Soybean CEP6 Signaling Peptides Positively Regulate Nodulation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Identification and Bioinformatic Analysis of GmCEP Genes
2.2. Plant Materials and Growth Conditions
2.3. Vector Construction
2.4. RNA Extraction and Expression Analysis
2.5. Histochemical Analysis of GmCEP6 Expression
2.6. Statistical Analysis
3. Results
3.1. Identification and Physicochemical Properties of the Soybean CEP Family Gene
3.2. Phylogenetic Analysis of CEPs in Soybeans
3.3. Digital Expression Pattern of CEPs in Soybeans
3.4. GmCEP6 Is Preferentially Expressed in Soybean Nodules
3.5. GmCEP6 Plays a Key Role in Soybean Nodulation
3.6. GmCEP6 Affects the Expression of Related Genes in Nodulation Signal Pathway
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kim, D.G.; Isaac, M.E. Nitrogen dynamics in agroforestry systems. A review. Agron. Sustain. Dev. 2022, 42, 60. [Google Scholar] [CrossRef]
- Terpolilli, J.J.; Hood, G.A.; Poole, P.S. Chapter 5. What Determines the Efficiency of N2-Fixing Rhizobium-Legume Symbioses. Adv. Microb. Physiol. 2012, 60, 325–389. [Google Scholar] [CrossRef]
- Herridge, D.F.; Peoples, M.B.; Boddey, R.M. Global inputs of biological nitrogen fixation in agricultural systems. Plant Soil 2008, 311, 1–18. [Google Scholar] [CrossRef]
- Gopalakrishnan, S.; Sathya, A.; Vijayabharathi, R.; Varshney, R.K.; Gowda, C.L.; Krishnamurthy, L. Plant growth promoting rhizobia: Challenges and opportunities. 3 Biotech 2015, 5, 355–377. [Google Scholar] [CrossRef]
- Murray, J.D.; Liu, C.-W.; Chen, Y.; Miller, A.J. Nitrogen sensing in legumes. J. Exp. Bot. 2016, 68, 1919–1926. [Google Scholar] [CrossRef]
- Tabata, R.; Sumida, K.; Yoshii, T.; Ohyama, K.; Shinohara, H.; Matsubayashi, Y. Perception of root-derived peptides by shoot LRR-RKs mediates systemic N-demand signaling. Science 2014, 346, 343–346. [Google Scholar] [CrossRef]
- Taleski, M.; Imin, N.; Djordjevic, M.A. CEP peptide hormones: Key players in orchestrating nitrogen-demand signalling, root nodulation, and lateral root development. J. Exp. Bot. 2018, 69, 1829–1836. [Google Scholar] [CrossRef]
- Roberts, I.; Smith, S.; Stes, E.; De Rybel, B.; Staes, A.; van de Cotte, B.; Njo, M.F.; Dedeyne, L.; Demol, H.; Lavenus, J.; et al. CEP5 and XIP1/CEPR1 regulate lateral root initiation in Arabidopsis. J. Exp. Bot. 2016, 67, 4889–4899. [Google Scholar] [CrossRef]
- Ogilvie, H.A.; Imin, N.; Djordjevic, M.A. Diversification of the C-TERMINALLY ENCODED PEPTIDE (CEP) gene family in angiosperms, and evolution of plant-family specific CEP genes. BMC Genom. 2014, 15, 870. [Google Scholar] [CrossRef]
- Roberts, I.; Smith, S.; De Rybel, B.; Broeke, J.V.D.; Smet, W.; De Cokere, S.; Mispelaere, M.; De Smet, I.; Beeckman, T. The CEP family in land plants: Evolutionary analyses, expression studies, and role in Arabidopsis shoot development. J. Exp. Bot. 2013, 64, 5371–5381. [Google Scholar] [CrossRef]
- Zhu, F.; Ye, Q.; Chen, H.; Dong, J.; Wang, T. Multigene editing reveals that MtCEP1/2/12 redundantly regulate lateral root and nodule number in Medicago truncatula. J. Exp. Bot. 2021, 72, 3661–3676. [Google Scholar] [CrossRef]
- Huala, E.; Dickerman, A.W.; Garcia-Hernandez, M.; Weems, D.; Reiser, L.; LaFond, F. The Arabidopsis Information Resource (TAIR): A comprehensive database and web-based information retrieval, analysis, and visualization system for a model plant. Nucleic Acids Res. 2001, 29, 102–105. [Google Scholar] [CrossRef]
- Goodstein, D.M.; Shu, S.; Howson, R.; Neupane, R.; Hayes, R.D.; Fazo, J.; Mitros, T. Phytozome: A comparative platform for green plant genomics. Nucleic Acids Res. 2012, 40, D1178–D1186. [Google Scholar] [CrossRef]
- Mitchell, A.L.; Attwood, T.K.; Babbitt, P.C.; Blum, M.; Bork, P.; Bridge, A.; Brown, S.D.; Chang, H.Y.; El-Gebali, S.; Fraser, M.I.; et al. InterPro in 2019: Improving coverage, classification and access to protein sequence annotations. Nucleic Acids Res. 2018, 47, D351–D360. [Google Scholar] [CrossRef]
- Gasteiger, E.; Gattiker, A.; Hoogland, C.; Ivanyi, I.; Appel, R.D.; Bairoch, A. ExPASy: The proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res. 2003, 31, 3784–3788. [Google Scholar] [CrossRef]
- Bailey, T.L.; Boden, M.; Buske, F.A.; Frith, M.; Grant, C.E.; Clementi, L.; Ren, J.; Li, W.W.; Noble, W.S. MEME SUITE: Tools for motif discovery and searching. Nucleic Acids Res. 2009, 37, w202–w208. [Google Scholar] [CrossRef]
- Edgar, R.C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004, 32, 1792–1797. [Google Scholar] [CrossRef]
- Imin, N.; Mohd-Radzman, N.A.; Ogilvie, H.A.; Djordjevic, M.A. The peptide-encoding CEP1 gene modulates lateral root and nodule numbers in Medicago truncatula. J. Exp. Bot. 2013, 64, 5395–5409. [Google Scholar] [CrossRef]
- Jian, B.; Liu, B.; Bi, Y.; Hou, W.; Wu, C.; Han, T. Validation of internal control for gene expression study in soybean by quantitative real-time PCR. BMC Mol. Biol. 2008, 9, 59. [Google Scholar] [CrossRef]
- Chen, C.J.; Chen, H.; Zhang, Y.; Thomas, H.R.; Frank, M.H.; He, Y.H.; Xia, R. TBtools: An Integrative Toolkit Developed for Interactive Analyses of Big Biological Data. Mol. Plant 2020, 13, 1194–1202. [Google Scholar] [CrossRef]
- Franssen, H.; Yang, W.C.; Katinakis, P.; Bisseling, T. Characterization of GmENOD40, a Gene Expressed in Soybean Nodule Primordia; Springer: Amsterdam, The Netherlands, 1993. [Google Scholar] [CrossRef]
- Wang, L.; Sun, Z.; Su, C.; Wang, Y.; Yan, Q.; Chen, J.; Ott, T.; Li, X. A GmNINa-miR172c-NNC1 Regulatory Network Coordinates the Nodulation and Autoregulation of Nodulation Pathways in Soybean. Mol. Plant 2019, 12, 1211–1226. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, L.; Wang, Y.; Li, X. The NMN Module Conducts Nodule Number Orchestra. iScience 2020, 23, 100825. [Google Scholar] [CrossRef]
- He, C.; Gao, H.; Wang, H.; Guo, Y.; He, M.; Peng, Y.; Wang, X. GSK3-mediated stress signaling inhibits legume-rhizobium symbiosis by phosphorylating GmNSP1 in soybean. Mol. Plant 2021, 14, 488–502. [Google Scholar] [CrossRef]
- Ohyama, K.; Ogawa, M.; Matsubayashi, Y. Identification of a biologically active, small, secreted peptide in Arabidopsis by in silico gene screening, followed by LC-MS-based structure analysis. Plant J. 2010, 55, 152–160. [Google Scholar] [CrossRef]
- Aggarwal, S.; Kumar, A.; Jain, M.; Sudan, J.; Singh, K.; Kumari, S.; Mustafiz, A. C-terminally encoded peptides (CEPs) are potential mediators of abiotic stress response in plants. Physiol. Mol. Biol. Plants 2020, 26, 2019–2033. [Google Scholar] [CrossRef]
- Taleski, M.; Chapman, K.; Novák, O.; Schmülling, T.; Frank, M.; Djordjevic, M.A. CEP peptide and cytokinin pathways converge on CEPD glutaredoxins to inhibit root growth. Nat. Commun. 2023, 14, 1683. [Google Scholar] [CrossRef]
- Krusell, L.; Madsen, L.H.; Sato, S.; Aubert, G.; Genua, A.; Szczyglowski, K.; Duc, G.; Kaneko, T.; Tabata, S.; de Bruijn, F.; et al. Shoot control of root development and nodulation is mediated by a receptor-like kinase. Nature 2002, 420, 422–426. [Google Scholar] [CrossRef]
- Okamoto, S.; Kawaguchi, M. Shoot HAR1 mediates nitrate inhibition of nodulation in Lotus japonicus. Plant Signal. Behav. 2015, 10, e1000138. [Google Scholar] [CrossRef]
- Soyano, T.; Hirakawa, H.; Sato, S.; Hayashi, M.; Kawaguchi, M. NODULE INCEPTION creates a long-distance negative feedback loop involved in homeostatic regulation of nodule organ production. Proc. Natl. Acad. Sci. USA 2014, 111, 14607–14612. [Google Scholar] [CrossRef]
- Laffont, C.; Ivanovici, A.; Gautrat, P.; Brault, M.; Djordjevic, M.A.; Frugier, F. The NIN transcription factor coordinates CEP and CLE signaling peptides that regulate nodulation antagonistically. Nat. Commun. 2020, 11, 3167. [Google Scholar] [CrossRef]
- Luo, Z.; Wang, J.; Li, F.; Lu, Y.; Fang, Z.; Fu, M.; Mysore, K.S.; Wen, J.; Gong, J.; Murray, J.D.; et al. The small peptide CEP1 and the NIN-like protein NLP1 regulate NRT2.1 to mediate root nodule formation across nitrate concentrations. Plant Cell 2023, 35, 776–794. [Google Scholar] [CrossRef] [PubMed]
- Zhu, F.; Deng, J.; Chen, H.; Liu, P.; Zheng, L.; Ye, Q.; Li, R.; Brault, M.; Wen, J.; Frugier, F.; et al. A CEP Peptide Receptor-Like Kinase Regulates Auxin Biosynthesis and Ethylene Signaling to Coordinate Root Growth and Symbiotic Nodulation in Medicago truncatula. Plant Cell 2020, 32, 2855–2877. [Google Scholar] [CrossRef] [PubMed]
- Magori, S.; Kawaguchi, M. Long-distance control of nodulation: Molecules and models. Mol. Cells 2009, 27, 129–134. [Google Scholar] [CrossRef] [PubMed]
Gene Name | Gene ID | Chromosomal Location | Number of Amino Acids | Theoretical pI | Molecular Weight (Average) | CEP Motif Number |
---|---|---|---|---|---|---|
GmCEP1 | Glyma.01G184800 | 1 | 99 | 8.71 | 11,292.71 | 1 |
GmCEP2 | Glyma.01G184900 | 1 | 87 | 9.82 | 9211.79 | 1 |
GmCEP3 | Glyma.01G185000 | 1 | 150 | 8.74 | 16,377.5 | 2 |
GmCEP4 | Glyma.01G185100 | 1 | 94 | 7.09 | 10,099.56 | 1 |
GmCEP5 | Glyma.05G083900 | 5 | 86 | 7.8 | 9800.21 | 1 |
GmCEP6 | Glyma.05G084000 | 5 | 80 | 10.24 | 8740.03 | 1 |
GmCEP7 | Glyma.05G084100 | 5 | 156 | 9.3 | 16,969.18 | 2 |
GmCEP8 | Glyma.05G161100 | 5 | 96 | 10.21 | 10,600.58 | 1 |
GmCEP9 | Glyma.08G118500 | 8 | 93 | 9.92 | 10,181.12 | 1 |
GmCEP10 | Glyma.09G218000 | 9 | 85 | 9.1 | 9335.88 | 1 |
GmCEP11 | Glyma.11G057100 | 11 | 87 | 8.03 | 9270.58 | 1 |
GmCEP12 | Glyma.11G057200 | 11 | 148 | 9.34 | 15,859.04 | 2 |
GmCEP13 | Glyma.11G057300 | 11 | 87 | 9.83 | 9277.83 | 1 |
GmCEP14 | Glyma.13G226600 | 13 | 94 | 10.14 | 10,213.95 | 1 |
GmCEP15 | Glyma.15G085800 | 15 | 88 | 9.78 | 9634.2 | 1 |
GmCEP16 | Glyma.16G108400 | 16 | 82 | 9.3 | 9010.27 | 1 |
GmCEP17 | Glyma.17G176500 | 17 | 86 | 9.14 | 9865.22 | 1 |
GmCEP18 | Glyma.17G176800 | 17 | 152 | 8.89 | 16,346.37 | 2 |
GmCEP19 | Glyma.17G176900 | 17 | 87 | 10.6 | 9658.01 | 1 |
GmCEP20 | Glyma.17G177000 | 17 | 163 | 9.27 | 17,533.65 | 2 |
GmCEP21 | Glyma.17G177300 | 17 | 158 | 8.63 | 17,110.26 | 2 |
GmCEP22 | Glyma.17G244700 | 17 | 108 | 6.26 | 11,742.32 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, S.; Wang, X.; Qin, J.; Tian, W.; Wang, M.; Yue, A.; Wang, L.; Du, W.; Zhao, J. Soybean CEP6 Signaling Peptides Positively Regulate Nodulation. Agronomy 2024, 14, 988. https://doi.org/10.3390/agronomy14050988
Wu S, Wang X, Qin J, Tian W, Wang M, Yue A, Wang L, Du W, Zhao J. Soybean CEP6 Signaling Peptides Positively Regulate Nodulation. Agronomy. 2024; 14(5):988. https://doi.org/10.3390/agronomy14050988
Chicago/Turabian StyleWu, Shuai, Xiaoli Wang, Jie Qin, Wenqing Tian, Min Wang, Aiqin Yue, Lixiang Wang, Weijun Du, and Jinzhong Zhao. 2024. "Soybean CEP6 Signaling Peptides Positively Regulate Nodulation" Agronomy 14, no. 5: 988. https://doi.org/10.3390/agronomy14050988
APA StyleWu, S., Wang, X., Qin, J., Tian, W., Wang, M., Yue, A., Wang, L., Du, W., & Zhao, J. (2024). Soybean CEP6 Signaling Peptides Positively Regulate Nodulation. Agronomy, 14(5), 988. https://doi.org/10.3390/agronomy14050988