Herbicidal Activity of Cinmethylin against Grass Weeds and Its Safety for Use with Different Wheat Varieties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Herbicides
2.3. Efficacy of Cinmethylin for Controlling Grass Weeds
2.4. Selectivity of Cinmethylin to Wheat
2.5. Plant Assessments
2.6. Statistical Analysis
3. Results
3.1. Efficacy of the Herbicide Cinmethylin in the Control of Grass Weeds
3.2. Selectivity of Cinmethylin to Wheat
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kaur, P.; Sachan, S.; Sharma, A. Weed competitive ability in wheat: A peek through in its functional significance, present status and future prospects. Physiol. Mol. Biol. Plants 2021, 27, 2165–2179. [Google Scholar] [CrossRef] [PubMed]
- Powles, S. Global herbicide resistance challenge. Pest Manag. Sci. 2014, 70, 1305. [Google Scholar] [CrossRef] [PubMed]
- Délye, C.; Jasieniuk, M.; Le Corre, V. Deciphering the evolution of herbicide resistance in weeds. Trends Genet. 2013, 29, 649–658. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.L.; Jin, L. Lab screening of the mixture of diflufenican and isoproturon and the field effect study on annual weeds in winter wheat field. World Pestic. 2021, 43, 44–48. [Google Scholar] [CrossRef]
- Kraehmer, H.; Laber, B.; Rosinger, C.; Schulz, A. Herbicides as weed control agents: State of the art: I. Weed control research and safener technology: The path to modern agriculture. Plant Physiol. 2014, 166, 1119–1131. [Google Scholar] [CrossRef] [PubMed]
- Powles, S.B.; Yu, Q. Evolution in action: Plants resistant to herbicides. Annu. Rev. Plant Biol. 2010, 61, 317–347. [Google Scholar] [CrossRef] [PubMed]
- Rey-Caballero, J.; Menéndez, J.; Osuna, M.D.; Salas, M.; Torra, J. Target-site and non-target-site resistance mechanisms to ALS inhibiting herbicides in Papaver rhoeas. Pestic. Biochem. Physiol. 2017, 138, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.L.; Su, W.C.; Leng, Q.L.; Xue, F.; Sun, L.L.; Wu, R.H. Herbicidal activity and safety evaluation of pyroxasulfone against corn fields weeds. J. Maize Sci. 2021, 29, 157–163. [Google Scholar] [CrossRef]
- Zhu, J.W.; Wang, J.; DiTommaso, A.; Zhang, C.X.; Zheng, G.P.; Liang, W.; Islam, F.; Yang, C.; Chen, X.X.; Zhou, W.J. Weed research status, challenges, and opportunities in China. Crop Prot. 2020, 134, 104449. [Google Scholar] [CrossRef]
- Pan, L.; Guo, Q.S.; Wang, J.Z.; Shi, L.; Yang, X.; Zhou, Y.Y.; Yu, Q.; Bai, L.Y. CYP81A68 confers metabolic resistance to ALS and ACCase-inhibiting herbicides and its epigenetic regulation in Echinochloa crus-galli. J. Hazard. Mater. 2022, 428, 128225. [Google Scholar] [CrossRef]
- Nakka, S.; Jugulam, M.; Peterson, D.; Asif, M. Herbicide resistance: Development of wheat production systems and current status of resistant weeds in wheat cropping systems. Crop J. 2019, 7, 750–760. [Google Scholar] [CrossRef]
- Heap, I. The International Herbicide-Resistant Weed Database. Available online: http://www.weedscience.org (accessed on 3 March 2024).
- Zhang, P.; Wu, H.; Xu, H.L.; Gao, Y.; Zhang, W.; Dong, L.Y. Mechanism of fenoxaprop-p-ethyl resistance in Italian Ryegrass (Lolium perenne ssp. multiflorum) from China. Weed Sci. 2017, 65, 710–717. [Google Scholar] [CrossRef]
- Bi, Y.L.; Liu, W.T.; Guo, W.L.; Li, L.X.; Yuan, G.H.; Du, L.; Wang, J.X. Molecular basis of multiple resistance to ACCase- and ALS-inhibiting herbicides in Alopecurus japonicus from China. Pestic. Biochem. Physiol. 2016, 126, 22–27. [Google Scholar] [CrossRef] [PubMed]
- Somerville, G.J.; Powles, S.B.; Walsh, M.J.; Renton, M. Why was resistance to shorter-acting pre-emergence herbicides slower to evolve? Pest Manag. Sci. 2017, 73, 844–851. [Google Scholar] [CrossRef]
- China Pesticide Information Network. Available online: http://www.icama.cn/BasicdataSystem/pesticideRegistration/tagview.do?pdno=PD20085971 (accessed on 11 July 2023).
- Gao, X.X.; Li, J.Y.; Li, M.; Fang, F.; Li, J.; Qi, J.S. Weed control effect of diflufenican and its safty to wheat in glasshouses. J. Plant Prot. 2016, 43, 329–335. [Google Scholar] [CrossRef]
- Ji, Z.M.; Ren, R.R.; Shen, Y.S.; Zhu, L.; Yin, M.; Li, Y.F.; Sun, K.Z. Effects of pretilachlor on the germination and seedling growth of four wheat varieties commonly planted in Coastal Areas. Barley Cereal Sci. 2022, 39, 54–57+71. [Google Scholar] [CrossRef]
- Yin, X.L.; Jiang, L.; Song, N.H.; Yang, H. Toxic reactivity of wheat (Triticum aestivum) plants to herbicide isoproturon. J. Agric. Food. Chem. 2008, 56, 4825–4831. [Google Scholar] [CrossRef] [PubMed]
- Campe, R.; Hollenbach, E.; Kämmerer, L.; Hendriks, J.; Höffken, H.W.; Kraus, H.; Lerchl, J.; Mietzner, T.; Tresch, S.; Witschel, M.; et al. A new herbicidal site of action: Cinmethylin binds to acyl-ACP thioesterase and inhibits plant fatty acid biosynthesis. Pestic. Biochem. Physiol. 2018, 148, 116–125. [Google Scholar] [CrossRef] [PubMed]
- Dayan, F.E. Current status and future prospects in herbicide discovery. Plants 2019, 8, 341. [Google Scholar] [CrossRef]
- Miriam, H.M.; Linn, A.I.; Mathes, A.; Sievernich, B.; Gerhards, R. Development of an agar bioassay sensitivity test in Alopecurus myosuroides for the pre-emergence herbicides cinmethylin and flufenacet. Agronomy 2021, 11, 1408. [Google Scholar] [CrossRef]
- Australian Pesticides and Veterinary Medicines Authority (APVMA). Available online: https://apvma.gov.au/ (accessed on 16 October 2022).
- Busi, R.; Beckie, H.J.; Bates, A.; Boyes, T.; Davey, C.; Haskins, B.; Mock, S.; Newman, P.; Porri, A.; Onofri, A. Herbicide resistance across the Australian continent. Pest Manag. Sci. 2021, 77, 5139–5148. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.D.; Chen, G.; Li, L.; Wang, J.; Wang, M.R. Weeds control effects of wettable mixed powder of 10% cinmethylin and bensulfuron-methyl in seedling-throwing transplanted rice fields. Hubei Agric. Sci. 2011, 50, 3074–3077. [Google Scholar] [CrossRef]
- Busi, R.; Dayan, F.E.; Francis, I.; Goggin, D.; Lerchl, J.; Porri, A.; Powles, S.B.; Suna, C.; Beckie, H.J. Cinmethylin controls multiple-herbicide resistant Lolium rigidum and its wheat selectivity is P450-based. Pest Manag. Sci. 2020, 76, 2601–2608. [Google Scholar] [CrossRef]
- Messelhäuser, M.H.; Saile, M.; Sievernich, B.; Gerhards, R. Effect of cinmethylin against Alopecurus myosuroides Huds. in winter cereals. Plant Soil Environ. 2021, 67, 46–54. [Google Scholar] [CrossRef]
- Li, T.; Yuan, G.H.; Qian, Z.G.; Yang, W.P.; Fan, J.Q. Evaluation of biological of 7 post-emergence herbicides against Beckmannia syzigachne and their safety to wheat. Plant Prot. 2022, 48, 303–308. [Google Scholar] [CrossRef]
- Hu, J.C.; Tang, L.; Liu, X.J.; Cao, W.X.; Zhu, Y. Estimation method and parameter analysis on root length in wheat. Trans. CSAE 2011, 27, 112–117. [Google Scholar] [CrossRef]
- Seefeldt, S.S.; Jensen, J.E.; Fuerst, E.P. Log-logistic analysis of herbicide dose-response relationships. Weed Technol. 1995, 9, 218–227. [Google Scholar] [CrossRef]
- Boutsalis, P.; Gill, G.S.; Preston, C. Control of Rigid ryegrass in Australian wheat production with pyroxasulfone. Weed Technol. 2014, 28, 332–339. [Google Scholar] [CrossRef]
- Yamaji, Y.; Honda, H.; Hanai, R.; Inoue, J. Soil and environmental factors affecting the efficacy of pyroxasulfone for weed control. J. Pestic. Sci. 2016, 41, 1–5. [Google Scholar] [CrossRef]
- Kasahara, T.; Takeuchi, T.; Koyama, K.; Kuzuma, S. Effects of environmental factors on the herbicidal activity and phytotoxicity of ipfencarbazone. J. Pestic. Sci. 2018, 43, 255–260. [Google Scholar] [CrossRef]
- Khalil, Y.; Flower, K.; Siddique, K.H.M.; Ward, P. Effect of crop residues on interception and activity of prosulfocarb, pyroxasulfone, and trifluralin. PLoS ONE 2018, 13, e0208274. [Google Scholar] [CrossRef] [PubMed]
- Goggin, D.E.; Cawthray, G.R.; Busi, R.; Porri, A.; Beckie, H.J. Enhanced production of water-soluble cinmethylin metabolites by Lolium rigidum populations with reduced cinmethylin sensitivity. Pest Manag. Sci. 2022, 78, 3173–3182. [Google Scholar] [CrossRef] [PubMed]
- Cao, R.; Xu, H.L.; Liu, Q.; Gao, J.X.; Luo, J.X.; Yang, S.J.; Leng, Q.L.; Wu, R.H. The control technology of Lolium multiflorum with the herbicide-mixture of pyroxasulfone and diflufenican. Agrochemicals 2022, 61, 693–697. [Google Scholar] [CrossRef]
- Zhao, G.C. Study on Chinese wheat planting regionalization (I). J. Triticeae Crops 2010, 30, 886–895. [Google Scholar]
- Li, M.; Lu, C.T.; Zhang, Y.J.; Shi, S.Y. Illustrated Book of Weed Control in Wheat Fields of China; Henan Science and Technology Press: Zhengzhou, China, 2018; pp. 37–74. [Google Scholar]
- National Bureau of Statistics. China Statistical Yearbook-2021. Available online: http://www.stats.gov.cn/tjsj/ndsj/2021/indexch.htm (accessed on 15 July 2023).
- Gao, X.X.; Li, M.; Fang, F.; Li, J. Species composition and characterization of weed community in winter wheat fields in Henan province. J. Triticeae Crops 2016, 36, 1402–1408. [Google Scholar] [CrossRef]
- Zhao, N.; Li, W.; Bai, S.; Guo, W.L.; Yuan, G.H.; Wang, F.; Liu, W.T.; Wang, J.X. Transcriptome profiling to identify genes involved in mesosulfuron-methyl resistance in Alopecurus aequalis. Front. Plant Sci. 2017, 8, 1391. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.L.; Zhu, X.D.; Wang, H.C.; Li, J.; Dong, L.Y. Mechanism of resistance to fenoxaprop in Japanese foxtail (Alopecurus japonicus) from China. Pestic. Biochem. Physiol. 2013, 107, 25–31. [Google Scholar] [CrossRef] [PubMed]
- Duhieu, B.; Boucansaud, K.; Délye, C. Complex genetic control of non-target-site-based resistance to herbicides inhibiting acetyl-coenzyme a carboxylase and acetolactate-synthase in Alopecurus myosuroides Huds. Plant Sci. 2010, 178, 501–509. [Google Scholar] [CrossRef]
- Marshall, R.; Hanley, S.J.; Hull, R.; Moss, S.R. The presence of two different target-site resistance mechanisms in individual plants of Alopecurus myosuroides Huds., identified using a quick molecular test for the characterisation of six ALS and seven ACCase SNPs. Pest Manag. Sci. 2013, 69, 727–737. [Google Scholar] [CrossRef]
- Gao, X.X.; Li, M.; Fang, F.; Zhang, Y.L.; Qi, J.S. Biological activities of eight herbicides against four grass weeds of wheat fields. Acta Pratacult. Sincia 2014, 23, 349–354. [Google Scholar] [CrossRef]
- Elattar, H.; Dahroug, S.; El-Sayed, W.; Hashiesh, R. phytotoxicity and effectiveness of some herbicides in wheat plantations. Arab Univ. J. Agric. Sci. 2018, 26, 1639–1657. [Google Scholar] [CrossRef]
- Zhang, J.J.; Wang, Y.K.; Zhou, J.H.; Xie, F.; Guo, Q.N.; Lu, F.F.; Jin, S.F.; Zhu, H.M.; Yang, H. Reduced phytotoxicity of propazine on wheat, maize and rapeseed by salicylic acid. Ecotox. Environ. Saf. 2018, 162, 42–50. [Google Scholar] [CrossRef] [PubMed]
- Rharrabti, Y.; Villegas, D.; Royo, C.; Martos-Núñez, V.; Del Moral, L.G. Durum wheat quality in mediterranean environments: II. Influence of climatic variables and relationships between quality parameters. Field Crops Res. 2003, 80, 133–140. [Google Scholar] [CrossRef]
- Robinson, M.A.; Letarte, J.; Cowbrough, M.J.; Sikkema, P.H.; Tardif, F.J. Winter wheat (Triticum aestivum L.) response to herbicides as affected by application timing and temperature. Can. J. Plant Sci. 2015, 95, 325–333. [Google Scholar] [CrossRef]
- Piesik, D.; Łyszczarz, A.; Tabaka, P.; Lamparski, R.; Bocianowski, J.; Delaney, K. Volatile induction of three cereals: Influence of mechanical injury and insect herbivory on injured plants and neighbouring uninjured plants. Ann. Appl. Biol. 2010, 157, 425–434. [Google Scholar] [CrossRef]
Weeds | Location | Longitude and Latitude | ||
---|---|---|---|---|
Province | City | County/District | ||
Helictotrichon tibeticum | Henan | Jiaozuo | Qinyang | 112°50′ E, 35°1′ N |
Avena fatua | Henan | Jiaozuo | Qinyang | 112°51′ E, 35°4′ N |
Poa annua | Henan | Kaifeng | Xiangfu | 114°31′ E, 34°48′ N |
Alopecurus myosuroides | Henan | Pingdingshan | Wugang | 113°36′ E, 33°26′ N |
Phleum paniculatum | Henan | Shangqiu | Sui | 115°8′ E, 34°16′ N |
Aegilops tauschii | Henan | Shangqiu | Yucheng | 115°50′ E, 34°18′ N |
Alopecurus japonicus | Henan | Xinyang | Luoshan | 114°30′ E, 32°12′ N |
Alopecurus aequalis | Henan | Xinyang | Pingqiao | 114°18′ E, 32°21′ N |
Polypogon fugax | Henan | Xinxiang | Yuanyang | 113°41′ E, 35°00′ N |
Lolium multiflorum | Henan | Zhumadian | Yicheng | 113°58′ E, 32°51′ N |
Bromus japonicus | Henan | Zhumadian | Zhengyang | 114°17′ E, 32°37′ N |
Weeds | GR50 (g a.i. ha−1) (95% CL) a | ||
---|---|---|---|
Plant Height | Fresh Weight | Plant Survival | |
Poa annua | 5.93 (1.51–23.21) | 4.69 (1.10–20.13) | 5.89 (1.52–22.79) |
Alopecurus aequalis | 4.50 (−0.02–1.33) | 3.10 (0.52–19.85) | 5.44 (1.35–21.83) |
Alopecurus myosuroides | 9.71 (5.50–17.15) | 9.34 (4.82–18.11) | 26.92 (15.18–47.73) |
Alopecurus japonicus | 11.13 (5.31–23.35) | 1.43 (1.21–1.66) | 32.97 (24.77–43.88) |
Lolium multiflorum | 14.04 (6.17–31.96) | 10.96 (4.41–27.26) | 55.62 (34.52–89.61) |
Phleum paniculatum | 14.74 (7.62–28.55) | 11.19 (5.75–21.76) | 11.60 (5.68–23.68) |
Polypogon fugax | 15.21 (8.28–27.95) | 4.08 (0.88–19.03) | 27.57 (17.40–43.70) |
Helictotrichon tibeticum | 68.15 (52.51–88.44) | 40.59 (32.61–50.52) | >200 |
Avena fatua | 99.21 (78.20–125.85) | 70.34 (61.30–80.72) | >200 |
Bromus japonicus | >200 | 80.44 (43.50–148.75) | >200 |
Aegilops tauschii | >200 | >200 | >200 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, H.; Leng, Q.; Su, W.; Sun, L.; Cheng, J.; Wu, R. Herbicidal Activity of Cinmethylin against Grass Weeds and Its Safety for Use with Different Wheat Varieties. Agronomy 2024, 14, 885. https://doi.org/10.3390/agronomy14050885
Xu H, Leng Q, Su W, Sun L, Cheng J, Wu R. Herbicidal Activity of Cinmethylin against Grass Weeds and Its Safety for Use with Different Wheat Varieties. Agronomy. 2024; 14(5):885. https://doi.org/10.3390/agronomy14050885
Chicago/Turabian StyleXu, Hongle, Qiuli Leng, Wangcang Su, Lanlan Sun, Jingping Cheng, and Renhai Wu. 2024. "Herbicidal Activity of Cinmethylin against Grass Weeds and Its Safety for Use with Different Wheat Varieties" Agronomy 14, no. 5: 885. https://doi.org/10.3390/agronomy14050885
APA StyleXu, H., Leng, Q., Su, W., Sun, L., Cheng, J., & Wu, R. (2024). Herbicidal Activity of Cinmethylin against Grass Weeds and Its Safety for Use with Different Wheat Varieties. Agronomy, 14(5), 885. https://doi.org/10.3390/agronomy14050885