Phosphorus Supply to Plants of Vaccinium L. Genus: Proven Patterns and Unexplored Issues
Abstract
:1. Introduction
2. Sources of Phosphorus for Plants of Vaccinium Genus
3. Release of Phosphate Ions from Soil Components: Potential Capabilities of Plants of Vaccinium Genus
4. Transport of Phosphate Ions into Plants of Vaccinium Genus
5. The Importance of Mycorrhiza in Supplying Phosphorus to Plants of the Vaccinium Genus
- Secrete phosphatases and phytases that make phosphorus from organic sources available to plants;
- Increase the absorptive area of the branched root systems of plants of the Vaccinium genus that do not have root hairs due to the extensive network of fungal hyphae with highly active fungal transporters, such as Pht1, and due to the effect of fungal signaling compounds that stimulate the branching of the host root system;
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bityutsky, N.P. Mineral Nutrition of Plants; Saint-Petersburg State Univ.: Saint-Petersburg, Russia, 2020; 540p. (In Russian) [Google Scholar]
- Ceasar, S.A. Regulation of low phosphate stress in plants. In Plant Life under Changing Environment; Tripathi, D.K., Singh, V.P., Chaudan, D.K., Sharma, S., Prasad, S.M., Dubey, N.K., Ramawat, N., Eds.; Academic Press: London, UK, 2020; pp. 123–156. [Google Scholar] [CrossRef]
- Paz-Ares, J.; Puga, M.I.; Rojas-Triana, M.; Martinez-Hevia, I.; Diaz, S.; Poza-Carrión, C.; Miñambres, M.; Leyva, A. Plant adaptation to low phosphorus availability: Core signaling, crosstalks, and applied implications. Mol. Plant 2022, 15, 104–124. [Google Scholar]
- Chu, Q.; Zhang, L.; Zhou, J.; Yuan, L.; Chen, F.; Zhang, F.; Rengel, Z. Soil plant-available phosphorus levels and maize genotypes determine the phosphorus acquisition efficiency and contribution of mycorrhizal pathway. Plant Soil 2020, 449, 357–371. [Google Scholar] [CrossRef]
- He, Y.; Tang, Y.; Lin, L.; Shi, W.; Ying, Y. Differential responses of phosphorus accumulation and mobilization in Moso bamboo (Phyllostachys edulis (Carrière) J. Houz) seedlings to short-term experimental nitrogen deposition. Ann. For. Sci. 2023, 80, 10. [Google Scholar] [CrossRef]
- Clayton, J.; Lemanski, K.; Solbach, M.D.; Temperton, V.M.; Bonkowski, M. Two-way NxP fertilisation experiment on barley (Hordeum vulgare) reveals shift from additive to synergistic NP interactions at critical phosphorus fertilisation level. Front. Plant Sci. 2024, 15, 1346729. [Google Scholar] [CrossRef] [PubMed]
- Voronina, E.Y. Mycorrhizas in terrestrial ecosystems: Ecological, physiological and molecular aspects of mycorrhizal symbioses. In Mycology Today; Dyakov, Y.T., Sergeev, Y.V., Eds.; National Academy of Mycology: Moscow, Russia, 2007; Volume 1, pp. 142–234. (In Russian) [Google Scholar]
- Vohník, M. Ericoid mycorrhizal symbiosis: Theoretical background and methods for its comprehensive investigation. Mycorrhiza 2020, 30, 671–695. [Google Scholar] [CrossRef] [PubMed]
- Nemzer, B.V.; Al-Taher, F.; Yashin, A.; Revelsky, I.; Yashin, Y. Cranberry: Chemical composition, antioxidant activity and impact on human health: Overview. Molecules 2022, 27, 1503. [Google Scholar] [CrossRef]
- Vilkickyte, G.; Petrikaite, V.; Pukalskas, A.; Sipailiene, A.; Raudone, L. Exploring Vaccinium vitis-idaea L. as a potential source of therapeutic agents: Antimicrobial, antioxidant, and anti-inflammatory activities of extracts and fractions. J. Ethnopharmacol. 2022, 292, 115207. [Google Scholar] [CrossRef] [PubMed]
- Martău, G.A.; Bernadette-Emőke, T.; Odocheanu, R.; Soporan, D.A.; Bochiș, M.; Simon, E.; Vodnar, D.C. Vaccinium species (Ericaceae): Phytochemistry and biological properties of medicinal plants. Molecules 2023, 28, 1533. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Muscat, J.E.; Kris-Etherton, P.M.; Chinchilli, V.M.; Al-Shaar, L.; Richie, J.P. The epidemiology of berry consumption and association of berry consumption with diet quality and cardiometabolic risk factors in United States adults: The National Health and Nutrition Examination survey, 2003–2018. J. Nutr. 2024, 154, 1014–1026. [Google Scholar] [CrossRef]
- Mohammadi, M.; Yahyapour, Y.; Nasrollahian, S.; Tayefeh-Arbab, M.H.; Javanian, M.; Fadardi, M.R.; Pournajaf, A. A review on herbal secondary metabolites against COVID-19 focusing on the genetic variants of SARS-CoV-2. Jundishapur J. Nat. Pharm. Prod. 2022, 17, e129618. [Google Scholar] [CrossRef]
- Petruskevicius, A.; Viskelis, J.; Urbonaviciene, D.; Viskelis, P. Anthocyanin accumulation in berry fruits and their antimicrobial and antiviral properties: An overview. Horticulturae 2023, 9, 288. [Google Scholar] [CrossRef]
- Maqbool, R.; Percival, D.; Zaman, Q.; Astatkie, T.; Adl, S.; Buszard, D. Improved growth and harvestable yield through optimization of fertilizer rates of soil-applied nitrogen, phosphorus, and potassium in wild blueberry (Vaccinium angustifolium Ait.). HortScience 2016, 51, 1092–1097. [Google Scholar] [CrossRef]
- Kennedy, C.D.; Kleinman, P.J.; DeMoranville, C.J.; Elkin, K.R.; Bryant, R.B.; Buda, A.R. Managing surface water inputs to reduce phosphorus loss from cranberry farms. J. Environ. Qual. 2017, 46, 1472–1479. [Google Scholar] [CrossRef] [PubMed]
- Pantigoso, H.A.; Manter, D.K.; Vivanco, J.M. Phosphorus addition shifts the microbial community in the rhizosphere of blueberry (Vaccinium corymbosum L.). Rhizosphere 2018, 7, 1–7. [Google Scholar] [CrossRef]
- Soils for Nutrition: State of the Art; FAO: Rome, Italy, 2022; 78p.
- Yang, Z.; Zhao, P.; Luo, X.; Peng, W.; Liu, Z.; Xie, G.; Wang, M.; An, F. An Oxalate Transporter gene, AtOT, enhances aluminum tolerance in Arabidopsis thaliana by regulating oxalate efflux. Int. J. Mol. Sci. 2023, 24, 4516. [Google Scholar] [CrossRef] [PubMed]
- Tipping, E.; Benham, S.; Boyle, J.F.; Crow, P.; Davies, J.; Fischer, U.; Toberman, H. Atmospheric deposition of phosphorus to land and freshwater. Environ. Sci. Process. Impacts 2014, 16, 1608–1617. [Google Scholar] [CrossRef] [PubMed]
- Mikhailova, L.A. Phosphorus transformation in sod-podzolic soils during long-term cultivation of crops without phosphorus fertilizers. Fertility 2008, 3, 6–7. (In Russian) [Google Scholar]
- Cory, A.B.; Chanton, J.P.; Spencer, R.G.M.; Ogles, O.C.; Rich, V.I.; McCalley, C.K. Quantifying the inhibitory impact of soluble phenolics on anaerobic carbon mineralization in a thawing permafrost peatland. PLoS ONE 2022, 17, e0252743. [Google Scholar] [CrossRef] [PubMed]
- Turner, B.L. Resource partitioning for soil phosphorus: A hypothesis. J. Ecol. 2008, 96, 698–702. [Google Scholar] [CrossRef]
- Richardson, A.E.; Barea, J.M.; McNeill, A.M.; Prigent-Combaret, C. Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 2009, 321, 305–339. [Google Scholar] [CrossRef]
- Gerke, J. The acquisition of phosphate by higher plants: Effect of carboxylate release by the roots. A critical review. J. Plant Nutr. Soil Sci. 2015, 178, 351–364. [Google Scholar] [CrossRef]
- McLaren, T.I.; Simpson, R.J.; McLaughlin, M.J.; Smernik, R.J.; McBeath, T.M.; Guppy, C.N.; Richardson, A.E. An assessment of various measures of soil phosphorus and the net accumulation of phosphorus in fertilized soils under pasture. J. Plant Nutr. Soil Sci. 2015, 178, 543–554. [Google Scholar]
- Huang, J.; Xu, C.C.; Ridoutt, B.G.; Wang, X.C.; Ren, P.A. Nitrogen and phosphorus losses and eutrophication potential associated with fertilizer application to cropland in China. J. Clean. Prod. 2017, 159, 171–179. [Google Scholar] [CrossRef]
- Le Roux, G.; Laverret, E.; Shotyk, W. Fate of calcite, apatite and feldspars in an ombrotrophic peat bog, Black Forest, Germany. J. Geol. Soc. Lond. 2006, 163, 641–646. [Google Scholar] [CrossRef]
- Pinochet, D.; Artacho, P.; Maraboli, A. Manual de Fertilización de Arándanos Cultivados en el sur de Chile; Imprenta América: Valdivia, Chile, 2014; 71p. [Google Scholar]
- Komosa, A.; Roszyk, J.; Mieloch, M. Content of nutrients in soils of highbush blueberry (Vaccinium corymbosum L.) plantations in Poland in a long-term study. J. Elem. 2017, 2, 1193–1207. [Google Scholar] [CrossRef]
- Berezina, E.V.; Brilkina, A.A.; Veselov, A.P. Content of phenolic compounds, ascorbic acid, and photosynthetic pigments in Vaccinium macrocarpon Ait. dependent on seasonal plant development stages and age (the example of introduction in Russia). Sci. Hortic. 2017, 218, 139–146. [Google Scholar] [CrossRef]
- Chupakova, A.A.; Chupakov, A.V.; Shirokova, L.S.; Zabelina, S.A. Content and distribution of biogenic elements (nitrogen, phosphorus, silicon) in thermokarst water bodies of the Bolshezemelskaya tundra. In Organic Matter and Biogenic Elements in Inland Reservoirs and Marine Waters; Puzanov, A.V., Bezmaternykh, D.M., Zinovjev, A.T., Kirillov, V.V., Papina, T.S., Troshkin, D.N., Eds.; Institute of Water and Ecological Problems: Barnaul, Russia, 2017; pp. 269–273. (In Russian) [Google Scholar]
- Schillereff, D.N.; Chiverrell, R.C.; Sjöström, J.K.; Kylander, M.E.; Boyle, J.F.; Davies, J.A.C.; Toberman, H.; Tipping, E. Phosphorus supply affects long-term carbon accumulation in mid-latitude ombrotrophic peatlands. Commun. Earth Environ. 2021, 2, 241. [Google Scholar] [CrossRef]
- Ziadi, N.; Tran, T.S. Mehlich 3-extractable elements. In Soil Sampling and Methods of Analysis; Carter, M.R., Gregorich, E.G., Eds.; CRC Press: Boca Raton, FL, USA, 2008; pp. 107–114. [Google Scholar]
- Chapin, F.S.; Shaver, G.R. Physiological and growth responses of arctic plants to a field experiment simulating climatic change. Ecology 1996, 77, 822–840. [Google Scholar] [CrossRef]
- Sharma, S.B.; Sayyed, R.Z.; Trivedi, M.H.; Gobi, T.A. Phosphate solubilizing microbes: Sustainable approach for managing phosphorus deficiency in agricultural soils. Springerplus 2013, 2, 587. [Google Scholar] [CrossRef]
- Johri, A.K.; Oelmüller, R.; Dua, M.; Yadav, V.; Kumar, M.; Tuteja, N.; Varma, A.; Bonfante, P.; Persson, B.L.; Stroud, R.M. Fungal association and utilization of phosphate by plants: Success, limitations, and future prospects. Front. Microbiol. 2015, 6, 984. [Google Scholar] [CrossRef] [PubMed]
- Hinsinger, P.; Gilkes, R.J. Dissolution of phosphate rock in the rhizosphere of five plant species grown in an acid, P-fixing mineral substrate. Geoderma 1997, 75, 231–249. [Google Scholar] [CrossRef]
- Dakora, F.D.; Phillips, D.A. Root exudates as mediators of mineral acquisition in low-nutrient environments. Plant Soil 2002, 245, 35–47. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Kobayashi, Y.; Wasaki, J.; Koyama, H. Organic acid excretion from roots: A plant mechanism for enhancing phosphorus acquisition, enhancing aluminum tolerance, and recruiting beneficial rhizobacteria. Soil Sci. Plant Nutr. 2018, 64, 697–704. [Google Scholar] [CrossRef]
- Kane, P.M. Proton transport and pH control in fungi. Adv. Exp. Med. Biol. 2016, 892, 33–68. [Google Scholar] [CrossRef] [PubMed]
- Portillo, F. Regulation of plasma membrane H+-ATPase in fungi and plants. Biochim. Biophys. Acta 2000, 1469, 31–42. [Google Scholar] [CrossRef] [PubMed]
- Kabała, K.; Janicka, M. Structural and functional diversity of two ATP-driven plant proton pumps. Int. J. Mol. Sci. 2023, 24, 4512. [Google Scholar] [CrossRef] [PubMed]
- Palmgren, M.G. Plant plasma membrane H+-ATPases: Powerhouses for nutrient uptake. Annu. Rev. Plant Physiol. Plant Mol. Biol. 2001, 52, 817–845. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wei, J.; Li, D.; Kong, X.; Rengel, Z.; Chen, L.; Chen, Q. The role of the plasma membrane H+-ATPase in plant responses to aluminum toxicity. Front. Plant Sci. 2017, 8, 1757. [Google Scholar] [CrossRef] [PubMed]
- Canarini, A.; Kaiser, C.; Merchant, A.; Richter, A.; Wanek, W. Root exudation of primary metabolites: Mechanisms and their roles in plant responses to environmental stimuli. Front. Plant Sci. 2019, 10, 422679. [Google Scholar] [CrossRef] [PubMed]
- Dabravolski, S.A.; Isayenkov, S.V. Recent updates on ALMT transporters’ physiology, regulation, and molecular evolution in plants. Plants 2023, 12, 3167. [Google Scholar] [CrossRef]
- Mora-Macías, J.; Ojeda-Rivera, J.O.; Gutiérrez-Alanís, D.; Yong-Villalobos, L.; Oropeza-Aburto, A.; Raya-González, J.; Herrera-Estrella, L. Malate-dependent Fe accumulation is a critical checkpoint in the root developmental response to low phosphate. Proc. Natl. Acad. Sci. USA 2017, 114, 3563–3572. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Fan, W.; Zheng, S. Mechanisms and regulation of aluminum-induced secretion of organic acid anions from plant roots. J. Zhejiang Univ. Sci. B 2019, 20, 513–527. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, T.B.; Pinto, R.T.; Paiva, L.V. Comprehensive characterization of the ALMT and MATE families on Populus trichocarpa and gene co-expression network analysis of its members during aluminium toxicity and phosphate starvation stresses. 3 Biotech 2020, 10, 525. [Google Scholar] [CrossRef] [PubMed]
- Kan, A.; Maruyama, H.; Aoyama, N.; Wasaki, J.; Tateishi, Y.; Watanabe, T.; Shinano, T. Relationship between soil phosphorus dynamics and low-phosphorus responses at specific root locations of white lupine. Soil Sci. Plant Nutr. 2022, 68, 526–535. [Google Scholar] [CrossRef]
- Valentinuzzi, F.; Pii, Y.; Vigani, G.; Lehmann, M.; Cesco, S.; Mimmo, T. Phosphorus and iron deficiencies induce a metabolic reprogramming and affect the exudation traits of the woody plant Fragaria×ananassa. J. Exp. Bot. 2015, 66, 6483–6495. [Google Scholar] [PubMed]
- Nunez, G.H.; Olmstead, J.W.; Darnell, R.L. Rhizosphere acidification is not part of the strategy I iron deficiency response of Vaccinium arboreum and the southern highbush blueberry. HortScience 2015, 50, 1064–1069. [Google Scholar] [CrossRef]
- Millaleo, R.; Alvear, M.; Aguilera, P.; Gonz´alez-Villagra, J.; de la Luz Mora, M.; Alberdi, M.; Reyes-Díaz, M. Mn toxicity differentially affects physiological and biochemical features in highbush blueberry (Vaccinium corymbosum L.) cultivars. J. Soil Sci. Plant Nutr. 2019, 20, 795–805. [Google Scholar] [CrossRef]
- Cárcamo-Fincheira, P.; Reyes-Díaz, M.; Omena-García, R.P.; Vargas, J.R.; Alvear, M.; Florez-Sarasa, I.; Inostroza-Blancheteau, C. Metabolomic analyses of highbush blueberry (Vaccinium corymbosum L.) cultivars revealed mechanisms of resistance to aluminum toxicity. Environ. Exp. Bot. 2021, 183, 104338. [Google Scholar] [CrossRef]
- Edwards, K.R.; Kaštovská, E.; Borovec, J. Species effects and seasonal trends on plant efflux quantity and quality in a spruce swamp forest. Plant Soil 2018, 426, 179–196. [Google Scholar] [CrossRef]
- Taulavuori, E.; Rakowski, K.; Laine, K. Seasonal changes in plasma membrane H+-ATPase activity of Vaccinium myrtillus (L.) and Pinus sylvestris (L.). Trees 2007, 21, 613–617. [Google Scholar] [CrossRef]
- Chen, L.; Liu, Y.; Liu, H.; Kang, L.; Geng, J.; Gai, Y.; Ding, Y.; Sun, H.; Li, Y. Identification and expression analysis of MATE genes involved in flavonoid transport in blueberry plants. PLoS ONE 2015, 10, e0118578. [Google Scholar] [CrossRef]
- Zhao, R.; Chen, L.; Xiao, J.; Guo, Y.; Li, Y.; Chen, W.; Vancov, T.; Guo, W. Functional activity analysis of plasma membrane H+-ATPase gene promoter and physiological functional identification of interactive transcription factor in blueberry. Environ. Exp. Bot. 2022, 203, 105048. [Google Scholar] [CrossRef]
- Chen, L.; Zhao, R.; Yu, J.; Gu, J.; Li, Y.; Chen, W.; Guo, W. Functional analysis of plasma membrane H+-ATPases in response to alkaline stress in blueberry. Sci. Hortic. 2022, 306, 111453. [Google Scholar] [CrossRef]
- Zhou, J.; Zhang, Y.; Wu, K.; Hu, M.; Wu, H.; Chen, D. National estimates of environmental thresholds for upland soil phosphorus in China based on a meta-analysis. Sci. Total Environ. 2021, 780, 146677. [Google Scholar] [CrossRef] [PubMed]
- Stéger, A.; Palmgren, M. Root hair growth from the pH point of view. Front. Plant Sci. 2022, 13, 949672. [Google Scholar] [CrossRef] [PubMed]
- Tran, H.T.; Hurley, B.A.; Plaxton, W.C. Feeding hungry plants: The role of purple acid phosphatases in phosphate nutrition. Plant Sci. 2010, 179, 14–27. [Google Scholar] [CrossRef]
- Wu, Y.; Zhao, C.; Zhao, X.; Yang, L.; Liu, C.; Jiang, L.; Liu, G.; Liu, P.; Luo, L. Multi-omics-based identification of purple acid phosphatases and metabolites involved in phosphorus recycling in stylo root exudates. Int. J. Biol. Macromol. 2023, 241, 124569. [Google Scholar] [CrossRef] [PubMed]
- Staudinger, C.; Dissanayake, B.M.; Duncan, O.; Millar, A.H. The wheat secreted root proteome: Implications for phosphorus mobilisation and biotic interactions. J. Proteom. 2022, 252, 104450. [Google Scholar] [CrossRef] [PubMed]
- Lung, S.C.; Leung, A.; Kuang, R.; Wang, Y.; Leung, P.; Lim, B.L. Phytase activity in tobacco (Nicotiana tabacum) root exudates is exhibited by a purple acid phosphatase. Phytochemistry 2008, 69, 365–373. [Google Scholar] [CrossRef] [PubMed]
- Ahmad-Ramli, M.F.; Cornulier, T.; Johnson, D. Partitioning of soil phosphorus regulates competition between Vaccinium vitis-idaea and Deschampsia cespitosa. Ecol. Evol. 2013, 3, 4243–4252. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Otgonsuren, B.; Duan, W.; Godbold, D. Comparison of root surface enzyme activity of Ericaceous plants and Picea abies growing at the tree line in the Austrian Alps. Forests 2018, 9, 575. [Google Scholar] [CrossRef]
- Nussaume, L.; Kanno, S.; Javot, H.; Marin, E.; Pochon, N.; Ayadi, A.; Nakanishi, T.M.; Thibaud, M.C. Phosphate import in plants: Focus on the PHT1 transporters. Front. Plant Sci. 2011, 2, 83. [Google Scholar] [CrossRef]
- Roch, G.V.; Maharajan, T.; Ceasar, S.A.; Ignacimuthu, S. The role of PHT1 family transporters in the acquisition and redistribution of phosphorus in plants. Crit. Rev. Plant Sci. 2019, 38, 171–198. [Google Scholar] [CrossRef]
- Cai, B.; Vancov, T.; Si, H.; Yang, W.; Tong, K.; Chen, W.; Fang, Y. Isolation and characterization of endomycorrhizal fungi associated with growth promotion of blueberry plants. J. Fungi 2021, 7, 584–599. [Google Scholar] [CrossRef] [PubMed]
- Turner, B.L.; Baxter, R.; Whitton, B.A. Seasonal phosphatase activity in three characteristic soils of the English uplands polluted by long-term atmospheric nitrogen deposition. Environ. Pollut. 2002, 120, 313–317. [Google Scholar] [CrossRef] [PubMed]
- Kandziora-Ciupa, M.; Nadgórska-Socha, A.; Barczyk, G. The influence of heavy metals on biological soil quality assessments in the Vaccinium myrtillus L. rhizosphere under different field conditions. Ecotoxicology 2021, 30, 292–310. [Google Scholar] [CrossRef]
- Ryan, J.; Ibrikci, H.; Delgado, A.; Torrent, J.; Sommer, R.; Rashid, A. Significance of phosphorus for agriculture and the environment in the West Asia and North Africa region. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: Burlington, VT, USA, 2012; Volume 114, pp. 91–153. [Google Scholar]
- Vohník, M.; Albrechtová, J. The co-occurrence and morphological continuum between ericoid mycorrhiza and dark septate endophytes in roots of six European Rhododendron species. Folia Geobot. 2011, 46, 373–386. [Google Scholar] [CrossRef]
- Smith, S.E.; Read, D. Mycorrhizal Symbiosis; Academic Press: London, UK, 2008; 804p. [Google Scholar]
- Mikheev, V.S.; Struchkova, I.V.; Ageyeva, M.N.; Brilkina, A.A.; Berezina, E.V. The role of Phialocephala fortinii in improving plants’ phosphorus nutrition: New puzzle pieces. J. Fungi 2022, 8, 1225–1241. [Google Scholar] [CrossRef]
- Mikheev, V.S.; Struchkova, I.V.; Churkina, L.M.; Brilkina, A.A.; Berezina, E.V. Several characteristics of Oidiodendron maius GL Barron important for heather plants’ controlled mycorrhization. J. Fungi 2023, 9, 728–741. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Struchkova, I.V.; Mikheev, V.S.; Berezina, E.V.; Brilkina, A.A. Phosphorus Supply to Plants of Vaccinium L. Genus: Proven Patterns and Unexplored Issues. Agronomy 2024, 14, 1109. https://doi.org/10.3390/agronomy14061109
Struchkova IV, Mikheev VS, Berezina EV, Brilkina AA. Phosphorus Supply to Plants of Vaccinium L. Genus: Proven Patterns and Unexplored Issues. Agronomy. 2024; 14(6):1109. https://doi.org/10.3390/agronomy14061109
Chicago/Turabian StyleStruchkova, Irina V., Vyacheslav S. Mikheev, Ekaterina V. Berezina, and Anna A. Brilkina. 2024. "Phosphorus Supply to Plants of Vaccinium L. Genus: Proven Patterns and Unexplored Issues" Agronomy 14, no. 6: 1109. https://doi.org/10.3390/agronomy14061109
APA StyleStruchkova, I. V., Mikheev, V. S., Berezina, E. V., & Brilkina, A. A. (2024). Phosphorus Supply to Plants of Vaccinium L. Genus: Proven Patterns and Unexplored Issues. Agronomy, 14(6), 1109. https://doi.org/10.3390/agronomy14061109