Bulked Segregant Analysis by Sequencing-Based Genetic Mapping of the Green Spotted Fruit Rind Regulating Locus in Wild Melon XNM020 Reveals Four Possible Candidate Genes
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Materials and Morphological Data Collection
2.2. DNA Extraction and Quality Detection
2.3. BSA-Seq Analysis
2.4. InDel Marker-Based Verification of the Candidate Mapping Region
3. Results
3.1. Genetic Analysis of the Green Spotted Fruit Rind in XNM020
3.2. BSA-Seq Identified Regulating Loci of the Green Spotted Fruit Rind in XNM020 Melon
3.3. Verification of the Candidate Mapping Region on Chromosome 4 with InDel Markers
3.4. Potential Candidate Genes Located in the Target Mapping Regions
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pitrat, M. Melon Genetic Resources: Phenotypic Diversity and Horticultural Taxonomy. In Genetics and Genomics of Cucurbitaceae; Springer: Cham, Switzerland, 2016; pp. 25–60. [Google Scholar] [CrossRef]
- Zhao, G.W.; Lian, Q.; Zhang, Z.H.; Fu, Q.S.; He, Y.H.; Ma, S.W.; Ruggieri, V.; Monforte, A.J.; Wang, P.Y.; Julca, I.; et al. A comprehensive genome variation map of melon identifies multiple domestication events and loci influencing agronomic traits. Nat. Genet. 2019, 51, 1607–1615. [Google Scholar] [CrossRef] [PubMed]
- Jeffrey, C. A review of the Cucurbitaceae. Bot. J. Linn. Soc. 1980, 81, 233–247. [Google Scholar] [CrossRef]
- Liu, S.; Gao, P.; Zhu, Q.; Zhu, Z.; Liu, H.; Wang, X.; Weng, Y.; Gao, M.; Luan, F. Resequencing of 297 melon accessions reveals the genomic history of improvement and loci related to fruit traits in melon. Plant Biotechnol. J. 2020, 18, 2545–2558. [Google Scholar] [CrossRef] [PubMed]
- López-Sesé, A.I.; Staub, J.E.; Gómez-Guillamón, M.L. Genetic analysis of Spanish melon (Cucumis melo L.) germplasm using a standardized molecular-marker array and geographically diverse reference accessions. Theor. Appl. Genet. 2003, 108, 41–52. [Google Scholar] [CrossRef] [PubMed]
- Tadmor, Y.; Burger, J.; Yaakov, I.; Feder, A.; Libhaber, S.E.; Portnoy, V.; Meir, A.; Tzuri, G.; Sa’ar, U.; Rogachev, I.; et al. Genetics of flavonoid, carotenoid, and chlorophyll pigments in melon fruit rinds. J. Agric. Food Chem. 2010, 58, 10722–10728. [Google Scholar] [CrossRef] [PubMed]
- Feder, A.; Burger, J.; Gao, S.; Lewinsohn, E.; Katzir, N.; Schaffer, A.A.; Meir, A.; Davidovich-Rikanati, R.; Portnoy, V.; Gal-On, A.; et al. A Kelch domain-containing F-Box coding gene negatively regulates flavonoid accumulation in muskmelon. Plant Physiol. 2015, 169, 1714–1726. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Xu, X.Y.; Zhang, Y.J.; Niu, X.W.; Shou, W.S. Genetic Mapping and Identification of the Candidate Genes for Mottled Rind in Cucumis melo L. Front. Plant Sci. 2021, 12, 769989. [Google Scholar] [CrossRef]
- Parthasarathy, V.A.; Sambandam, C.N. Inheritance in Indian melons. Indian J. Genet. Plant Breed. 1981, 41, 114–117. [Google Scholar]
- Monforte, A.J.; Oliver, M.; Gonzalo, M.J.; Alvarez, J.M.; Dolcet-Sanjuan, R.; Arús, P. Identification of quantitative trait loci involved in fruit quality traits in melon (Cucumis melo L.). Theor. Appl. Genet. 2004, 108, 750–758. [Google Scholar] [CrossRef]
- Burger, Y.; Bhasteker, D.; Saar, U.; Katzir, N.; Paris, H.S. A recessive gene for light immature exterior color of melon. Cucurbit Genet. Coop. Rep. 2005, 28, 17–18. [Google Scholar]
- Pereira, L.; Ruggieri, V.; Pérez, S.; Alexiou, K.G.; Fernández, M.; Jahrmann, T.; Pujol, M.; Garcia-Mas, J. QTL mapping of melon fruit quality traits using a high-density GBS-based genetic map. BMC Plant Biol. 2018, 18, 324. [Google Scholar] [CrossRef] [PubMed]
- Oren, E.; Tzuri, G.; Vexler, L.; Dafna, A.; Meir, A.; Faigenboim, A.; Kenigswald, M.; Portnoy, V.; Schaffer, A.A.; Levi, A.; et al. The multi-allelic APRR2 gene is associated with fruit pigment accumulation in melon and watermelon. J. Exp. Bot. 2019, 70, 3781–3794. [Google Scholar] [CrossRef] [PubMed]
- Périn, C.; Dogimont, C.; Giovinazzo, N.; Besombes, D.; Guitton, L.; Hagen, L.; Pitrat, M. Genetic control and linkages of some fruit charactersin melon. Cucurbit Genet. Coop. Rep. 1999, 22, 16–18. [Google Scholar]
- Périn, C.; Hagen, S.; De Conto, V.; Katzir, N.; Danin-Poleg, Y.; Portnoy, V.; Baudracco-Arnas, S.; Chadoeuf, J.; Dogimont, C.; Pitrat, M. A reference map of Cucumis melo based on two recombinantinbred line populations. Theor. Appl. Genet. 2002, 104, 1017–1034. [Google Scholar] [CrossRef]
- Danin-Poleg, Y.; Tadmor, Y.; Tzuri, G.; Reis, N.; Hirschberg, J.; Katzir, N. Construction of a genetic map of melon with molecular markers for horticultural traits, and localization of genes associated with ZYMV resistance. Euphytica 2002, 25, 373–384. [Google Scholar] [CrossRef]
- Harel-Beja, R.; Tzuri, G.; Portnoy, V.; Lotan-Pompan, M.; Lev, S.; Cohen, S.; Dai, N.; Yeselson, L.; Meir, A.; Libhaber, S.E.; et al. A genetic map of melon highly enriched with fruit quality QTL and EST markers, including sugar and carotenoid metabolism genes. Theor. Appl. Genet. 2010, 121, 511–533. [Google Scholar] [CrossRef]
- Lv, J.C.; Fu, Q.S.; Lai, Y.; Zhou, M.D.; Wang, H.S. Inheritance and gene mapping of spotted to non-spotted trait gene CmSp-1 in melon (Cucumis melo L. var. chinensis Pangalo). Mol. Breed. 2018, 38, 105. [Google Scholar] [CrossRef]
- Liu, L.; Sun, T.T.; Liu, X.Y.; Guo, Y.; Huang, X.; Gao, P.; Wang, X.Z. Genetic analysis and mapping of a striped rind gene (st3) in melon (Cucumis melo L.). Euphytica 2019, 215, 20. [Google Scholar] [CrossRef]
- Ehrenreich, I.M.; Torabi, N.; Jia, Y.; Kent, J.; Martis, S.; Shapiro, J.A.; Gresham, D.; Caudy, A.A.; Kruglyak, L. Dissection of genetically complex traits with extremely large pools of yeast segregants. Nature 2010, 464, 1039–1042. [Google Scholar] [CrossRef]
- Michelmore, R.W.; Paran, I.; Kesseli, R.V. Identification of markers linked to disease-resistance genes by bulked segregant analysis: A rapid method to detect markers in specific genomic regions by using segregating populations. Proc. Natl. Acad. Sci. USA 1991, 88, 9828–9832. [Google Scholar] [CrossRef]
- Giovannoni, J.J.; Wing, R.A.; Ganal, M.W.; Tanksley, S.D. Isolation of molecular markers from specific chromosomal intervals using DNA pools from existing mapping populations. Nucleic Acids Res. 1991, 19, 6553–6558. [Google Scholar] [CrossRef] [PubMed]
- Abe, A.; Kosugi, S.; Yoshida, K.; Natsume, S.; Takagi, H.; Kanzaki, H.; Matsumura, H.; Yoshida, K.; Mitsuoka, C.; Tamiru, M.; et al. Genome sequencing reveals agronomically important loci in rice using MutMap. Nat. Biotechnol. 2012, 30, 174–178. [Google Scholar] [CrossRef] [PubMed]
- Takagi, H.; Abe, A.; Yoshida, K.; Kosugi, S.; Natsume, S.; Mitsuoka, C.; Uemura, A.; Utsushi, H.; Tamiru, M.; Takuno, S.; et al. QTL-seq: Rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. Plant J. 2013, 74, 174–183. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Xu, Y. Bulk segregation analysis in the NGS era: A review of its teenage years. Plant J. 2022, 109, 1355–1374. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Diao, Q.; Chen, Y.; Jin, H.; Zhang, Y.; Zhang, H. Development of KASP Markers and Identification of a QTL Underlying Powdery Mildew Resistance in Melon (Cucumis melo L.) by Bulked Segregant Analysis and RNA-Seq. Front. Plant Sci. 2021, 11, 593207. [Google Scholar] [CrossRef] [PubMed]
- Cui, H.; Ding, Z.; Zhu, Z.; Liu, S.; Wang, X.; Luan, F.; Gao, P. Identification of major-effect QTL CmFpl3.1 controlling fruit pedicel length in melon (Cucumis melo L.). Sci. Hortic. 2022, 293, 110717. [Google Scholar] [CrossRef]
- Du, X.; Liu, H.; Zhu, Z.; Liu, S.; Song, Z.; Xia, L.; Zhao, J.; Luan, F.; Liu, S. Identification of Candidate Chromosome Region Related to Melon (Cucumis melo L.) Fruit Surface Groove Trait Through Biparental Genetic Mapping and Genome-Wide Association Study. Front. Plant Sci. 2022, 13, 828287. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Li, Q.; Cao, L.; Du, X.; Qiang, J.; Hou, J.; Li, X.; Zhu, H.; Yang, S.; Liu, D.; et al. Natural allelic variation in the EamA-like transporter, CmSN, is associated with fruit skin netting in melon. Theor. Appl. Genet. 2023, 136, 192. [Google Scholar] [CrossRef] [PubMed]
- Dai, D.; Zeng, S.; Wang, L.; Li, J.F.; Ji, P.; Liu, H.Y.; Sheng, Y.Y. Identification of fruit firmness QTL ff2.1 by SLAF-BSA and QTL mapping in melon. Euphytica 2022, 218, 52. [Google Scholar] [CrossRef]
- Wang, L.; Wang, Y.; Luan, F.; Zhang, X.; Zhao, J.; Yang, Z.; Liu, S. Biparental genetic mapping reveals that CmCLAVATA3 (CmCLV3) is responsible for the variation in carpel number in melon (Cucumis melo L.). Theor. Appl. Genet. 2022, 135, 1909–1921. [Google Scholar] [CrossRef]
- Hu, Z.; Shi, X.; Chen, X.; Zheng, J.; Zhang, A.; Wang, H.; Fu, Q. Fine-mapping and identification of a candidate gene controlling seed coat color in melon (Cucumis melo L. var. chinensis Pangalo). Theor. Appl. Genet. 2022, 135, 803–815. [Google Scholar] [CrossRef] [PubMed]
- Díaz, A.; Martín-Hernández, A.M.; Dolcet-Sanjuan, R.; Garcés-Claver, A.; Álvarez, J.M.; Garcia-Mas, J.; Picó, B.; Monforte, A.J. Quantitative trait loci analysis of melon (Cucumis melo L.) domestication-related traits. Theor. Appl. Genet. 2017, 130, 1837–1856. [Google Scholar] [CrossRef] [PubMed]
- Campos, M.; Gonzalo, M.J.; Díaz, A.; Picó, B.; Gómez-Guillamón, M.L.; Monforte, A.J.; Esteras, C. A Novel Introgression Line Library Derived from a Wild Melon Gives Insights into the Genetics of Melon Domestication, Uncovering New Genetic Variability Useful for Breeding. Int. J. Mol. Sci. 2023, 24, 10099. [Google Scholar] [CrossRef] [PubMed]
- Murray, M.G.; Thompson, W.F. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 1980, 8, 4321–4325. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R. The sequence alignment/map format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef]
- McKenna, A.; Hanna, M.; Banks, E.; Sivachenko, A.; Cibulskis, K.; Kernytsky, A.; Garimella, K.; Altshuler, D.; Gabriel, S.; Daly, M. The genome analysis toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2009, 20, 1297–1303. [Google Scholar] [CrossRef] [PubMed]
- Cingolani, P.; Platts, A.; Wang, L.L.; Coon, M.; Nguyen, T.; Wang, L.; Land, S.J.; Lu, X.; Ruden, D.M. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff. Fly 2012, 6, 80–92. [Google Scholar] [CrossRef]
- Hill, J.T.; Demarest, B.L.; Bisgrove, B.W.; Gorsi, B.; Su, Y.C.; Yost, H.J. MMAPPR: Mutation mapping analysis pipeline for pooled RNA-seq. Genome Res. 2013, 23, 687–697. [Google Scholar] [CrossRef]
- Li, X.; Qiao, L.; Chen, B.; Zheng, Y.; Zhi, C.; Zhang, S.; Pan, Y.; Cheng, Z. SSR markers development and their application in genetic diversity evaluation of garlic (Allium sativum) germplasm. Plant Divers. 2022, 44, 481–491. [Google Scholar] [CrossRef]
- Qiao, L.; Yang, Y.; Zhou, Y.; Cui, H.; Zhou, Y.; Liu, C.; Zhou, Y.; Liu, H.; Cheng, Z.; Pan, Y. Fine genetic mapping of the Mottled Rind Color (Morc) locus reveals a 4895-bp presence-absence variation contributing to the mottled or unmottled fruit rind color in cucumber. Sci. Hortic. 2023, 321, 112303. [Google Scholar] [CrossRef]
Population | Total Plants | Spotted Plants | Non-Spotted Plants | Expected Segregation Ratio | χ2 | p |
---|---|---|---|---|---|---|
XNM125 | 24 | 0 | 24 | - | - | - |
XNM020 | 24 | 24 | 0 | - | - | - |
F1 | 24 | 24 | 0 | - | - | - |
2021S_F2 | 94 | 70 | 24 | 3:1 | 0.014 | 0.91 |
2023S_F2 | 90 | 67 | 23 | 3:1 | 0.015 | 0.90 |
Samples | Clean Reads | Clean Bases (Gbp) | Q30 (%) | Depth (×) | Mapped Reads | Mapping Ratio (%) | Number of SNPs | Number of InDels |
---|---|---|---|---|---|---|---|---|
XNM020 | 50,921,375 | 15.2 | 93.18 | 29 | 50,320,503 | 98.82 | 2,246,184 | 500,924 |
XNM125 | 50,422,593 | 15.1 | 93.29 | 28 | 49,772,142 | 98.71 | 2,061,384 | 450,791 |
Spotted_bulk | 52,316,938 | 15.6 | 93.13 | 28 | 51,202,587 | 97.87 | 2,784,981 | 607,702 |
Non-spotted_bulk | 55,391,437 | 16.6 | 93.00 | 30 | 54,255,913 | 97.95 | 2,766,081 | 607,710 |
Chromosome ID | Sequence Variants | Linkage Analysis Method | Candidate Reigons (Mb) | |
---|---|---|---|---|
Start | End | |||
4 | SNP | ED algorithm | 0.00 | 2.97 |
4 | InDel | ED algorithm | 0.00 | 2.80 |
4 | SNP | ΔSNP-index | 0.00 | 2.23 |
4 | InDel | ΔInDel-index | 0.00 | 2.18 |
5 | SNP | ED algorithm | 0.00 | 2.30 |
5 | InDel | ED algorithm | 0.00 | 2.34 |
5 | SNP | ΔSNP-index | 0.00 | 1.51 |
5 | InDel | ΔInDel-index | 0.00 | 1.56 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Y.; Yang, Y.; Xiang, Y.; Cui, H.; Zhou, Y.; Liu, H.; Zhang, H.; Pan, Y. Bulked Segregant Analysis by Sequencing-Based Genetic Mapping of the Green Spotted Fruit Rind Regulating Locus in Wild Melon XNM020 Reveals Four Possible Candidate Genes. Agronomy 2024, 14, 1106. https://doi.org/10.3390/agronomy14061106
Zhou Y, Yang Y, Xiang Y, Cui H, Zhou Y, Liu H, Zhang H, Pan Y. Bulked Segregant Analysis by Sequencing-Based Genetic Mapping of the Green Spotted Fruit Rind Regulating Locus in Wild Melon XNM020 Reveals Four Possible Candidate Genes. Agronomy. 2024; 14(6):1106. https://doi.org/10.3390/agronomy14061106
Chicago/Turabian StyleZhou, Yuqing, Yuqing Yang, Yachen Xiang, Haibing Cui, Yuan Zhou, Hanqiang Liu, Huijun Zhang, and Yupeng Pan. 2024. "Bulked Segregant Analysis by Sequencing-Based Genetic Mapping of the Green Spotted Fruit Rind Regulating Locus in Wild Melon XNM020 Reveals Four Possible Candidate Genes" Agronomy 14, no. 6: 1106. https://doi.org/10.3390/agronomy14061106
APA StyleZhou, Y., Yang, Y., Xiang, Y., Cui, H., Zhou, Y., Liu, H., Zhang, H., & Pan, Y. (2024). Bulked Segregant Analysis by Sequencing-Based Genetic Mapping of the Green Spotted Fruit Rind Regulating Locus in Wild Melon XNM020 Reveals Four Possible Candidate Genes. Agronomy, 14(6), 1106. https://doi.org/10.3390/agronomy14061106