Appropriate Application of Organic Fertilizer Can Effectively Improve Soil Environment and Increase Maize Yield in Loess Plateau
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Experimental Design
2.3. Measurements and Calculations
2.3.1. Plant Height, Leaf Area Index, and Dry Matter Accumulation
2.3.2. Grain Yield
2.3.3. Soil Physical, Chemical, and Biological Indicators
2.4. Data Analysis
3. Results
3.1. Plant Growth Index and Grain Yield
3.2. Soil Physical and Chemical Indicators
3.3. Soil Biological Indicators
3.4. Correlation and Principal Component Analysis
4. Discussion
4.1. Factors Affecting Plant Growth and Grain Yield
4.2. Factors Affecting Soil Physical and Chemical Properties
4.3. Factors Affecting Soil Biological Indicators
4.4. Correlation Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhao, A.; Zhang, A. Assessing the effects of drought and “Grain for Green” Program on vegetation dynamics in China’s Loess Plateau from 2000 to 2014. CATENA 2019, 175, 446–455. [Google Scholar] [CrossRef]
- Nkebiwe, P.M.; Weinmann, M. Fertilizer placement to improve crop nutrient acquisition and yield: A review and meta-analysis. Field Crops Res. 2016, 196, 389–401. [Google Scholar] [CrossRef]
- Waqas, M.A.; Li, Y.; Smith, P.; Wang, X.; Ashraf, M.N.; Noor, M.A.; Amou, M.; Shi, S.; Zhu, Y.; Li, J.; et al. The influence of nutrient management on soil organic carbon storage, crop production, and yield stability varies under different climates. J. Clean. Prod. 2020, 268, 121922. [Google Scholar] [CrossRef]
- Dimkpa, C.O.; Fugice, J.; Singh, U.; Lewis, T.D. Development of fertilizers for enhanced nitrogen use efficiency—Trends and perspectives. Sci. Total Environ. 2020, 731, 139113. [Google Scholar] [CrossRef] [PubMed]
- Möller, K. Soil fertility status and nutrient input–output flows of specialised organic cropping systems: A review. Nutr. Cycl. Agroecosyst. 2018, 112, 147–164. [Google Scholar] [CrossRef]
- Cai, A.; Xu, M. Manure acts as a better fertilizer for increasing crop yields than synthetic fertilizer does by improving soil fertility. Soil Tillage Res. 2019, 189, 168–175. [Google Scholar] [CrossRef]
- Wang, S.; Guo, S. Comprehensive effects of integrated management on reducing nitrogen and phosphorus loss under legume-rice rotations. J. Clean. Prod. 2022, 361, 132031. [Google Scholar] [CrossRef]
- Chi, Y.X.; Gao, F.; Muhammad, I.; Huang, J.H.; Zhou, X.B. Effect of water conditions and nitrogen application on maize growth, carbon accumulation and metabolism of maize plant in subtropical regions. Arch. Agron. Soil Sci. 2023, 69, 693–707. [Google Scholar] [CrossRef]
- Lan, Y.; Wang, S.; Zhang, H.; He, Y.; Jiang, C.; Ye, S. Intercropping and nitrogen enhance eucalyptus productivity through the positive interaction between soil fertility factors and bacterial communities along with the maintenance of soil enzyme activities. Land Degrad. Dev. 2023, 34, 2403–2417. [Google Scholar] [CrossRef]
- Han, F.; Guo, R. Rotation of planting strips and reduction in nitrogen fertilizer application can reduce nitrogen loss and optimize its balance in maize–peanut intercropping. Eur. J. Agron. 2023, 143, 126707. [Google Scholar] [CrossRef]
- Rodríguez-Espinosa, T.; Papamichael, I.; Voukkali, I.; Gimeno, A.P.; Candel, M.B.A.; Navarro-Pedreño, J.; Zorpas, A.A.; Lucas, I.G. Nitrogen management in farming systems under the use of agricultural wastes and circular economy. Sci. Total Environ. 2023, 876, 162666. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Ye, C. Soil Acidification caused by excessive application of nitrogen fertilizer aggravates soil-borne diseases: Evidence from literature review and field trials. Agric. Ecosyst. Environ. 2022, 340, 108176. [Google Scholar] [CrossRef]
- Yang, Y.; Li, M.; Wu, J.; Pan, X.; Gao, C.; Tang, D.W.S. Impact of Combining Long-Term Subsoiling and Organic Fertilizer on Soil Microbial Biomass Carbon and Nitrogen, Soil Enzyme Activity, and Water Use of Winter Wheat. Front. Plant Sci. 2022, 12, 788651. [Google Scholar] [CrossRef] [PubMed]
- Muhammad, I.; Yang, L.; Ahmad, S.; Zeeshan, M.; Farooq, S.; Ali, I.; Khan, A.; Zhou, X.B. Irrigation and Nitrogen Fertilization Alter Soil Bacterial Communities, Soil Enzyme Activities, and Nutrient Availability in Maize Crop. Front. Microbiol. 2022, 13, 833758. [Google Scholar] [CrossRef]
- Wang, X.; Wang, B.; Gu, W.; Li, J. Effects of Carbon-Based Fertilizer on Soil Physical and Chemical Properties, Soil Enzyme Activity and Soil Microorganism of Maize in Northeast China. Agronomy 2023, 13, 877. [Google Scholar] [CrossRef]
- Xu, W.; Liu, W.; Tang, S.; Yang, Q.; Meng, L.; Wu, Y.; Wang, J.; Wu, L.; Wu, M.; Xue, X.; et al. Long-term partial substitution of chemical nitrogen fertilizer with organic fertilizers increased SOC stability by mediating soil C mineralization and enzyme activities in a rubber plantation of Hainan Island, China. Appl. Soil Ecol. 2023, 182, 104691. [Google Scholar] [CrossRef]
- Yan, B.; Zhang, Y. Biochar amendments combined with organic fertilizer improve maize productivity and mitigate nutrient loss by regulating the C–N–P stoichiometry of soil, microbiome, and enzymes. Chemosphere 2023, 324, 138293. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Yuan, Y.; Liu, Z.; Gai, S.; Cheng, K.; Yang, F. Effect of humic substances on nitrogen cycling in soil-plant ecosystems: Advances, issues, and future perspectives. J. Environ. Manag. 2024, 351, 119738. [Google Scholar] [CrossRef] [PubMed]
- Cao, S.; Du, R.; Zhou, Y. Coupling anammox with heterotrophic denitrification for enhanced nitrogen removal: A review. Crit. Rev. Environ. Sci. Technol. 2021, 51, 2260–2293. [Google Scholar] [CrossRef]
- Quick, A.M.; Reeder, W.J. Nitrous oxide from streams and rivers: A review of primary biogeochemical pathways and environmental variables. Earth-Sci. Rev. 2019, 191, 224–262. [Google Scholar] [CrossRef]
- Bonanomi, G.; De Filippis, F.; Zotti, M.; Idbella, M.; Cesarano, G.; Al-Rowaily, S.; Abd-ElGawad, A. Repeated applications of organic amendments promote beneficial microbiota, improve soil fertility and increase crop yield. Appl. Soil Ecol. 2020, 156, 103714. [Google Scholar] [CrossRef]
- Ma, X.; Li, H.; Xu, Y.; Liu, C. Effects of organic fertilizers via quick artificial decomposition on crop growth. Sci. Rep. 2021, 11, 3900. [Google Scholar] [CrossRef] [PubMed]
- Jjagwe, J.; Chelimo, K. Comparative Performance of Organic Fertilizers in Maize (Zea mays L.) Growth, Yield, and Economic Results. Agronomy 2020, 10, 69. [Google Scholar] [CrossRef]
- Lazcano, C.; Gómez-Brandón, M.; Revilla, P.; Domínguez, J. Short-term effects of organic and inorganic fertilizers on soil microbial community structure and function. Biol. Fertil. Soils 2013, 49, 723–733. [Google Scholar] [CrossRef]
- Lu, J.; Hu, T.; Zhang, B.; Wang, L.; Yang, S.; Fan, J.; Yan, S.; Zhang, F. Nitrogen fertilizer management effects on soil nitrate leaching, grain yield and economic benefit of summer maize in Northwest China. Agric. Water Manag. 2021, 247, 106739. [Google Scholar] [CrossRef]
- Meng, X.; Guo, Z.; Yang, X.; Su, W.; Li, Z.; Wu, X.; Ahmad, I.; Cai, T.; Han, Q. Straw incorporation helps inhibit nitrogen leaching in maize season to increase yield and efficiency in the Loess Plateau of China. Soil Tillage Res. 2021, 211, 105006. [Google Scholar] [CrossRef]
- Cen, Y.; Guo, L.; Liu, M.; Gu, X.; Li, C.; Jiang, G. Using organic fertilizers to increase crop yield, economic growth, and soil quality in a temperate farmland. PeerJ 2020, 8, e9668. [Google Scholar] [CrossRef] [PubMed]
- Kandil, E.E.; Abdelsalam, N.R.; Mansour, M.A.; Ali, H.M.; Siddiqui, M.H. Potentials of organic manure and potassium forms on maize (Zea mays L.) growth and production. Sci. Rep. 2020, 10, 8752. [Google Scholar] [CrossRef] [PubMed]
- Shi, H.; Hou, L.; Xu, X.; Zhu, Y.; Zhai, B.; Liu, Z. Effects of different rates of nitrogen fertilizer on apple yield, fruit quality, and dynamics of soil moisture and nitrate in soil of rainfed apple orchards on the Loess Plateau, China. Eur. J. Agron. 2023, 150, 126950. [Google Scholar] [CrossRef]
- Czachor, H.; Charytanowicz, M. Impact of long-term mineral and organic fertilizer application on the water stability, wettability and porosity of aggregates obtained from two loamy soils. Eur. J. Soil Sci. 2015, 66, 577–588. [Google Scholar] [CrossRef]
- Zhou, J.; Xia, F.; Liu, X.; He, Y.; Xu, J.; Brookes, P.C. Effects of nitrogen fertilizer on the acidification of two typical acid soils in South China. J. Soils Sediments 2014, 14, 415–422. [Google Scholar] [CrossRef]
- Laurent, C.; Bravin, M.N. Increased soil pH and dissolved organic matter after a decade of organic fertilizer application mitigates copper and zinc availability despite contamination. Sci. Total Environ. 2020, 709, 135927. [Google Scholar] [CrossRef] [PubMed]
- Wang, X. Managing Land Carrying Capacity: Key to Achieving Sustainable Production Systems for Food Security. Land 2022, 11, 484. [Google Scholar] [CrossRef]
- Farooq, M.; Hussain, M.; Wakeel, A.; Siddique, K.H.M. Salt stress in maize: Effects, resistance mechanisms, and management. A review. Agron. Sustain. Dev. 2015, 35, 461–481. [Google Scholar] [CrossRef]
- Wang, S.; Gao, P. Application of biochar and organic fertilizer to saline-alkali soil in the Yellow River Delta: Effects on soil water, salinity, nutrients, and maize yield. Soil Use Manag. 2022, 38, 1679–1692. [Google Scholar] [CrossRef]
- Zhang, J.B.; Zhu, T.B. Effects of long-term repeated mineral and organic fertilizer applications on soil nitrogen transformations. Eur. J. Soil Sci. 2012, 63, 75–85. [Google Scholar] [CrossRef]
- Lai, H.; Gao, F.; Su, H.; Zheng, P.; Li, Y.; Yao, H. Nitrogen distribution and soil microbial community characteristics in a legume–cereal intercropping system: A review. Agronomy 2022, 12, 1900. [Google Scholar] [CrossRef]
- Zhao, J.; De Notaris, C. Autumn-based vegetation indices for estimating nitrate leaching during autumn and winter in arable cropping systems. Agric. Ecosyst. Environ. 2020, 290, 106786. [Google Scholar] [CrossRef]
- Jin, Z.; Ping, L. Systematic relationship between soil properties and organic carbon mineralization based on structural equation modeling analysis. J. Clean. Prod. 2020, 277, 123338. [Google Scholar] [CrossRef]
- Wang, X.; Li, Z.; Xing, Y. Effects of mulching and nitrogen on soil temperature, water content, nitrate-N content and maize yield in the Loess Plateau of China. Agric. Water Manag. 2015, 161, 53–64. [Google Scholar]
- Guo, S.; Wu, J.; Dang, T.; Liu, W.; Li, Y.; Wei, W.; Syers, J.K. Impacts of fertilizer practices on environmental risk of nitrate in semiarid farmlands in the Loess Plateau of China. Plant Soil 2010, 330, 1–13. [Google Scholar] [CrossRef]
- Bader, B.R.; Taban, S.K.; Fahmi, A.H.; Abood, M.A.; Hamdi, G.J. Potassium availability in soil amended with organic matter and phosphorous fertiliser under water stress during maize (Zea mays L) growth. J. Saudi Soc. Agric. Sci. 2021, 20, 390–394. [Google Scholar] [CrossRef]
- Barłóg, P.; Hlisnikovský, L.; Kunzová, E. Effect of Digestate on Soil Organic Carbon and Plant-Available Nutrient Content Compared to Cattle Slurry and Mineral Fertilization. Agronomy 2020, 10, 379. [Google Scholar] [CrossRef]
- Chen, S.; Lin, B.; Li, Y.; Zhou, S. Spatial and temporal changes of soil properties and soil fertility evaluation in a large grain-production area of subtropical plain, China. Geoderma 2020, 357, 113937. [Google Scholar] [CrossRef]
- Mann, L.; Tolbert, V.; Cushman, J. Potential environmental effects of corn (Zea mays L.) stover removal with emphasis on soil organic matter and erosion. Agric. Ecosyst. Environ. 2002, 89, 149–166. [Google Scholar] [CrossRef]
- Wang, X.; Fan, J.; Xing, Y.; Xu, G.; Wang, H.; Deng, J.; Wang, Y.; Zhang, F.; Li, P.; Li, Z. The Effects of Mulch and Nitrogen Fertilizer on the Soil Environment of Crop Plants. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: Cambridge, MA, USA, 2019; pp. 121–173. [Google Scholar]
- Balík, J.; Kulhánek, M. Soil Organic Matter Degradation in Long-Term Maize Cultivation and Insufficient Organic Fertilization. Plants 2020, 9, 1217. [Google Scholar] [CrossRef] [PubMed]
- Kramer, C.; Gleixner, G. Soil organic matter in soil depth profiles: Distinct carbon preferences of microbial groups during carbon transformation. Soil Biol. Biochem. 2008, 40, 425–433. [Google Scholar] [CrossRef]
- Wang, X.; Wang, G.; Guo, T.; Xing, Y.; Mo, F.; Wang, H.; Fan, J.; Zhang, F. Effects of plastic mulch and nitrogen fertilizer on the soil microbial community, enzymatic activity and yield performance in a dryland maize cropping system. Eur. J. Soil Sci. 2021, 72, 400–412. [Google Scholar] [CrossRef]
- Yang, Q.; Zheng, F.; Jia, X.; Liu, P.; Dong, S.; Zhang, J.; Zhao, B. The combined application of organic and inorganic fertilizers increases soil organic matter and improves soil microenvironment in wheat-maize field. J. Soils Sediments 2020, 20, 2395–2404. [Google Scholar] [CrossRef]
- Zhou, Z.; Zhang, S.; Jiang, N.; Xiu, W.; Zhao, J.; Yang, D. Effects of organic fertilizer incorporation practices on crops yield, soil quality, and soil fauna feeding activity in the wheat-maize rotation system. Front. Environ. Sci. 2022, 10, 1058071. [Google Scholar] [CrossRef]
- Liu, G.; Zhang, X.; Wang, X.; Shao, H.; Yang, J.; Wang, X. Soil enzymes as indicators of saline soil fertility under various soil amendments. Agric. Ecosyst. Environ. 2017, 237, 274–279. [Google Scholar]
- Ning, C.-C.; Gao, P.-D.; Wang, B.-Q.; Lin, W.-P.; Jiang, N.-H.; Cai, K.-Z. Impacts of chemical fertilizer reduction and organic amendments supplementation on soil nutrient, enzyme activity and heavy metal content. J. Integr. Agric. 2017, 16, 1819–1831. [Google Scholar] [CrossRef]
- Ge, T.; Wei, X. Stability and dynamics of enzyme activity patterns in the rice rhizosphere: Effects of plant growth and temperature. Soil Biol. Biochem. 2017, 113, 108–115. [Google Scholar] [CrossRef]
- Gul, S.; Whalen, J.K. Biochemical cycling of nitrogen and phosphorus in biochar-amended soils. Soil Biol. Biochem. 2016, 103, 1–15. [Google Scholar] [CrossRef]
- You, T.; Liu, D.; Chen, J.; Yang, Z.; Dou, R.; Gao, X.; Wang, L. Effects of metal oxide nanoparticles on soil enzyme activities and bacterial communities in two different soil types. J. Soils Sediments 2018, 18, 211–221. [Google Scholar] [CrossRef]
- Pan, H.; Chen, M. Organic and inorganic fertilizers respectively drive bacterial and fungal community compositions in a fluvo-aquic soil in northern China. Soil Tillage Res. 2020, 198, 104540. [Google Scholar] [CrossRef]
- Xu, Y.; Sun, L. Contrasting response of fungal versus bacterial residue accumulation within soil aggregates to long-term fertilization. Sci. Rep. 2022, 12, 17834. [Google Scholar] [CrossRef] [PubMed]
- Yuan, H.; Ge, T.; Zhou, P.; Liu, S.; Roberts, P.; Zhu, H.; Zou, Z.; Tong, C.; Wu, J. Soil microbial biomass and bacterial and fungal community structures responses to long-term fertilization in paddy soils. J. Soils Sediments 2013, 13, 877–886. [Google Scholar] [CrossRef]
- Zhou, J.; Jiang, X. Thirty four years of nitrogen fertilization decreases fungal diversity and alters fungal community composition in black soil in northeast China. Soil Biol. Biochem. 2016, 95, 135–143. [Google Scholar] [CrossRef]
- Feng, G.; Zhang, Y.; Chen, Y.; Li, Q.; Chen, F.; Gao, Q.; Mi, G. Effects of Nitrogen Application on Root Length and Grain Yield of Rain-Fed Maize under Different Soil Types. Agron. J. 2016, 108, 1656–1665. [Google Scholar] [CrossRef]
- Ilyas, M.; Arif, M. Diverse feedstock’s biochars as supplementary K fertilizer improves maize productivity, soil organic C and KUE under semiarid climate. Soil Tillage Res. 2021, 211, 105015. [Google Scholar] [CrossRef]
- Jia, W.; Huang, P. Zonation of bulk and rhizosphere soil bacterial communities and their covariation patterns along the elevation gradient in riparian zones of three Gorges reservoir, China. Environ. Res. 2024, 249, 118383. [Google Scholar] [CrossRef] [PubMed]
- Hussain, S.; Naseer, M.A. Influence of Nitrogen Application on Soil Chemical Properties, Nutrient Acquisition, and Enzymatic Activities in Rainfed Wheat/Maize Strip Intercropping. J. Soil Sci. Plant Nutr. 2023, 23, 5921–5934. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhang, H.; Wang, Q.; Zhu, W.; Kang, Y. Soil extracellular enzyme activity linkage with soil organic carbon under conservation tillage: A global meta-analysis. Eur. J. Agron. 2024, 155, 127135. [Google Scholar] [CrossRef]
Item | SBQs (106 CFU g−1) | SFQs (103 CFU g−1) | SAQs (106 CAU g−1) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
0–20 cm | 21–40 cm | 41–60 cm | 0–20 cm | 21–40 cm | 41–60 cm | 0–20 cm | 21–40 cm | 41–60 cm | ||
2021 | CK | 1.66 + 0.59 d | 0.64 + 0.22 b | 0.38 + 0.38 ab | 1.64 + 0.72 c | 1.68 + 0.73 c | 1.29 + 2.23 a | 4.48 + 1.9 def | 3.27 + 0.54 cd | 1.52 + 0.23 bcd |
N1 | 1.41 + 0.59 d | 0.9 + 0.44 ab | 0.51 + 0.22 ab | 3.31 + 1.9 c | 1.69 + 0.74 c | 0.81 + 0.7 a | 8.65 + 1.04 b | 6.11 + 0.58 a | 4.36 + 1.02 a | |
N2 | 3.2 + 0.8 cd | 0.51 + 0.22 b | 0.38 + 0.38 ab | 6.12 + 2.45 c | 2.04 + 0.71 c | 1.63 + 0.7 a | 5.8 + 0.82 bcd | 3.58 + 0.29 bcd | 1.95 + 0.6 b | |
N3 | 2.05 + 0.59 d | 1.02 + 0.22 ab | 0.26 + 0.22 b | 2.93 + 1.91 c | 2.47 + 1.24 bc | 1.65 + 1.89 a | 11.76 + 1.71 a | 3.27 + 0.42 cd | 0.9 + 0.18 bcd | |
N4 | 2.56 + 0.8 cd | 1.41 + 0.59 ab | 0.77 + 0.38 abc | 3.8 + 1.26 c | 2.98 + 0.74 bc | 0.84 + 1.46 a | 8.41 + 0.58 b | 5.14 + 0.51 ab | 0.55 + 0.18 cd | |
N5 | 3.45 + 0.38 cd | 1.02 + 0.44 ab | 0.9 + 0.44 abc | 2.98 + 1.47 c | 1.71 + 0.74 c | 1.69 + 0.74 a | 7.63 + 0.76 bc | 5.06 + 0.64 ab | 1.25 + 0.44 bcd | |
TN1 | 4.35 + 1.35 cd | 1.66 + 0.59 ab | 0.51 + 0.59 bc | 8.77 + 1.83 bc | 2.9 + 1.44 bc | 2.07 + 2.59 a | 6 + 0.59 bcd | 4.13 + 0.53 bc | 0.39 + 0.07 d | |
TN2 | 6.14 + 2.03 c | 2.05 + 0.59 ab | 0.9 + 0.22 abc | 8.14 + 1.48 bc | 4.17 + 1.92 bc | 2.92 + 1.92 a | 4.25 + 0.24 def | 2.53 + 0.58 cde | 1.21 + 0.59 bcd | |
TN3 | 10.49 + 1.93 b | 2.43 + 0.22 ab | 0.9 + 0.59 abc | 6.67 + 3.16 c | 8.76 + 3.82 b | 3.98 + 0.68 a | 2.65 + 0.7 ef | 2.1 + 0.47 de | 0.78 + 0.24 bcd | |
TN4 | 11.13 + 2.3 b | 2.05 + 0.97 ab | 1.92 + 0.77 a | 14.56 + 4.35 b | 17.26 + 5.39 a | 3.21 + 1.39 a | 2.06 + 0.47 f | 1.4 + 0.2 e | 0.43 + 0.36 d | |
TN5 | 18.17 + 1.55 a | 3.07 + 1.92 a | 1.66 + 0.59 ab | 37.75 + 4.91 a | 4.05 + 1.4 bc | 1.7 + 0.74 a | 5.26 + 1.24 cde | 3.19 + 1.12 cd | 1.87 + 0.47 bc | |
2022 | CK | 1.54 + 0.38 d | 0.7 + 0.24 c | 0.4 + 0.4 c | 2.05 + 0.71 c | 2.05 + 1.43 c | 1.22 + 1.22 a | 5.06 + 0.94 d | 3.43 + 0.38 cde | 1.44 + 0.27 bcd |
N1 | 1.79 + 0.44 d | 0.98 + 0.49 bc | 0.53 + 0.23 bc | 2.9 + 1.9 c | 1.71 + 0.74 c | 1.66 + 0.72 a | 8.45 + 0.85 b | 6.04 + 0.44 a | 4.17 + 0.7 a | |
N2 | 1.66 + 0.22 d | 0.56 + 0.24 c | 0.4 + 0.4 c | 6.25 + 3.32 c | 3.23 + 1.39 c | 2.5 + 1.26 a | 5.92 + 0.66 cd | 3.74 + 0.42 bcd | 2.1 + 0.35 b | |
N3 | 2.43 + 0.59 d | 1.82 + 0.64 bc | 0.27 + 0.23 c | 5.71 + 2.55 c | 1.63 + 0.71 c | 1.26 + 1.26 a | 11.37 + 1.25 a | 3.31 + 0.44 cde | 0.82 + 0.2 de | |
N4 | 3.33 + 0.44 d | 1.54 + 0.64 bc | 0.8 + 0.4 abc | 3.35 + 1.44 c | 2.1 + 0.73 c | 1.7 + 0.74 a | 8.33 + 0.6 b | 5.14 + 0.51 ab | 0.51 + 0.18 de | |
N5 | 3.45 + 0.38 d | 1.26 + 0.42 bc | 0.93 + 0.46 abc | 2.55 + 1.27 c | 2.11 + 0.74 c | 1.28 + 1.29 a | 7.71 + 0.65 bc | 4.99 + 0.66 ab | 1.09 + 0.18 cde | |
TN1 | 4.48 + 1.35 cd | 1.12 + 0.24 bc | 0.4 + 0.4 c | 3.38 + 1.46 c | 2.98 + 0.74 c | 1.69 + 0.74 a | 6.11 + 0.64 cd | 4.25 + 0.71 bc | 0.35 + 0.12 e | |
TN2 | 6.78 + 0.97 c | 2.1 + 1.11 abc | 0.93 + 0.23 abc | 6.85 + 1.95 c | 9.56 + 3.14 b | 4.38 + 1.37 a | 4.17 + 0.24 de | 2.73 + 0.24 def | 1.36 + 0.36 bcd | |
TN3 | 10.24 + 1.6 b | 3.93 + 1.35 a | 0.93 + 0.61 abc | 15.77 + 3.17 b | 17.26 + 5.39 a | 3.61 + 1.2 a | 2.88 + 0.44 ef | 2.18 + 0.36 ef | 0.74 + 0.27 de | |
TN4 | 11.52 + 1.76 b | 2.66 + 0.24 ab | 2.13 + 0.83 a | 38.55 + 5.27 a | 4.59 + 1.92 bc | 2.04 + 0.7 a | 1.95 + 0.29 f | 1.44 + 0.13 f | 0.55 + 0.24 de | |
TN5 | 18.17 + 1.55 a | 2.24 + 0.64 abc | 1.87 + 0.61 ab | 9.17 + 1.84 bc | 2.48 + 1.25 c | 2.05 + 1.43 a | 4.87 + 0.59 de | 3.51 + 0.65 cde | 1.79 + 0.36 bc |
SBQm (106 CFU g−1) | SFQm (103 CFU g−1) | SAQm (106 CFU g−1) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
0–20 cm | 21–40 cm | 41–60 cm | 0–20 cm | 21–40 cm | 41–60 cm | 0–20 cm | 21–40 cm | 41–60 cm | ||
2021 | CK | 10.24 + 4.25 c | 0.84 + 0.42 c | 0.27 + 0.23 b | 5.42 + 1.17 b | 4.4 + 1.17 a | 5.42 + 1.17 b | 3.15 + 1.23 d | 2.53 + 0.85 cde | 2.02 + 0.58 c |
N1 | 17.02 + 7.89 bc | 0.84 + 0.42 c | 0.13 + 0.23 b | 9.48 + 7.69 ab | 5.08 + 4.06 a | 9.48 + 7.69 ab | 18.3 + 1.17 a | 5.34 + 1.15 ab | 0.86 + 0.18 a | |
N2 | 16.51 + 1.02 bc | 0.98 + 0.64 c | 0.4 + 0.4 ab | 9.14 + 4.06 ab | 4.4 + 2.11 a | 9.14 + 4.06 ab | 10.24 + 0.58 bc | 5.06 + 1.79 abc | 1.67 + 0.89 c | |
N3 | 13.05 + 1.54 c | 0.98 + 0.49 c | 0.53 + 0.23 ab | 9.48 + 5.11 ab | 4.74 + 0.59 a | 9.48 + 5.11 ab | 7.05 + 2.88 bcd | 2.84 + 0.88 bcde | 6.23 + 1.15 b | |
N4 | 11.52 + 4.36 c | 1.26 + 0.42 bc | 0.93 + 0.23 ab | 10.16 + 2.03 ab | 5.08 + 3.05 a | 10.16 + 2.03 ab | 7.67 + 1.09 bcd | 5.8 + 0.94 a | 2.06 + 0.53 c | |
N5 | 19.32 + 4.89 bc | 0.98 + 0.24 c | 0.53 + 0.23 ab | 6.09 + 2.69 b | 4.4 + 0.59 a | 6.09 + 2.69 b | 7.28 + 1.25 bcd | 2.53 + 0.83 cde | 2.49 + 1.23 c | |
TN1 | 14.59 + 2.3 c | 1.12 + 0.64 c | 0.67 + 0.23 ab | 9.14 + 2.03 ab | 4.74 + 0.59 a | 9.14 + 2.03 ab | 10.63 + 1.35 b | 3.47 + 0.64 abcde | 1.95 + 0.47 c | |
TN2 | 26.62 + 9.6 abc | 1.68 + 1.52 bc | 2 + 2.23 ab | 11.85 + 3.85 ab | 9.48 + 1.55 a | 11.85 + 3.85 ab | 5.06 + 1.64 cd | 2.3 + 0.76 de | 11.88 + 2.06 c | |
TN3 | 23.29 + 4.8 bc | 2.1 + 1.11 bc | 2.27 + 1.15 ab | 14.9 + 1.55 ab | 7.45 + 3.26 a | 14.9 + 1.55 ab | 3.7 + 1.23 d | 3.43 + 0.44 abcde | 2.65 + 0.59 c | |
TN4 | 47.47 + 7.35 a | 4.91 + 0.64 a | 3.07 + 0.83 a | 22.68 + 11.55 a | 5.08 + 1.02 a | 22.68 + 11.55 a | 7.05 + 3.07 bcd | 4.87 + 0.99 abcd | 3.51 + 1.42 bc | |
TN5 | 36.85 + 16.46 ab | 3.51 + 1.06 ab | 2.13 + 1.51 ab | 15.91 + 7.76 ab | 8.13 + 1.76 a | 15.91 + 7.76 ab | 9.58 + 2.33 bc | 1.83 + 0.29 e | 1.09 + 0.18 c | |
2022 | CK | 11.26 + 2.72 d | 0.7 + 0.49 c | 0.27 + 0.23 b | 6.09 + 2.69 c | 4.06 + 1.02 b | 0.34 + 0.59 d | 3.47 + 0.85 e | 2.3 + 0.44 ef | 2.18 + 0.47 def |
N1 | 14.59 + 2.3 cd | 0.84 + 0.42 c | 0.4 + 0.4 b | 10.16 + 2.69 bc | 4.4 + 1.17 ab | 6.09 + 1.76 cd | 17.91 + 1.52 a | 4.95 + 0.49 ab | 0.82 + 0.2 a | |
N2 | 13.44 + 1.02 cd | 1.12 + 0.24 c | 0.53 + 0.23 b | 17.94 + 5.59 ab | 6.43 + 1.55 ab | 2.71 + 1.55 bc | 10.13 + 0.49 b | 4.24 + 0.38 abcd | 2.1 + 0.31 de | |
N3 | 10.36 + 2.4 d | 1.12 + 0.49 c | 0.8 + 0.4 b | 4.74 + 1.17 c | 6.09 + 2.69 ab | 2.37 + 0.59 bcd | 7.17 + 1.05 c | 3.08 + 0.58 cdef | 6.04 + 0.99 b | |
N4 | 21.63 + 1.97 bc | 0.84 + 0.42 c | 0.53 + 0.23 b | 6.09 + 2.03 c | 4.74 + 1.55 ab | 1.69 + 1.17 cd | 7.56 + 0.89 bc | 5.8 + 0.94 a | 2.06 + 0.53 def | |
N5 | 18.3 + 3.13 cd | 0.98 + 0.49 c | 0.53 + 0.23 b | 7.79 + 1.17 bc | 4.74 + 1.17 ab | 2.03 + 1.02 bcd | 7.17 + 1.06 c | 2.84 + 0.38 def | 2.96 + 0.68 cd | |
TN1 | 27.64 + 5.19 b | 0.98 + 0.24 c | 0.27 + 0.23 b | 13.54 + 3.85 bc | 7.11 + 1.76 ab | 2.71 + 1.55 bcd | 9.43 + 0.83 bc | 3.39 + 0.54 bcde | 1.91 + 0.49 def | |
TN2 | 19.83 + 4.1 bc | 2.24 + 0.88 bc | 1.87 + 0.46 a | 10.16 + 4.06 bc | 3.72 + 1.17 b | 1.35 + 0.59 b | 4.36 + 0.55 de | 2.45 + 0.54 ef | 9.7 + 0.54 f | |
TN3 | 16.51 + 1.02 cd | 4.91 + 0.64 a | 2.8 + 0.4 a | 10.16 + 2.03 bc | 5.76 + 2.11 ab | 5.42 + 1.17 bcd | 4.25 + 0.6 e | 3.39 + 0.51 bcde | 2.45 + 0.31 def | |
TN4 | 43.63 + 2.88 a | 3.79 + 0.73 ab | 2.8 + 0.4 a | 26.41 + 8.31 a | 9.14 + 2.03 a | 11.17 + 2.69 a | 6.86 + 0.64 cd | 4.56 + 0.61 abc | 4.09 + 0.42 c | |
TN5 | 21.24 + 1.17 bc | 2.24 + 1.06 bc | 1.87 + 0.46 a | 14.9 + 1.55 bc | 3.72 + 1.17 b | 2.37 + 1.55 bcd | 7.83 + 0.73 bc | 1.79 + 0.29 f | 0.97 + 0.18 ef |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xing, Y.; Li, Y.; Zhang, F.; Wang, X. Appropriate Application of Organic Fertilizer Can Effectively Improve Soil Environment and Increase Maize Yield in Loess Plateau. Agronomy 2024, 14, 993. https://doi.org/10.3390/agronomy14050993
Xing Y, Li Y, Zhang F, Wang X. Appropriate Application of Organic Fertilizer Can Effectively Improve Soil Environment and Increase Maize Yield in Loess Plateau. Agronomy. 2024; 14(5):993. https://doi.org/10.3390/agronomy14050993
Chicago/Turabian StyleXing, Yingying, Yuan Li, Fan Zhang, and Xiukang Wang. 2024. "Appropriate Application of Organic Fertilizer Can Effectively Improve Soil Environment and Increase Maize Yield in Loess Plateau" Agronomy 14, no. 5: 993. https://doi.org/10.3390/agronomy14050993
APA StyleXing, Y., Li, Y., Zhang, F., & Wang, X. (2024). Appropriate Application of Organic Fertilizer Can Effectively Improve Soil Environment and Increase Maize Yield in Loess Plateau. Agronomy, 14(5), 993. https://doi.org/10.3390/agronomy14050993