Precise Control and Prevention Methods for Whitefly in Greenhouse Vegetables
Abstract
:1. Introduction
2. Materials and Methods
2.1. Insects and Insecticides
2.2. Acute Toxicity Bioassays
2.3. Risk Assessment
2.4. Greenhouse Efficacy Trial
2.5. Statistical Analysis
3. Results
3.1. Acute Toxicity of Neonicotinoids on T. vaporariorum and E. formosa
3.2. Risk Assessments of the Pesticides to E. formosa in Field
3.3. Greenhouse Efficacy Trial
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Editorial, R. Pathogens, precipitation and produce prices. Nat. Clim. Change 2021, 11, 635. [Google Scholar] [CrossRef]
- Heeb, L.; Jenner, E.J.; Cock, M.J.W. Climate-smart pest management: Building resilience of farms and landscapes to changing pest threats. J. Pest. Sci. 2019, 92, 951–969. [Google Scholar] [CrossRef]
- Krause-Sakate, R.; Watanabe, L.F.M.; Gorayeb, E.S.; da Silva, F.B.; Alvarez, D.d.L.; Bello, V.H.; Nogueira, A.M.; de Marchi, B.R.; Vicentin, E.; Ribeiro-Junior, M.R.; et al. Population dynamics of whiteflies and associated viruses in South America: Research progress and perspectives. Insects 2020, 11, 847. [Google Scholar] [CrossRef] [PubMed]
- Shahbandeh, M. Vegetables Production Worldwide by Type 2020. Global-Production-of-Vegetables-by-Type. 2022. Available online: https://www.statista.com/statistics/264065/ (accessed on 6 February 2024).
- Byrne, D.N.; Bellows, T.S. Whitefly biology. Annu. Rev. Entomol. 1991, 36, 431–457. [Google Scholar] [CrossRef]
- Kanakala, S.; Ghanim, M. Advances in the Genomics of the Whitefly Bemisia tabaci: An insect pest and a virus vector. In Short Views on Insect Genomics and Proteomics; Springer International Publishing: Cham, Switzerland, 2015. [Google Scholar] [CrossRef]
- Milenovic, M.; Ghanim, M.; Hoffmann, L.; Rapisarda, C. Whitefly endosymbionts: IPM opportunity or tilting at windmills? J. Pest. Sci. 2022, 95, 543–566. [Google Scholar] [CrossRef] [PubMed]
- Saurabh, S.; Mishra, M.; Rai, P.; Pandey, R.; Singh, J.; Khare, A.; Jain, M.; Singh, P.K. Tiny Flies: A mighty pest that threatens agricultural productivity—A case for next-generation control strategies of whiteflies. Insects 2021, 12, 585. [Google Scholar] [CrossRef] [PubMed]
- Schlaeger, S.; Pickett, J.A.; Birkett, M.A. Prospects for management of whitefly using plant semiochemicals, compared with related pests. Pest Manag. Sci. 2018, 74, 2405–2411. [Google Scholar] [CrossRef] [PubMed]
- Abubakar, M.; Koul, B.; Chandrashekar, K.; Raut, A.; Yadav, D. Whitefly (Bemisia tabaci) management (WFM) strategies for sustainable agriculture: A Review. Agriculture 2022, 12, 1317. [Google Scholar] [CrossRef]
- Morillo, E.; Villaverde, J. Advanced technologies for the remediation of pesticide-contaminated soils. Sci. Total Environ. 2017, 586, 576–597. [Google Scholar] [CrossRef] [PubMed]
- Philippe, V.; Neveen, A.; Marwa, A.; Ahmad Basel, A.Y. Occurrence of pesticide residues in fruits and vegetables for the Eastern Mediterranean Region and potential impact on public health. Food Control 2021, 119, 107457. [Google Scholar] [CrossRef]
- Pappas, M.L.; Migkou, F.; Broufas, G.D. Incidence of resistance to neonicotinoid insecticides in greenhouse populations of the whitefly, Trialeurodes vaporariorum (Hemiptera: Aleyrodidae) from Greece. Appl. Entomol. Zool. 2013, 48, 373–378. [Google Scholar] [CrossRef]
- Shah, R.; Al-Sadi, A.; Scott, I.; AlRaeesi, A.; Al-Jahdhami, A. Insecticide resistance monitoring in whitefly (Bemisia tabaci) (Hemiptera: Aleyrodidae) in Oman. J. Asia. Pac. Entomol. 2020, 23, 1248–1254. [Google Scholar] [CrossRef]
- Erdogan, C.; Velioglu, A.S.; Gurkan, M.O.; Denholm, I.; Moores, G.D. Detection of resistance to pyrethroid and neonicotinoid insecticides in the greenhouse whitefly, Trialeurodes vaporariorum (Westw.) (Hemiptera: Aleyrodidae). Crop Prot. 2021, 146, 105661. [Google Scholar] [CrossRef]
- Gorman, K.; Devine, G.; Bennison, J.; Coussons, P.; Punchard, N.; Denholm, I. Report of resistance to the neonicotinoid insecticide imidacloprid in Trialeurodes vaporariorum (Hemiptera: Aleyrodidae). Pest Manag. Sci. 2007, 558, 555–558. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Wang, M.; Jia, Z.; Ahmat, T.; Xie, L.; Jiang, W. Resistance to neonicotinoid insecticides and expression changes of eighteen cytochrome P450 genes in field populations of Bemisia tabaci from Xinjiang, China. Entomol. Res. 2020, 50, 205–211. [Google Scholar] [CrossRef]
- Bass, C.; Denholm, I.; Williamson, M.S.; Nauen, R. The global status of insect resistance to neonicotinoid insecticides. Pestic. Biochem. Physiol. 2015, 121, 78–87. [Google Scholar] [CrossRef] [PubMed]
- Bonmatin, J.; Giorio, C.; Girolami, V.; Goulson, D.; Kreutzweiser, D.P. Environmental fate and exposure; neonicotinoids and fipronil. Environ. Sci. Pollut. Res. 2015, 22, 35–67. [Google Scholar] [CrossRef] [PubMed]
- Jeschke, P.; Nauen, R. Neonicotinoids–from zero to hero in insecticide chemistry. Pest Manag. Sci. 2008, 64, 1084–1098. [Google Scholar] [CrossRef]
- Naveen, N.C.; Chaubey, R.; Kumar, D.; Rebijith, K.B.; Rajagopal, R.; Subrahmanyam, B.; Subramanian, S. Insecticide resistance status in the whitefly, Bemisia tabaci genetic groups Asia-I, Asia-II-1 and Asia-II-7 on the Indian subcontinent. Sci. Rep. 2017, 7, 40634. [Google Scholar] [CrossRef]
- European Commission. Commission Implementing Regulation (EU) 2018/783 of 29 May 2018 amending Implementing Regulation (EU) No 540/2011 as regards the conditions of approval of the active substance imidacloprid. Off. J. Eur. Union 2018, 132, 31–34. [Google Scholar]
- European Commission. Commission Implementing Regulation (EU) 2018/784 of 29 May 2018 amending Implementing Regulation (EU) No 540/2011 as regards the conditions of approval of the active substance clothianidin. Off. J. Eur. Union 2018, 132, 35–39. [Google Scholar]
- European Commission. Commission Implementing Regulation (EU) 2018/785 of 29 May 2018 amending Implementing Regulation (EU) No 540/2011 as regards the conditions of approval of the active substance thiamethoxam. Off. J. Eur. Union 2018, 132, 40–44. [Google Scholar]
- Manjon, C.; Troczka, B.J.; Zaworra, M.; Beadle, K.; Randall, E.; Hertlein, G.; Singh, K.S.; Zimmer, C.T.; Homem, R.A.; Lueke, B.; et al. Unravelling the molecular determinants of bee sensitivity to neonicotinoid insecticides. Curr. Biol. 2018, 28, 1137–1143.e5. [Google Scholar] [CrossRef]
- Troczka, B.J.; Homem, R.A.; Reid, R.; Beadle, K.; Kohler, M.; Zaworra, M.; Field, L.M.; Williamson, M.S.; Nauen, R.; Bass, C.; et al. Identification and functional characterisation of a novel N-cyanoamidine neonicotinoid metabolising cytochrome P450, CYP9Q6, from the buff-tailed bumblebee Bombus terrestris. Insect Biochem. Mol. Biol. 2019, 111, 103171. [Google Scholar] [CrossRef] [PubMed]
- Lin, Q.C.; Chen, H.; Babendreier, D.; Zhang, J.; Zhang, F.; Dai, X.Y.; Sun, Z.; Shi, Z.; Dong, X.L.; Wu, G.A.; et al. Improved control of Frankliniella occidentalis on greenhouse pepper through the integration of Orius sauteri and neonicotinoid insecticides. J. Pest Sci. 2020, 94, 101–109. [Google Scholar] [CrossRef]
- Lin, Q.C.; Chen, H.; Dai, X.Y.; Yin, S.; Shi, C.H.; Yin, Z.J.; Zhang, J. Myzus persicae management through combined use of beneficial insects and thiacloprid in pepper seedlings. Insects 2021, 12, 791. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Liu, Y.; Wang, K.; Zhang, Y.; Wu, Q.; Wang, S. Development and fitness of the parasitoid, Encarsia formosa (Hymenoptera: Aphelinidae), on the B and Q of the sweetpotato whitefly (Hemiptera: Aleyrodidae). Biol. Microb. Control J. 2019, 112, 2597–2603. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhang, Y.; Xie, W.; Wu, Q.; Wang, S. The suitability of biotypes Q and B of Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) at different nymphal instars as hosts for Encarsia formosa Gahan (Hymenoptera: Aphelinidae). Peer J. 2016, 4, e1863. [Google Scholar] [CrossRef]
- Walia, A.; Verma, S.C.; Sharma, P.L.; Sharma, N.; Palial, S. Relative preference and demographic parameters of Encarsia formosa Gahan against Trialeurodes vaporariorum (Westwood). Egypt. J. Biol. Pest Control 2021, 31, 79. [Google Scholar] [CrossRef]
- Liu, T.; Stansly, P.A.; Gerling, D. Whitefly parasitoids: Distribution, life history, bionomics, and utilization. Annu. Rev. Entomol. 2015, 60, 273–392. [Google Scholar] [CrossRef]
- Lenteren, J.C.; Roermund, H.J.W.; Sütterlin, S. Biological control of greenhouse whitefly (Trialeurodes vaporariorum) with the parasitoid Encarsia formosa: How does it work? Biol. Control 1996, 6, 1–10. [Google Scholar] [CrossRef]
- Qiu, Y.; Lenteren, J.C.; Drost, Y.C.; Posthuma-Doodeman, C.J.A.M. Life-history parameters of Encarsia formosa, Eretmocerus eremicus and E. mundus, aphelinid parasitoids of Bemisia argentifolii (Hemiptera: Aleyrodidae). Eur. J. Entomol. 2004, 101, 83–94. [Google Scholar] [CrossRef]
- Wang, Z.; Dai, P.; Yang, X.; Ruan, C.; Biondi, A.; Zang, L. Selectivity of novel and traditional insecticides used for management of whiteflies on the parasitoid Encarsia formosa. Pest Manag. Sci. 2019, 75, 2716–2724. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.T.; Wu, Q.J.; Xu, B.Y.; Wang, S.L.; Chang, X.L.; Xie, W.; Zhang, Y.J. Fitness costs and morphological change of laboratory-selected thiamethoxam resistance in the B-type Bemisia tabaci (Hemiptera: Aleyrodidae). J. Appl. Entomol. 2009, 133, 466–472. [Google Scholar] [CrossRef]
- Elbert, A.; Nauen, R. Resistance of Bemisia tabaci (Homoptera: Aleyrodidae) to insecticides in southern Spain with special reference to neonicotinoids. Pest Manag. Sci. 2000, 56, 60–64. [Google Scholar] [CrossRef]
- Jiang, J.; Liu, X.; Huang, X.; Yu, X.; Zhang, W.; Zhang, X.; Mu, W. Comparative ecotoxicity of neonicotinoid insecticides to three species of Trichogramma parasitoid wasps (Hymenoptera: Trichogrammatidae). Ecotoxicol. Environ. Saf. 2019, 183, 109587. [Google Scholar] [CrossRef]
- Simmonds, M.S.J.; Manlove, J.D.; Blaney, W.M.; Khambay, B.P.S. Effects of selected botanical insecticides on the behaviour and mortality of the glasshouse whitefly Trialeurodes vaporariorum and the parasitoid Encarsia formosa. Entomol. Exp. Appl. 2002, 102, 39–47. [Google Scholar] [CrossRef]
- Bi, J.L.; Toscano, N.C. Current status of the greenhouse whitefly, Trialeurodes vaporariorum, susceptibility to neonicotinoid and conventional insecticides on strawberries in southern California. Pest Manag. Sci. 2007, 752, 747–752. [Google Scholar] [CrossRef]
- Karatolos, N.; Denholm, I.; Williamson, M.; Gorman, K. Incidence and characterisation of resistance to neonicotinoid insecticides and pymetrozine in the greenhouse whitefly, Trialeurodes vaporariorum Westwood (Hemiptera: Aleyrodidae). Pest Manag. Sci. 2014, 66, 1304–1307. [Google Scholar] [CrossRef]
- Gamarra, H.; Sporleder, M.; Carhuapoma, P.; Kroschel, J.; Kreuze, J. A temperature-dependent phenology model for the greenhouse whitefly Trialeurodes vaporariorum (Hemiptera: Aleyrodidae). Virus Res. 2020, 289, 198107. [Google Scholar] [CrossRef]
- Manzano, M.R.; Lenteren, J.V. Life history parameters of Trialeurodes vaporariorum (Westwood) (Hemiptera: Aleyrodidae) at different environmental conditions on two bean cultivars. Neotrop. Entomol. 2009, 38, 452–458. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Jiang, S. Advances in evolution of insecticide resistance in parasitoid wasps. Acta Entomol. Sin. 2004, 47, 515–521. [Google Scholar] [CrossRef]
- Lin, Y.Y.; Jin, T.; Jin, Q.A.; Wen, H.B.; Peng, Z.Q. Differential susceptibilities of Brontispa longissima (Coleoptera: Hispidae) to insecticides in southeast Asia. J. Economic Entomol. 2012, 105, 988–993. [Google Scholar] [CrossRef] [PubMed]
- Nell, H.; Sevenster-van der Lelie, L.; Woets, J.; Lenteren, J. The parasite-host relationship between Encarsia formosa (Hymenoptera: Aphelinidae) and Trialeurodes vaporariorum (Homoptera: Aleyrodidae) II. Selection of host stages for oviposition and feeding by the parasite. J. Appl. Entomol. 1976, 81, 372–376. [Google Scholar] [CrossRef]
- Hu, J.S.; Gelman, D.B.; Blackburn, M.B. Growth and development of Encarsia formosa (Hymenoptera: Aphelinidae) in the greenhouse whitefly, Trialeurodes vaporariorum (Homoptera: Aleyrodidae): Effect of host age. Arch. Insect. Biochem. Physiol. 2002, 49, 125–136. [Google Scholar] [CrossRef] [PubMed]
- Beatriz, D.; Colomer, I.; Medina, P.; Vi, E. Compatibility of early natural enemy introductions in commercial pepper and tomato greenhouses with repeated pesticide applications. Insect Sci. 2019, 27, 1111–1124. [Google Scholar] [CrossRef] [PubMed]
- Colomer, I.; Aguado, P.; Medina, P.; Heredia, M.; Belda, E.; Vi, E. Field trial measuring the compatibility of methoxyfenozide and flonicamid with Orius laevigatus Fieber (Hemiptera: Anthocoridae) and Amblyseius swirskii (Athias-Henriot) (Acari: Phytoseiidae) in a commercial pepper greenhouse. Pest Manag. Sci. 2011, 67, 1237–1244. [Google Scholar] [CrossRef] [PubMed]
- Drobnjaković, T.; Marčić, D.; Prijović, M.; Milenković, S. Toxic and sublethal effects of buprofezin on the whitefly parasitoid Encarsia formosa Gahan. Pestic. Fitomed. 2019, 34, 201–209. [Google Scholar] [CrossRef]
- Yang, S.; Li, M.; Shang, H.; Liu, Y.; Li, X.; Jiang, Z.; Chen, G.; Zhang, X. Effect of sublethal spirotetramat on host locating and parasitic behavior of Encarsia formosa Gahan. Pest Manag. Sci. 2021, 78, 329–335. [Google Scholar] [CrossRef]
Insects | Test Concentration (mg a.i. L−1) | |||||||
---|---|---|---|---|---|---|---|---|
Imidacloprid | Nitenpyram | Acetamiprid | Thiacloprid | Thiamethoxam | Clothianidin | Dinotefuran | Flupyradifurone | |
Adult of T. vaporariorum | 2.5 | 2.5 | 7.6 | 20 | 5 | 2.5 | 6.1 | 4.76 |
5 | 5 | 12 | 40 | 10 | 5 | 9.766 | 8.57 | |
10 | 10 | 19 | 80 | 20 | 10 | 15.625 | 15.43 | |
20 | 20 | 33.33 | 160 | 40 | 20 | 25 | 27.78 | |
40 | 40 | 50 | 320 | 80 | 40 | 40 | 50 | |
Nymph of T. vaporariorum | 3.5 | 11.11 | 1 | 22.22 | 1.25 | 93.75 | 10 | 62.5 |
35 | 33.33 | 10 | 66.67 | 12.5 | 375 | 20 | 125 | |
350 | 100 | 100 | 200 | 125 | 1500 | 40 | 250 | |
3500 | 300 | 1000 | 600 | 1250 | 6000 | 80 | 500 | |
35,000 | 900 | 10,000 | 1800 | 12,500 | 24,000 | 160 | 1000 | |
Adult of E. formosa | 10,937.5 | 0.1 | 0.105 | 0.002 | 0.001 | 0.02 | 0.02 | 0.1953 |
21,875 | 0.5 | 0.420 | 0.02 | 0.006 | 0.2 | 0.2 | 0.7813 | |
43,750 | 2.5 | 1.680 | 0.2 | 0.036 | 2 | 2 | 3.125 | |
87,500 | 12.5 | 6.720 | 2 | 0.216 | 20 | 20 | 12.5 | |
175,000 | 26.5 | 26.880 | 20 | 1.296 | 200 | 200 | 50 | |
Pupae of E. formosa | 0.012 | 0.02 | 0.032 | 0.8 | 0.005 | 1.28 | 0.16 | 0.39 |
0.12 | 0.2 | 0.16 | 4 | 0.05 | 3.2 | 0.64 | 1.5625 | |
1.2 | 2 | 0.8 | 20 | 0.5 | 8 | 1.6 | 6.25 | |
12 | 20 | 4 | 100 | 5 | 20 | 4 | 25 | |
120 | 200 | 20 | 500 | 50 | 50 | 10 | 100 |
Pesticides | Insects | Acute Toxicity Regression Equation | LC20 (mg a.i.·L−1) | 95% Confidence Interval (mg a.i.·L−1) | LC50 (mg a.i.·L−1) | 95% Confidence Interval (mg a.i.·L−1) | Correlation Coefficients (r2) |
---|---|---|---|---|---|---|---|
Imidacloprid | T. vaporariorum | Y = 1.03 X + 3.84 | 2.05 | 1.04–3.39 | 13.32 | 8.87–19.38 | 0.972 |
E. formosa | Y = 1.74 X − 3.95 | 45,930.46 | 36,155.17–58,812.76 | 140,034.5 | 100,940.1–234,800.8 | 0.921 | |
Nitenpyram | T. vaporariorum | Y = 2.79 X + 2.68 | 3.40 | 2.55–4.21 | 6.82 | 5.72–7.92 | 0.915 |
E. formosa | Y = 0.67 X + 4.97 | 0.06 | 0.015–0.16 | 1.11 | 0.47–3.35 | 0.915 | |
Acetamiprid | T. vaporariorum | Y = 2.92 X + 1.20 | 10.31 | 8.03–12.26 | 20.01 | 17.64–22.46 | 0.947 |
E. formosa | Y = 0.81 X + 4.62 | 0.27 | 0.17–0.39 | 2.98 | 2.23–4.08 | 0.990 | |
Thiacloprid | T. vaporariorum | Y = 1.97 X + 1.51 | 22.13 | 14.80–29.34 | 59.22 | 47.77–71.36 | 0.952 |
E. formosa | Y = 0.49 X + 5.62 | 0.001 | 0.0001–0.005 | 0.06 | 0.02–0.19 | 0.940 | |
Thiamethoxam | T. vaporariorum | Y = 3.12 X + 0.80 | 11.97 | 9.88–13.96 | 22.28 | 19.40–25.78 | 0.911 |
E. formosa | Y = 0.93 X + 6.27 | 0.005 | 0.002–0.01 | 0.043 | 0.02–0.08 | 0.968 | |
Clothianidin | T. vaporariorum | Y = 2.33 X + 2.53 | 5.01 | 3.94–6.04 | 11.51 | 9.78–13.68 | 0.973 |
E. formosa | Y = 0.57 X + 4.90 | 0.05 | 0.003–0.23 | 1.47 | 0.33–9.58 | 0.934 | |
Dinotefuran | T. vaporariorum | Y = 3.09 X + 1.31 | 8.33 | 6.848–9.668 | 15.59 | 13.87–17.54 | 0.957 |
E. formosa | Y= 0.95 X + 4.75 | 0.24 | 0.078–0.558 | 1.86 | 0.80–5.91 | 0.904 | |
Flupyradifurone | T. vaporariorum | Y = 2.75 X + 1.88 | 6.73 | 5.28–8.07 | 13.59 | 11.77–15.57 | 0.957 |
E. formosa | Y = 1.74 X + 4.10 | 1.07 | 0.51–1.75 | 3.28 | 2.05–5.30 | 0.948 |
Pesticides | Insects | Acute Toxicity Regression Equation | LC20 (mg a.i.·L−1) | 95% Confidence Interval (mg a.i.·L−1) | LC50 (mg a.i.·L−1) | 95% Confidence Interval (mg a.i.·L−1) | Correlation Coefficients (r2) |
---|---|---|---|---|---|---|---|
Imidacloprid | T. vaporariorum | Y = 0.55 X + 3.13 | 71.09 | 19.51–184.10 | 2359.85 | 890.51–9409.28 | 0.98 |
E. formosa | Y = 0.79 X + 4.27 | 0.73 | 0.26–1.56 | 8.44 | 4.12–19.73 | 0.99 | |
Nitenpyram | T. vaporariorum | Y = 2.38 X + 1.39 | 14.51 | 10.25–19.00 | 32.71 | 25.91–39.48 | 0.99 |
E. formosa | Y = 0.37 X + 4.65 | 0.05 | 0.001–0.24 | 8.79 | 2.37–68.20 | 0.95 | |
Acetamiprid | T. vaporariorum | Y = 0.25 X + 3.61 | 159.70 | 53.31–538.63 | 377,488.75 | 38,965.09–29,408,114.02 | 0.92 |
E. formosa | Y = 0.67 X + 4.73 | 0.14 | 0.09–0.19 | 2.52 | 1.87–3.53 | 0.99 | |
Thiacloprid | T. vaporariorum | Y = 1.37 X + 1.94 | 41.65 | 30.08–53.67 | 171.48 | 138.59–218.17 | 0.99 |
E. formosa | Y = 1.58 X + 2.88 | 6.50 | 4.24–9.07 | 22.19 | 16.61–29.90 | 0.98 | |
Thiamethoxam | T. vaporariorum | Y = 0.47 X + 2.83 | 640.40 | 317.67–1588.31 | 38,856.53 | 10,848.28–288,236.84 | 0.92 |
E. formosa | Y = 1.06 X + 4.16 | 0.10 | 0.46–1.96 | 6.16 | 3.05–17.12 | 0.94 | |
Clothianidin | T. vaporariorum | Y = 1.33 X + 1.08 | 207.25 | 138.47–286.82 | 892.03 | 692.60–1125.47 | 0.99 |
E. formosa | Y = 1.91 X + 3.06 | 3.74 | 3.32–4.17 | 10.32 | 9.43–11.34 | 0.99 | |
Dinotefuran | T. vaporariorum | Y = 1.69 X + 2.38 | 11.23 | 8.42–14.02 | 35.26 | 30.25–40.83 | 0.99 |
E. formosa | Y = 0.79 X + 4.76 | 0.17 | 0.05–0.34 | 1.99 | 1.29–3.32 | 0.97 | |
Flupyradifurone | T. vaporariorum | Y = 1.94 X + 0.70 | 60.90 | 45.40–76.39 | 165.72 | 140.91–191.11 | 0.97 |
E. formosa | Y = 1.31 X + 4.00 | 1.32 | 0.60–2.21 | 5.78 | 3.71–8.87 | 0.97 |
Pesticides | Period | DT50 (Days) | Number of Applications | Application Interval (Days) | Recommended Application Rates (g a.i.·ha−1) | MAF | PER in-Field (g a.i.·ha−1) | LR50 (g a.i.·ha−1) | HQ In-Field | Risk |
---|---|---|---|---|---|---|---|---|---|---|
Imidacloprid | adult | 10 | 2 | 7 | 63.06 | 1.62 | 101.88 | 1,537,998.91 | 6.62 × 10−5 | low risk |
pupa | 92.67 | 1.10 | low risk | |||||||
Nitenpyram | adult | 10 | 3 | 10 | 29.99 | 1.75 | 52.48 | 12.18 | 4.31 | high risk |
pupa | 96.56 | 0.54 | low risk | |||||||
Acetamiprid | adult | 10 | 1 | 365 | 29.99 | 1.00 | 29.99 | 32.69 | 0.92 | low risk |
pupa | 27.63 | 1.09 | low risk | |||||||
Thiacloprid | adult | 10 | 2 | 7 | 9.00 | 1.62 | 14.54 | 0.60 | 24.07 | high risk |
pupa | 243.69 | 0.60 | low risk | |||||||
Thiamethoxam | adult | 10 | 2 | 7 | 56.31 | 1.62 | 90.97 | 0.47 | 192.63 | high risk |
pupa | 67.71 | 1.34 | low risk | |||||||
Clothianidin | adult | 10 | 1 | 365 | 48.00 | 1.00 | 48.00 | 16.17 | 2.97 | high risk |
pupa | 113.33 | 0.42 | low risk | |||||||
Dinotefuran | adult | 10 | 2 | 7 | 120.12 | 1.62 | 194.06 | 20.40 | 9.52 | high risk |
pupa | 21.84 | 1.99 | low risk | |||||||
Flupyradifurone | adult | 10 | 2 | 7 | 102.00 | 1.62 | 164.79 | 35.97 | 4.58 | high risk |
pupa | 2.60 | 5.78 | high risk |
Control Measures | Control Effect during the Experiment (%) | |||||||
---|---|---|---|---|---|---|---|---|
31 Jan. | 7 Feb. | 17 Feb. | 27 Feb. | 8 Mar. | 18 Mar. | 28 Mar. | 7 Apr. | |
E. formosa | −2.21 ± 9.71 c | 93.94 ± 0.05 c | 78.26 ± 4.85 b | 56.84 ± 6.93 b | 90.40 ± 1.27 b | 98.00 ± 0.01 a | 98.98 ± 0.02 a | 99.34 ± 0.02 a |
Acetamiprid | 98.63 ± 0.28 a | 99.94 ± 0.00 a | 98.54 ± 0.78 a | 97.96 ± 0.21 a | 98.00 ± 0.03 a | 97.53 ± 0.32 a | 95.91 ± 0.07 a | 92.50 ± 0.08 b |
Acetamiprid + E. formosa | 38.66 ± 20.94 bc | 97.74 ± 0.18 b | 88.91 ± 0.37 ab | 89.65 ± 0.66 a | 89.65 ± 0.33 b | 86.65 ± 1.40 b | 77.11 ± 1.41 b | 72.20 ± 0.74 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, X.; Lin, Q.; Liu, Y.; Wang, R.; Su, L.; Yin, Z.; Zhao, S.; Zhang, F.; Chen, H.; Zheng, L.; et al. Precise Control and Prevention Methods for Whitefly in Greenhouse Vegetables. Agronomy 2024, 14, 989. https://doi.org/10.3390/agronomy14050989
Dai X, Lin Q, Liu Y, Wang R, Su L, Yin Z, Zhao S, Zhang F, Chen H, Zheng L, et al. Precise Control and Prevention Methods for Whitefly in Greenhouse Vegetables. Agronomy. 2024; 14(5):989. https://doi.org/10.3390/agronomy14050989
Chicago/Turabian StyleDai, Xiaoyan, Qingcai Lin, Yan Liu, Ruijuan Wang, Long Su, Zhenjuan Yin, Shan Zhao, Feng Zhang, Hao Chen, Li Zheng, and et al. 2024. "Precise Control and Prevention Methods for Whitefly in Greenhouse Vegetables" Agronomy 14, no. 5: 989. https://doi.org/10.3390/agronomy14050989
APA StyleDai, X., Lin, Q., Liu, Y., Wang, R., Su, L., Yin, Z., Zhao, S., Zhang, F., Chen, H., Zheng, L., Zhai, Y., & Zhang, L. (2024). Precise Control and Prevention Methods for Whitefly in Greenhouse Vegetables. Agronomy, 14(5), 989. https://doi.org/10.3390/agronomy14050989