Google Scholar] [CrossRef]
- Bond, J.; Bollich, P. Ratoon rice response to nitrogen fertilizer. Plant Health Prog. 2006, 5, 1–5. [Google Scholar] [CrossRef]
Site | Year | Geography Position | Basic Fertility of Soil | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Longitude (°) | Latitude (°) | Altitude (m) | Organic Matter (kg kg−1) | Total N (kg kg−1) | Total P (kg kg−1) | Total K (kg kg−1) | pH Value | Available N (mg kg−1) | Available P (mg kg−1) | Available K (mg kg−1) | ||
YD-NJ | 2018 | 105.12 | 29.15 | 335 | 3.22 | 0.182 | 0.018 | 1.13 | 4.50 | 176.8 | 46.0 | 59 |
2019 | 3.97 | 0.163 | 0.021 | 0.99 | 3.85 | 161.9 | 15.6 | 71 | ||||
2020 | 3.44 | 0.169 | 0.034 | 1.16 | 4.36 | 194.5 | 13.7 | 88.2 | ||||
DS-LZ | 2018 | 105.26 | 29.50 | 287 | 4.58 | 0.139 | 0.047 | 1.72 | 4.50 | 112.6 | 13.8 | 167 |
2019 | 3.27 | 0.153 | 0.026 | 1.53 | 4.96 | 179.4 | 11.0 | 173 | ||||
2020 | 3.31 | 0.125 | 0.019 | 1.62 | 4.71 | 121.8 | 13.2 | 145.3 | ||||
FJ-LZ | 2018 | 105.23 | 29.10 | 303 | 2.88 | 0.115 | 0.036 | 1.89 | 4.66 | 89.9 | 14.6 | 98.0 |
2019 | 2.92 | 0.103 | 0.014 | 1.40 | 5.15 | 48.9 | 10.1 | 119.0 | ||||
2020 | 3.16 | 0.138 | 0.024 | 1.73 | 5.18 | 96.9 | 17.7 | 107.4 | ||||
TH-LZ | 2018 | 105.19 | 29.11 | 330 | 2.80 | 0.171 | 0.0273 | 1.88 | 5.33 | 152.2 | 14.7 | 158 |
2019 | 3.55 | 0.133 | 0.024 | 1.47 | 5.43 | 122.2 | 15.0 | 108 | ||||
2020 | 3.35 | 0.191 | 0.036 | 1.63 | 5.85 | 163.0 | 7.5 | 136 | ||||
HZ-ZG | 2018 | 104.97 | 29.27 | 284 | 3.46 | 0.205 | 0.048 | 1.99 | 7.53 | 198.6 | 15.8 | 116 |
2019 | 3.09 | 0.178 | 0.046 | 1.65 | 7.18 | 228.1 | 18.2 | 187 | ||||
2020 | 2.87 | 0.174 | 0.038 | 1.51 | 7.30 | 1773 | 23.1 | 126.5 | ||||
DG-YB | 2018 | 104.54 | 28.58 | 289 | 4.08 | 0.176 | 0.036 | 1.89 | 7.78 | 184.2 | 17.4 | 149 |
2019 | 3.45 | 0.183 | 0.044 | 1.74 | 7.26 | 185.6 | 21.1 | 132 | ||||
2020 | 3.25 | 0.141 | 0.031 | 1.64 | 7.59 | 1351 | 17.3 | 139.7 |
Treatments | Maximum Tillers m−2 | Panicles m−2 | Spikelets Per Panicle | Grain Filling (%) | Grain Weight (mg) | Grain Yield (kg ha−1) | |
---|---|---|---|---|---|---|---|
Year (Y) | 2018 | 312.1 a | 216.6 a | 155.5 c | 92.4 a | 30.7 c | 9086.1 b |
2019 | 314.8 a | 217.2 a | 164.4 b | 88.9 b | 31.3 b | 9225.4 a | |
2020 | 277.4 b | 193.3 b | 167.6 a | 89.1 b | 31.7 a | 8562.3 c | |
Genotype (G) | R 1015 | 271.4 b | 200.2 b | 173.9 a | 89.5 b | 30.5 b | 8938.8 a |
N 107 | 329.7 a | 217.1 a | 151.1 b | 90.8 a | 32.0 a | 8977.1 a | |
Location (L) | YD-NJ | 422.0 a | 252.1 a | 143.4 e | 88.7 c | 32.0 a | 9644.7 a |
DS-LZ | 245.5 d | 202.5 c | 175.3 a | 88.9 c | 29.8 d | 8997.2 c | |
FJ-LZ | 284.0 c | 192.7 d | 166.2 c | 91.2 a | 31.4 bc | 8855.1 d | |
TH-LZ | 220.0 e | 189.9 d | 153.1 d | 92.2 a | 31.6 b | 8113.8 f | |
HZ-ZG | 273.1 c | 189.3 d | 169.8 b | 89.7 bc | 31.6 b | 8701.3 e | |
DG-YB | 358.8 b | 225.6 b | 167.3 bc | 90.1 b | 31.1 c | 9435.4 b | |
Fertilization (F) | CK | 262.4 b | 171.5 b | 165.0 a | 89.9 ab | 31.3 a | 7480.7 b |
N0 | 304.6 a | 215.0 a | 164.0 ab | 90.1 ab | 31.1 a | 9322.9 a | |
N60 | 311.0 a | 218.2 a | 161.2 bc | 90.6 a | 31.3 a | 9325.5 a | |
N120 | 309.2 a | 219.5 a | 160.2 c | 90.3 ab | 31.3 a | 9331.4 a | |
N180 | 315.6 a | 219.1 a | 162.2 abc | 89.7 b | 31.2 a | 9329.1 a | |
F-value | Y | 61.9 ** | 199.0 ** | 110.1 ** | 132.4 ** | 55.2 ** | 280.4 ** |
L | 443.1 ** | 356.4 ** | 195.9 ** | 32.4 ** | 72.5 ** | 341.9 ** | |
G | 394.4 ** | 240.3 ** | 1075.3 ** | 45.3 ** | 358.9 ** | 2.5 | |
F | 43.7 ** | 290.6 ** | 6.5 ** | 2.7 * | 0.8 | 938.8 ** | |
Y × L | 54.2 ** | 127.1 ** | 70.9 ** | 18.3 ** | 45.1 ** | 61.2 ** | |
Y × G | 3.5 * | 13.5 ** | 9.8 ** | 62.8 ** | 15.0 ** | 25.4 ** | |
Y × F | 2.6 * | 6.7 ** | 2.1 * | 0.5 | 0.8 | 29.5 ** | |
L × G | 16.1 ** | 11.8 ** | 12.7 ** | 21.5 ** | 7.4 ** | 12.8 ** | |
L × F | 4.7 ** | 3.1 ** | 2.5 ** | 1.7 | 1.3 | 2.4 ** | |
V × F | 0.8 | 2.1 | 1.7 | 0.7 | 0.5 | 0.3 | |
Y × L × G | 3.7 ** | 7.7 ** | 7.7 ** | 9.9 ** | 5.0 ** | 10.8 ** | |
Y × L × F | 1.9 * | 2.3 ** | 2.1 ** | 1.2 | 1.7 * | 4.0 ** | |
Y × G × F | 0.6 | 1.1 | 2.0 | 1.4 | 0.4 | 0.9 | |
L × G × F | 0.7 | 1.7 | 1.6 | 0.8 | 1.2 | 0.6 |
Year | Traits | Correlation Coefficient | Direct Effect | Indirect Effect | |||||
---|---|---|---|---|---|---|---|---|---|
Total | →x1 | →x2 | →x3 | →x4 | →x5 | ||||
2018 | x1 | 0.7122 | 0.0118 | 1.3864 | 1.4380 | −0.6169 | −0.0702 | −0.0506 | |
x2 | 0.7720 | 1.6014 | 0.2444 | 0.0106 | −0.6259 | −0.0794 | −0.1347 | ||
x3 | −0.0975 | 1.1820 | −1.0714 | −0.0061 | −0.8481 | −0.0479 | −0.3773 | ||
x4 | −0.2371 | 0.2262 | −0.6068 | −0.0037 | −0.5622 | −0.2502 | 0.3527 | ||
x5 | −0.2707 | 0.6398 | −0.7134 | −0.0009 | −0.3371 | −0.6971 | 0.1247 | ||
2019 | x1 | 0.6590 | −0.2870 | 0.9460 | 1.3137 | −0.4024 | −0.0167 | 0.0514 | |
x2 | 0.8333 | 1.5620 | −0.7287 | −0.2414 | −0.4302 | −0.0237 | −0.0334 | ||
x3 | −0.2435 | 0.6936 | −0.9371 | 0.1665 | −0.9688 | −0.0203 | −0.1145 | ||
x4 | −0.2450 | 0.0840 | −0.329 | 0.0570 | −0.4408 | −0.1677 | 0.2225 | ||
x5 | −0.0571 | 0.3299 | −0.3869 | −0.0447 | −0.1582 | −0.2407 | 0.0567 | ||
2020 | x1 | 0.4469 | 0.1472 | 0.2997 | 0.5566 | −0.3575 | −0.0464 | 0.1470 | |
x2 | 0.7838 | 1.0627 | −0.2789 | 0.0771 | −0.3709 | −0.0285 | 0.0434 | ||
x3 | 0.0327 | 0.7680 | −0.7354 | −0.0685 | −0.5133 | 0.0015 | −0.1551 | ||
x4 | −0.0020 | 0.1974 | −0.1994 | −0.0346 | −0.1534 | 0.0059 | −0.0173 | ||
x5 | −0.0329 | 0.2181 | −0.251 | 0.0992 | 0.2116 | −0.5461 | −0.0157 | ||
Total | x1 | 0.6200 | −0.0542 | 0.6742 | 1.0915 | −0.4284 | −0.0433 | 0.0544 | |
x2 | 0.8051 | 1.3757 | −0.5706 | −0.0430 | −0.4519 | −0.0431 | −0.0326 | ||
x3 | −0.1443 | 0.8006 | −0.9449 | 0.0290 | −0.7765 | −0.0639 | −0.1335 | ||
x4 | −0.1085 | 0.2519 | −0.3604 | 0.0093 | −0.2353 | −0.2031 | 0.0687 | ||
x5 | −0.1489 | 0.3036 | −0.4524 | −0.0097 | −0.1478 | −0.3519 | 0.0570 |
Treatments | Maximum Tillers m−2 | Panicles m−2 | Spikelets Per Panicle | Grain Filling (%) | Grain Weight (mg) | Grain Yield (kg ha−1) | |
---|---|---|---|---|---|---|---|
Year (Y) | 2018 | 279.0 a | 208.5 a | 65.6 a | 72.1 b | 27.7 a | 2513.1 a |
2019 | 268.8 a | 204.2 a | 60.2 b | 78.6 a | 27.4 b | 2406.6 b | |
2020 | 250.9 b | 182.2 b | 61.1 b | 67.5 c | 26.6 c | 1822.4 c | |
Genotype (G) | R 1015 | 247.2 b | 182.8 b | 66.5 a | 71.9 b | 26.8 b | 2180.2 b |
N 107 | 278.6 a | 211.2 a | 58.2 b | 73.6 a | 27.7 a | 2314.5 a | |
Location (L) | YD-NJ | 291.6 a | 224.1 a | 61.7 b | 70.5 c | 28.0 a | 2542.7 a |
DS-LZ | 228.4 d | 179.8 c | 61.2 b | 73.4 b | 27.1 c | 1967.6 c | |
FJ-LZ | 264.7 bc | 197.2 b | 60.1 b | 70.7 c | 27.6 b | 2198.4 b | |
TH-LZ | 251.0 c | 178.5 c | 64.8 a | 74.7 ab | 26.9 c | 2172.5 b | |
HZ-ZG | 268.2 bc | 199.0 b | 66.3 a | 75.6 a | 26.9 c | 2459.9 a | |
DG-YB | 273.6 ab | 203.2 b | 59.7 b | 71.5 c | 27.1 c | 2142.9 b | |
Fertilization (F) | CK | 158.2 d | 104.6 d | 61.0 b | 71.3 b | 27.3 a | 1053.5 d |
N0 | 201.0 c | 123.5 c | 62.4 ab | 72.9 a | 27.2 a | 1339.1 c | |
N60 | 310.0 b | 237.7 b | 63.2 a | 73.5 a | 27.1 a | 2779.8 b | |
N120 | 314.9 ab | 255.7 a | 63.2 a | 73.3 a | 27.4 a | 3042.1 a | |
N180 | 330.4 a | 263.4 a | 61.7 ab | 72.7 a | 27.2 a | 3022.1 a | |
F-value | Y | 11.0 ** | 36.4 ** | 66.2 ** | 551.6 ** | 96.6 ** | 343.1 ** |
L | 23.4 ** | 31.3 ** | 29.2 ** | 40.8 ** | 29.2 ** | 57.0 ** | |
G | 75.6 ** | 134.4 ** | 420.2 ** | 37.8 ** | 215.5 ** | 33.5 ** | |
F | 370.9 ** | 782.3 ** | 4.5 ** | 8.2 ** | 1.8 | 401.5** | |
Y × L | 18.1 ** | 15.4 ** | 13.8 ** | 41.6 ** | 24.0 ** | 24.8 ** | |
Y × G | 1.3 | 7.6 ** | 8.7 ** | 0.9 | 0.2 | 4.4 ** | |
Y × F | 0.7 | 3.5 ** | 2.2 * | 0.5 | 0.7 | 12.7 ** | |
L × G | 10.6 ** | 2.6 * | 3.7 ** | 6.1 ** | 1.8 | 3.7 ** | |
L × F | 4.6 ** | 4.5 ** | 1.3 | 1.3 | 1.3 | 5.7 ** | |
V × F | 4.8 ** | 10.5 ** | 1.3 | 0.6 | 0.5 | 7.1 ** | |
Y × L × G | 5.1 ** | 3.6 ** | 4.7 ** | 11.3 ** | 3.2 ** | 5.2 ** | |
Y × L × F | 2.8 ** | 1.8 * | 1.7 * | 1.9 * | 1.3 | 3.8 ** | |
Y × G × F | 0.7 | 1.3 | 0.6 | 2.1 | 0.6 | 1.1 | |
L × G × F | 1.2 | 1.1 | 1.2 | 1.6 | 1.6 | 0.9 |
Year | Traits | Correlation Coefficient | Direct Effect | Indirect Effect | |||||
---|---|---|---|---|---|---|---|---|---|
Total | →x1 | →x2 | →x3 | →x4 | →x5 | ||||
2018 | x1 | 0.8952 | −0.0097 | 0.9049 | 0.8908 | −0.0195 | 0.0262 | 0.0074 | |
x2 | 0.9372 | 0.9573 | −0.0201 | −0.0090 | −0.0379 | 0.0169 | 0.0099 | ||
x3 | 0.1651 | 0.2939 | −0.1288 | 0.0006 | −0.1233 | 0.0119 | −0.0180 | ||
x4 | 0.2907 | 0.0923 | 0.1985 | −0.0027 | 0.1751 | 0.0378 | −0.0117 | ||
x5 | 0.1102 | 0.0598 | 0.0505 | −0.0012 | 0.1585 | −0.0887 | −0.0181 | ||
2019 | x1 | 0.8888 | −0.0653 | 0.9541 | 1.0037 | −0.0677 | 0.0173 | 0.0008 | |
x2 | 0.9635 | 1.0717 | −0.1082 | −0.0612 | −0.0601 | 0.0093 | 0.0038 | ||
x3 | −0.0916 | 0.2221 | −0.3138 | 0.0199 | −0.2898 | −0.0096 | −0.0343 | ||
x4 | 0.1592 | 0.0647 | 0.0946 | −0.0175 | 0.1535 | −0.0329 | −0.0085 | ||
x5 | −0.0006 | 0.0644 | −0.0651 | −0.0008 | 0.0625 | −0.1182 | −0.0086 | ||
2020 | x1 | 0.8415 | −0.0329 | 0.8743 | 0.8730 | −0.0191 | 0.0084 | 0.0120 | |
x2 | 0.9583 | 0.9655 | −0.0073 | −0.0298 | −0.0054 | 0.0198 | 0.0081 | ||
x3 | 0.1631 | 0.1995 | −0.0364 | 0.0031 | −0.0259 | 0.0244 | −0.0380 | ||
x4 | 0.2881 | 0.1622 | 0.1258 | −0.0017 | 0.1179 | 0.0300 | −0.0204 | ||
x5 | −0.0035 | 0.0574 | −0.061 | −0.0069 | 0.1356 | −0.1321 | −0.0576 | ||
Total | x1 | 0.8530 | −0.0368 | 0.8898 | 0.8854 | −0.0345 | 0.0272 | 0.0117 | |
x2 | 0.9377 | 0.9636 | −0.0259 | −0.0338 | −0.0334 | 0.0272 | 0.0141 | ||
x3 | 0.1209 | 0.2661 | −0.1451 | 0.0048 | −0.1210 | −0.0044 | −0.0245 | ||
x4 | 0.3148 | 0.1563 | 0.1585 | −0.0064 | 0.1677 | −0.0075 | 0.0047 | ||
x5 | 0.1711 | 0.0846 | 0.0865 | −0.0051 | 0.1602 | −0.0772 | 0.0086 |
Genotype | Location | TPN | SPAD | ||||
---|---|---|---|---|---|---|---|
2018 | 2019 | 2020 | 2018 | 2019 | 2020 | ||
R 1015 | YD-NJ | 1.72 a | 1.35 ab | 1.28 a | 44.14 a | 42.25 ab | 40.42 b |
DS-LZ | 1.30 c | 1.35 ab | 1.07 b | 36.38 d | 41.72 b | 38.07 c | |
FJ-LZ | 1.34 c | 1.22 bc | 0.86 c | 38.07 c | 36.43 c | 33.30 d | |
TH-LZ | 1.48 b | 1.17 c | 1.26 a | 41.30 b | 35.41 d | 40.92 ab | |
HZ-ZG | 1.68 a | 1.36 ab | 1.24 a | 43.88 a | 42.53 ab | 41.45 a | |
DG-YB | 1.73 a | 1.42 a | 1.02 b | 44.74 a | 42.87 a | 37.67 c | |
N 107 | YD-NJ | 1.59 ab | 1.45 ab | 1.30 a | 40.60 b | 43.70 a | 41.06 b |
DS-LZ | 1.26 c | 1.32 b | 1.17 bc | 35.25 d | 39.31 b | 39.21 c | |
FJ-LZ | 1.35 bc | 1.06 c | 0.92 d | 36.97 c | 35.03 c | 34.32 e | |
TH-LZ | 1.45 b | 1.14 c | 1.27 ab | 38.60 b | 35.08 c | 42.09 a | |
HZ-ZG | 1.47 ab | 1.51 a | 1.29 ab | 39.79 b | 43.26 a | 40.93 b | |
DG-YB | 1.62 a | 1.39 ab | 1.05 c | 42.52 a | 39.28 b | 36.88 d |
Year | Genotype | Fertilization (kg ha−1) | Grain Yield of Ratoon Rice (kg ha−1) | |||||
---|---|---|---|---|---|---|---|---|
YD-NJ | DS-LZ | FJ-LZ | TH-LZ | HZ-ZG | DG-YB | |||
2018 | R 1015 | CK | 1274.1 c | 901.7 d | 1082.1 c | 1120.3 b | 1157.6 c | 1469.4 b |
N0 | 2030.3 b | 1241.0 c | 1288.0 c | 1490.6 b | 1542.3 b | 1521.0 b | ||
N60 | 3568.5 a | 2319.5 b | 2439.4 b | 2709.5 a | 3460.5 a | 3013.0 a | ||
N120 | 3566.1 a | 2836.4 a | 3609.2 a | 2988.5 a | 3959.6 a | 3015.9 a | ||
N180 | 3542.3 a | 2813.6 a | 3614.7 a | 3151.6 a | 3876.5 a | 2800.2 a | ||
HN-GBF | 60 | 120 | 120 | 60 | 60 | 60 | ||
N 107 | CK | 1419.2 c | 966.9 c | 1199.6 c | 1150.8 d | 1139.4 c | 1584.0 b | |
N0 | 2339.9 b | 1211.2 c | 1429.1 c | 1686.5 c | 1560.2 b | 1622.7 b | ||
N60 | 4740.3 a | 2292.1 b | 2629.5 b | 2949.1 ab | 3428.5 a | 3111.6 a | ||
N120 | 4494.7 a | 2906.8 a | 3667.8 a | 3166.7 a | 3425.8 a | 3166.4 a | ||
N180 | 4463.4 a | 2854.6 a | 3884.0 a | 3210.5 a | 3488.3 a | 3191.4 a | ||
HN-GBF | 60 | 120 | 120 | 60 | 60 | 60 | ||
2019 | R 1015 | CK | 990.5 b | 1161.5 b | 1325.2 d | 1175.1 c | 1387.5 b | 1389.6 b |
N0 | 1477.5 b | 1389.4 b | 1656.2 c | 1358.7 c | 1582.5 b | 1429.1 b | ||
N60 | 3261.8 a | 2782.1 a | 2543.8 b | 2298.9 b | 3025.5 a | 2831.6 a | ||
N120 | 3567.0 a | 3100.8 a | 2966.3 a | 2649.2 ab | 3024.5 a | 3093.7 a | ||
N180 | 3616.8 a | 3072.6 a | 2844.6 a | 2682.5 a | 2984.5 a | 3140.0 a | ||
HN-GBF | 60 | 60 | 120 | 120 | 60 | 60 | ||
N 107 | CK | 1020.1 b | 1210.4 b | 1224.5 c | 1160.8 c | 1319.5 c | 921.6 c | |
N0 | 1227.0 b | 1422.3 b | 1526.0 c | 1384.9 c | 1652.5 b | 1385.1 b | ||
N60 | 3357.2 a | 3025.6 a | 3380.1 b | 2362.9 b | 3209.5 a | 3421.2 a | ||
N120 | 3633.4 a | 3158.0 a | 3873.9 a | 2753.6 a | 3432.5 a | 3546.5 a | ||
N180 | 3489.9 a | 3097.9 a | 3798.6 a | 2805.3 a | 3312.5 a | 3572.7 a | ||
HN-GBF | 60 | 60 | 120 | 120 | 60 | 60 | ||
2020 | R 1015 | CK | 997.6 b | 754.5 d | 754.5 c | 842.8 b | 1028.8 c | 865.8 c |
N0 | 1118.2 b | 967.9 c | 967.9 c | 908.4 b | 1356.5 b | 980.4 c | ||
N60 | 2396.1 a | 1662.8 b | 1662.8 b | 2577.0 a | 2949.6 a | 2092.5 b | ||
N120 | 2506.4 a | 2087.9 a | 2087.9 a | 2641.3 a | 3058.5 a | 2352.5 a | ||
N180 | 2549.8 a | 2030.4 a | 2030.4 a | 2655.2 a | 2935.2 a | 2372.5 a | ||
HN--GBF | 60 | 120 | 120 | 60 | 60 | 120 | ||
N 107 | CK | 873.4 c | 705.2 d | 705.2 d | 845.4 b | 1036.1 c | 767.5 c | |
N0 | 1067.4 b | 982.8 c | 982.8 c | 910.4 b | 1380.5 b | 887.5 c | ||
N60 | 2579.9 a | 1802.6 b | 1802.6 b | 2842.7 a | 3074.2 a | 1847.5 b | ||
N120 | 2576.5 a | 2171.2 a | 2171.2 a | 2844.2 a | 3032.3 a | 2540 a | ||
N180 | 2536.6 a | 2097.3 a | 2097.3 a | 2750.5 a | 2975.7 a | 2555 a | ||
HN-GBF | 60 | 120 | 120 | 60 | 60 | 120 |
Year | Genotype | TSN | SAN | TPN | SPAD | n |
---|---|---|---|---|---|---|
2018 | R 1015 | −0.9029 ** | −0.9217 ** | −0.8825 * | −0.9291 ** | 6 |
N 107 | −0.9029 ** | −0.9217 ** | −0.8535 * | −0.8463 * | 6 | |
Total | −0.9029 ** | −0.9217 ** | −0.8270 ** | −0.8101 ** | 12 | |
2019 | R 1015 | −0.8801 * | −0.8588 * | −0.9475 ** | −0.9890 ** | 6 |
N 107 | −0.8801 * | −0.8588 * | −0.9238 ** | −0.8673 * | 6 | |
Total | −0.8801 ** | −0.8588 ** | −0.8926 ** | −0.9138 ** | 12 | |
2020 | R 1015 | −0.9342 ** | −0.9130 ** | −0.9066 ** | −0.8273 * | 6 |
N 107 | −0.9342 ** | −0.9130 ** | −0.8552 * | −0.8422 * | 6 | |
Total | −0.9342 ** | −0.9130 ** | −0.8710 ** | −0.8319 ** | 12 | |
Total | R 1015 | −0.8755 * | −0.8631 ** | −0.6581 ** | −0.8943 ** | 18 |
N 107 | −0.8755 * | −0.8631 ** | −0.7547 ** | −0.8310 ** | 18 | |
Total | −0.8755 ** | −0.8631 ** | −0.6985 ** | −0.8521 ** | 36 |
Traits (x) | Regression Equation | r | R Square | n |
---|---|---|---|---|
TSN | y = 231.07 − 936.66x | −0.8755 ** | 0.7666 | 36 |
SAN | y = 169.45 − 0.5687x | −0.8631 ** | 0.7450 | 36 |
TPN | y = 214.00 − 99.117x | −0.6985 ** | 0.4879 | 36 |
SPAD | y =402.22 − 8.0538x | −0.8521 ** | 0.7261 | 36 |
Genotype | Year | Regression Equation | F | R Square | Partial Correlation | t |
---|---|---|---|---|---|---|
R 1015 | 2018 | y = 421.05 − 8.23x4 | 25.24 ** | 0.8632 | r(y,x4) = −0.93 | 5.02 ** |
2019 | y = 447.36 − 9.14x4 | 178.90 ** | 0.9781 | r(y,x4) = −0.99 | 13.38 ** | |
2020 | y = 266.84 − 734.09x1 − 0.42x2 | 37.76 ** | 0.9618 | r(y,x1) = −0.88 | 3.17 * | |
r(y,x2) = −0.84 | 2.64 * | |||||
Total | y = 354.46 − 475.82x1 − 4.89x4 | 50.66 ** | 0.8710 | r(y,x1) = −0.60 | 2.88 ** | |
r(y,x4) = −0.67 | 3.49 ** | |||||
N 107 | 2018 | y = 180.13 − 0.65x2 | 15.44 * | 0.8373 | r(y,x2) = −0.92 | 3.93 * |
2019 | y = 291.55 − 161.29x3 | 23.30 ** | 0.8535 | r(y,x3) = −0.92 | 4.83 ** | |
2020 | y = 259.84 − 729.11x1 − 0.42x2 | 35.36 ** | 0.9413 | r(y,x1) = −0.87 | 3.26 * | |
r(y,x2) = −0.83 | 2.53 * | |||||
Total | y = 348.83 − 616.02x1 − 4.30x4 | 44.78 ** | 0.8565 | r(y,x1) = −0.73 | 4.17 ** | |
r(y,x4) = −0.62 | 3.07 ** | |||||
Total | 2018 | y = 181.24 − 0.66x2 | 56.50 ** | 0.8496 | r(y,x2) = −0.92 | 7.52 ** |
2019 | y = 343.17 − 415.26x1 − 5.03x4 | 36.26 ** | 0.8896 | r(y,x1) = −0.57 | 2.31 * | |
r(y,x4) = −0.71 | 3.06 ** | |||||
2020 | y = 266.84 − 734.09x1 − 0.42x2 | 113.28 ** | 0.9618 | r(y,x1) = −0.88 | 5.50 ** | |
r(y,x2) = −0.84 | 4.58 ** | |||||
Total | y = 342.65 − 578.66x1 − 4.24x4 | 98.28 ** | 0.8562 | r(y,x1) = −0.69 | 5.47 ** | |
r(y,x4) = −0.62 | 4.54 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, F.; Yuan, C.; Han, D.; Xie, R.; Zhou, X.; Jiang, P.; Guo, X.; Xiong, H.; Zhang, L.; Guo, C. Effects of Grain Sprout Fertilizer Application Rate on Yield and Its Composition of Hybrid Middle Rice–Ratoon Rice System. Agronomy 2024, 14, 1065. https://doi.org/10.3390/agronomy14051065
Xu F, Yuan C, Han D, Xie R, Zhou X, Jiang P, Guo X, Xiong H, Zhang L, Guo C. Effects of Grain Sprout Fertilizer Application Rate on Yield and Its Composition of Hybrid Middle Rice–Ratoon Rice System. Agronomy. 2024; 14(5):1065. https://doi.org/10.3390/agronomy14051065
Chicago/Turabian StyleXu, Fuxian, Chi Yuan, Dong Han, Rong Xie, Xingbing Zhou, Peng Jiang, Xiaoyi Guo, Hong Xiong, Lin Zhang, and Changchun Guo. 2024. "Effects of Grain Sprout Fertilizer Application Rate on Yield and Its Composition of Hybrid Middle Rice–Ratoon Rice System" Agronomy 14, no. 5: 1065. https://doi.org/10.3390/agronomy14051065
APA StyleXu, F., Yuan, C., Han, D., Xie, R., Zhou, X., Jiang, P., Guo, X., Xiong, H., Zhang, L., & Guo, C. (2024). Effects of Grain Sprout Fertilizer Application Rate on Yield and Its Composition of Hybrid Middle Rice–Ratoon Rice System. Agronomy, 14(5), 1065. https://doi.org/10.3390/agronomy14051065