Straw Return Substituting Potassium Fertilizer Increases Crop Yield, Efficiency, and Quality in Maize-Wheat Rotation System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Experimental Design and Management
2.3. Measurements and Methods
2.3.1. Grain Yield
2.3.2. Grain Nutrient Content
2.3.3. Grain Protein Components
2.3.4. N and P Fertilizer Agronomic Efficiency
2.4. Statistical Analysis
3. Results
3.1. Grain Yield
3.2. N and P Fertilizer Agronomic Efficiency
3.3. Soil Properties
3.4. N, P, and K Content in Grain
3.5. Protein Content and Protein Yield
3.6. Protein Components
4. Discussion
4.1. Crop Yields and Fertilizer Agronomic Efficiency Affected by Straw Return Substituting K Fertilizer
4.2. Grain Quality Affected by Straw Return Substituting K Fertilizer
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Luo, N.; Meng, Q.; Feng, P.; Qu, Z.; Yu, Y.; Liu, D.L.; Müller, C.; Wang, P. China can be self-sufficient in maize production by 2030 with optimal crop management. Nat. Commun. 2023, 14, 2637. [Google Scholar] [CrossRef] [PubMed]
- Barrett, C.B. Overcoming global food security challenges through science and solidarity. Am. J. Agric. Econ. 2021, 103, 422–447. [Google Scholar] [CrossRef]
- Qureshi, M.E.; Dixon, J.; Wood, M. Public policies for improving food and nutrition security at different scales. Food Sec. 2015, 7, 393–403. [Google Scholar] [CrossRef]
- Chen, X.; Cui, Z.; Fan, M.; Vitousek, P.; Zhao, M.; Ma, W.; Wang, Z.; Zhang, W.; Yan, X.; Yang, J.; et al. Producing more grain with lower environmental costs. Nature 2014, 514, 486–489. [Google Scholar] [CrossRef] [PubMed]
- Shang, Q.; Ling, N.; Feng, X.; Yang, X.; Wu, P.; Zou, J.; Shen, Q.; Guo, S. Soil fertility and its significance to crop productivity and sustainability in typical agroecosystem: A summary of long-term fertilizer experiments in China. Plant Soil 2014, 381, 13–23. [Google Scholar] [CrossRef]
- Fan, M.S.; Christie, P.; Zhang, W.; Zhang, F. Crop productivity, fertilizer use, and soil quality in China. In Food Security and Soil Quality; CRC Press: Boca Raton, FL, USA, 2010; ISBN 978-0-429-13053-3. [Google Scholar]
- Sun, M.; Xu, X.; Wang, C.; Bai, Y.; Fu, C.; Zhang, L.; Fu, R.; Wang, Y. Environmental burdens of the comprehensive utilization of straw: Wheat straw utilization from a life-cycle perspective. J. Clean. Prod. 2020, 259, 120702. [Google Scholar] [CrossRef]
- Wang, Z.H.; Li, S.X.; Malhi, S. Effects of fertilization and other agronomic measures on nutritional quality of crops. J. Sci. Food Agric. 2008, 88, 7–23. [Google Scholar] [CrossRef]
- Zhao, K.; Huang, M.; Li, Y.; Wu, J.; Tian, W.; Li, J.; Hou, Y.; Wu, S.; Zhang, J.; Zhang, Z.; et al. Combined organic fertilizer and straw return enhanced summer maize productivity and optimized soil nitrate–N distribution in rainfed summer maize–winter wheat rotation on the southeast loess plateau. J. Soil Sci. Plant Nutr. 2023, 23, 938–952. [Google Scholar] [CrossRef]
- Fan, F.; Zhang, H.; Alandia, G.; Luo, L.; Cui, Z.; Niu, X.; Liu, R.; Zhang, X.; Zhang, Y.; Zhang, F. Long-term effect of manure and mineral fertilizer application rate on maize yield and accumulated nutrients use efficiencies in North China plain. Agronomy 2020, 10, 1329. [Google Scholar] [CrossRef]
- Liu, J.; Liu, H.; Huang, S.; Yang, X.; Wang, B.; Li, X.; Ma, Y. Nitrogen efficiency in long-term wheat-maize cropping systems under diverse field sites in China. Field Crops Res. 2010, 118, 145–151. [Google Scholar] [CrossRef]
- Amirahmadi, E.; Ghorbani, M.; Moudrý, J.; Bernas, J.; Mukosha, C.E.; Hoang, T.N. Environmental Assessment of Dryland and Irrigated Winter Wheat Cultivation under Compost Fertilization Strategies. Plants 2024, 13, 509. [Google Scholar] [CrossRef] [PubMed]
- Divito, G.A.; Sadras, V.O. How do phosphorus, potassium and sulphur affect plant growth and biological nitrogen fixation in crop and pasture legumes? A meta-analysis. Field Crops Res. 2014, 156, 161–171. [Google Scholar] [CrossRef]
- Pettigrew, W.T. Potassium influences on yield and quality production for maize, wheat, soybean and cotton. Physiol. Plantarum 2008, 133, 670–681. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Fan, Y.; Sun, J.; Gao, J.; Wang, Z.; Yu, X. Effects of straw return with potassium fertilizer on the stem lodging resistance, grain quality and yield of spring maize (Zea mays L.). Sci. Rep. 2023, 13, 20307. [Google Scholar] [CrossRef] [PubMed]
- Tan, D.; Jin, J.; Jiang, L.; Huang, S.; Liu, Z. Potassium assessment of grain producing soils in north China. Agric. Ecosyst. Environ. 2012, 148, 65–71. [Google Scholar] [CrossRef]
- Dai, J.; Wang, Z.; Li, M.; He, G.; Li, Q.; Cao, H.; Wang, S.; Gao, Y.; Hui, X. Winter wheat grain yield and summer nitrate leaching: Long-term effects of nitrogen and phosphorus rates on the loess plateau of China. Field Crops Res. 2016, 196, 180–190. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, D.; Wu, M.; Mao, Y.; Zhang, F.; Fan, X. Long-term straw returning improve soil K balance and potassium supplying ability under rice and wheat cultivation. Sci. Rep. 2021, 11, 22260. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Bai, Z.; Chadwick, D.; Velthof, G.L.; Zhao, H.; Li, X.; Hu, C.; Ma, L. Mitigation options to reduce nitrogen losses to water from crop and livestock production in China. Curr. Opin. Environ. Sust. 2019, 40, 95–107. [Google Scholar] [CrossRef]
- Liu, X.; Gu, W.; Li, C.; Li, J.; Wei, S. Effects of nitrogen fertilizer and chemical regulation on spring maize lodging characteristics, grain filling and yield formation under high planting density in Heilongjiang province, China. J. Integr. Agric. 2021, 20, 511–526. [Google Scholar] [CrossRef]
- Li, H.; Dai, M.; Dai, S.; Dong, X. Current status and environment impact of direct straw return in China’s cropland—A review. Ecotox. Environ. Saf. 2018, 159, 293–300. [Google Scholar] [CrossRef]
- Xia, L.; Lam, S.K.; Wolf, B.; Kiese, R.; Chen, D.; Butterbach-Bahl, K. Trade-offs between soil carbon sequestration and reactive nitrogen losses under straw return in global agroecosystems. Glob. Change Biol. 2018, 24, 5919–5932. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.; Li, D.; Yu, J.; Bai, X.; Cui, W.; Liu, R.; Zhuang, M. Environmental and economic benefits of substituting chemical potassium fertilizer with crop straw residues in China. Environ. Sci. Pollut. Res. 2023, 30, 30603–30611. [Google Scholar] [CrossRef] [PubMed]
- Arienzo, M.; Christen, E.W.; Quayle, W.; Kumar, A. A Review of the fate of potassium in the soil–plant system after land application of wastewaters. J. Hazard. Mater. 2009, 164, 415–422. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.U.; Guo, Z.; Jiang, F.; Peng, X. Does straw return increase crop yield in the wheat-maize cropping system in China? A meta-analysis. Field Crops Res. 2022, 279, 108447. [Google Scholar] [CrossRef]
- Sui, P.; Tian, P.; Lian, H.; Wang, Z.; Ma, Z.; Qi, H.; Mei, N.; Sun, Y.; Wang, Y.; Su, Y.; et al. Straw incorporation management affects maize grain yield through regulating nitrogen uptake, water use efficiency, and root distribution. Agronomy 2020, 10, 324. [Google Scholar] [CrossRef]
- Zhuang, M.; Zhang, J.; Kong, Z.; Fleming, R.M.; Zhang, C.; Zhang, Z. Potential environmental benefits of substituting nitrogen and phosphorus fertilizer with usable crop straw in China during 2000–2017. J. Clean. Prod. 2020, 267, 122125. [Google Scholar] [CrossRef]
- Li, X.; Chen, M.; Le, H.P.; Wang, F.; Guo, Z.; Iinuma, Y.; Chen, J.; Herrmann, H. Atmospheric outflow of PM2.5 saccharides from megacity shanghai to east China sea: Impact of biological and biomass burning sources. Atmos. Environ. 2016, 143, 1–14. [Google Scholar] [CrossRef]
- Nie, Y.; Chang, S.; Cai, W.; Wang, C.; Fu, J.; Hui, J.; Yu, L.; Zhu, W.; Huang, G.; Kumar, A.; et al. Spatial distribution of usable biomass feedstock and technical bioenergy potential in China. GCB Bioenergy 2020, 12, 54–70. [Google Scholar] [CrossRef]
- Han, Y.; Ma, W.; Zhou, B.; Salah, A.; Geng, M.; Cao, C.; Zhan, M.; Zhao, M. Straw return increases crop grain yields and K-use efficiency under a maize-rice cropping system. Crop J. 2021, 9, 168–180. [Google Scholar] [CrossRef]
- Douglas, L.A.; Riazi, A.; Smith, C.J. A semi-micro method for determining total nitrogen in soils and plant material containing nitrite and nitrate. Soil Sci. Soc. Am. J. 1980, 44, 431–433. [Google Scholar] [CrossRef]
- Zhang, Y.; Dai, X.; Jia, D.; Li, H.; Wang, Y.; Li, C.; Xu, H.; He, M. Effects of plant density on grain yield, protein size distribution, and breadmaking quality of winter wheat grown under two nitrogen fertilisation rates. Eur. J. Agron. 2016, 73, 1–10. [Google Scholar] [CrossRef]
- Luo, L.; Hui, X.; Wang, Z.; Zhang, X.; Xie, Y.; Gao, Z.; Chai, S.; Lu, Q.; Li, T.; Sun, M.; et al. Multi-site evaluation of plastic film mulch and nitrogen fertilization for wheat grain yield, protein content and its components in semiarid areas of China. Field Crops Res. 2019, 240, 86–94. [Google Scholar] [CrossRef]
- Wu, Y.; Jia, Z.; Ren, X.; Zhang, Y.; Chen, X.; Bing, H.; Zhang, P. Effects of Ridge and Furrow Rainwater Harvesting System Combined with Irrigation on Improving Water Use Efficiency of Maize (Zea mays L.) in Semi-Humid Area of China. Agric. Water Manag. 2015, 158, 1–9. [Google Scholar] [CrossRef]
- Zhao, H.; Mao, A.; Yang, H.; Wang, T.; Dou, Y.; Wang, Z.; Malhi, S. Increased dryland wheat economic returns, and decreased greenhouse gas emissions by year-round straw mulching in dryland areas of China. J. Clean. Prod. 2021, 325, 129337. [Google Scholar] [CrossRef]
- Li, R.; Chai, S.; Chai, Y.; Li, Y.; Chang, L.; Cheng, H. Straw Strip Mulching: A sustainable technology for saving water and improving efficiency in dryland winter wheat production. J. Integr. Agric. 2022, 21, 3556–3568. [Google Scholar] [CrossRef]
- Chen, J.; Zheng, M.; Pang, D.; Yin, Y.; Han, M.; Li, Y.; Luo, Y.; Xu, X.; Li, Y.; Wang, Z. Straw return and appropriate tillage method improve grain yield and nitrogen efficiency of winter wheat. J. Integr. Agric. 2017, 16, 1708–1719. [Google Scholar] [CrossRef]
- Liao, Z.; Zhang, C.; Yu, S.; Lai, Z.; Wang, H.; Zhang, F.; Li, Z.; Wu, P.; Fan, J. Ridge-furrow planting with black film mulching increases rainfed summer maize production by improving resources utilization on the loess plateau of China. Agric. Water Manag. 2023, 289, 108558. [Google Scholar] [CrossRef]
- Tian, Z.; Yin, Y.; Li, B.; Zhong, K.; Liu, X.; Jiang, D.; Cao, W.; Dai, T. Optimizing planting density and nitrogen application to mitigate yield loss and improve grain quality of late-sown wheat under rice-wheat rotation. J. Integr. Agric. 2024; in press. [Google Scholar] [CrossRef]
- Wang, X.B.; Cai, D.X.; Hoogmoed, W.B.; Oenema, O.; Perdok, U.D. Developments in conservation tillage in rainfed regions of north China. Soil Tillage Res. 2007, 93, 239–250. [Google Scholar] [CrossRef]
- Uthayakumaran, S.; Lukow, O.M. Improving wheat for bread and tortilla production by manipulating glutenin-to-gliadin ratio. J. Sci. Food Agric. 2005, 85, 2111–2118. [Google Scholar] [CrossRef]
- Takač, V.; Tóth, V.; Rakszegi, M.; Mikić, S.; Mirosavljević, M.; Kondić-Špika, A. Differences in processing quality traits, protein content and composition between spelt and bread wheat genotypes grown under conventional and organic production. Foods 2021, 10, 156. [Google Scholar] [CrossRef]
- Chen, L.; Sun, S.; Yao, B.; Peng, Y.; Gao, C.; Qin, T.; Zhou, Y.; Sun, C.; Quan, W. Effects of straw return and straw biochar on soil properties and crop growth: A review. Front. Plant Sci. 2022, 13, 986763. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Gan, G.; Chen, X.; Zou, J. Effects of long-term straw management and potassium fertilization on crop yield, soil properties, and microbial community in a rice–oilseed rape rotation. Agriculture 2021, 11, 1233. [Google Scholar] [CrossRef]
Soil Characteristics | Value | Unit |
---|---|---|
Bulk density | 1.53 ± 0.05 | g cm−3 |
Organic matter | 15.80 ± 0.42 | g kg−1 |
Total nitrogen | 0.90 ± 0.02 | g kg−1 |
Available phosphors | 10.39 ± 0.31 | mg kg−1 |
Available potassium | 166.0 ± 4.12 | mg kg−1 |
Field capacity | 23.48 ± 0.91 | % |
pH | 7.30 ± 0.26 | - |
Treatment | Fertilizer and Straw Management |
---|---|
CK | Zero fertilizer was applied, and straw of previous crops was removed from field during maize and wheat seasons |
NP | 207 kg N ha−1 was evenly applied when rainfall occurred around jointing stage of summer maize, and 150 kg N ha−1, and 120 kg P2O5 ha−1 were manually broadcasted and thoroughly incorporated into the soil by plowing (25–30 cm) at the sowing of winter wheat, and straw was removed from the field during maize and wheat seasons |
NPK | The management of N and P2O5 fertilizer and straw was the same as NP, and 90 kg K2O ha−1 was manually broadcasted and thoroughly incorporated into the soil by plowing (25–30 cm) during sowing of winter wheat |
NPS | All fertilizer management was the same as the NP, and 100% straw of the previous winter wheat was surface-mulched during the summer maize season, and 50% straw (length was ≤5.0 cm) of the previous summer maize was incorporated into the soil by plowing (25–30 cm) during sowing of winter wheat season. |
Year | Treatment | Summer Maize (kg hm−2) | Winter Wheat (kg hm−2) | Annual (kg hm−2) |
---|---|---|---|---|
2015–2016 (2015) | CK | 4161.5 ± 165.85 ab | 3404.7 ± 26.79 a | 7566.2 ± 154.21 ab |
NP | 3474.0 ± 383.37 b | 3316.3 ± 81.03 ab | 6790.2 ± 464.40 bc | |
NPK | 3423.6 ± 283.28 b | 3198.5 ± 95.24 b | 6622.2 ± 374.24 c | |
NPS | 4711.8 ± 455.69 a | 3492.7 ± 113.55 a | 8204.5 ± 394.72 a | |
2016–2017 (2016) | CK | 3960.9 ± 78.67 c | 2868.8 ± 145.44 b | 6829.7 ± 196.94 c |
NP | 4265.6 ± 106.82 b | 4252.1 ± 347.15 a | 8517.7 ± 448.92 ab | |
NPK | 4385.4 ± 18.54 b | 4021.9 ± 333.79 a | 8407.2 ± 327.33 a | |
NPS | 5088.5 ± 204.26 a | 4096.9 ± 130.68 a | 9185.4 ± 238.90 a | |
2017–2018 (2017) | CK | 506.3 ± 0.0 b | 3876.8 ± 1.84 b | 4383.0 ± 1.84 c |
NP | 403.1 ± 20.89 b | 4791.5 ± 100.34 a | 5194.6 ± 85.94 b | |
NPK | 499.0 ± 229.66 b | 4300.5 ± 319.73 b | 4799.5 ± 535.75 bc | |
NPS | 1270.8 ± 97.31 a | 4813.5 ± 257.15 a | 6084.3 ± 263.28 a | |
2018–2019 (2018) | CK | 3735.9 ± 222.39 b | 2108.3 ± 131.66 c | 5844.2 ± 90.73 c |
NP | 6041.8 ± 414.15 a | 3693.0 ± 321.44 a | 9734.8 ± 646.32 a | |
NPK | 6121.5 ± 466.51 a | 2692.5 ± 219.49 b | 8814.0 ± 365.85 b | |
NPS | 6238.3 ± 242.40 a | 3184.5 ± 283.88 ab | 9422.8 ± 109.89 ab | |
2019–2020 (2019) | CK | 5354.5 ± 42.53 c | 3196.9 ± 165.85 c | 8551.0 ± 208.38 c |
NP | 7423.6 ± 405.50 b | 5591.7 ± 161.48 b | 13,015.3 ± 453.04 b | |
NPK | 7253.5 ± 544.44 b | 5983.3 ± 150.55 a | 13,236.8 ± 647.75 ab | |
NPS | 8908.0 ± 679.05 a | 5768.8 ± 127.88 ab | 14,676.7 ± 574.81 a | |
5-year average | CK | 3543.7 ± 43.89 c | 3091.1 ± 69.05 b | 6634.8 ± 82.97 c |
NP | 4321.9 ± 147.90 b | 4328.9 ± 117.57 a | 8650.5 ± 288.16 b | |
NPK | 4336.6 ± 145.40 b | 4039.4 ± 168.63 a | 8375.9 ± 281.25 b | |
NPS | 5243.5 ± 196.15 a | 4271.3 ± 44.04 a | 9514.8 ± 219.50 a |
Year | Treatment | Summer Maize | Winter Wheat | Annual | ||
---|---|---|---|---|---|---|
N (kg kg−1) | N (kg kg−1) | P2O5 (kg kg−1) | N (kg kg−1) | P2O5 (kg kg−1) | ||
2015–2016 (2015) | NP | −3.32 ± 1.05 b | −0.5 ± 0.64 ab | −0.74 ± 0.80 ab | −2.17 ± 0.87 b | −6.47 ± 2.59 cb |
NPK | −2.37 ± 0.64 b | −1.66 ± 0.98 b | −2.07 ± 1.22 b | −2.07 ± 1.06 b | −6.16 ± 3.15 bc | |
NPS | 2.66 ± 1.68 a | 0.59 ± 0.92 a | 0.73 ± 1.15 a | 1.79 ± 0.71 a | 5.32 ± 2.12 a | |
2016–2017 (2016) | NP | 1.47 ± 0.63 c | 9.22 ± 1.36 a | 11.53 ± 1.70 a | 4.73 ± 0.85 ab | 14.07 ± 2.54 ab |
NPK | 3.12 ± 0.79 bc | 6.25 ± 4.61 a | 7.81 ± 5.77 a | 4.43 ± 0.41 b | 13.19 ± 5.24 b | |
NPS | 5.45 ± 0.85 a | 8.19 ± 0.43 a | 10.23 ± 0.53 a | 6.60 ± 0.66 a | 19.63 ± 1.96 a | |
2017–2018 (2017) | NP | −0.50 ± 0.10 c | 6.10 ± 0.68 a | 7.62 ± 0.85 a | 2.27 ± 0.24 ab | 6.76 ± 0.72 ab |
NPK | −0.77 ± 0.35 c | 2.20 ± 6.64 a | 2.74 ± 8.29 a | 0.48 ± 2.98 b | 1.42 ± 8.88 b | |
NPS | 3.69 ± 0.47 a | 6.25 ± 1.70 a | 7.81 ± 2.13 a | 4.77 ± 0.73 a | 14.18 ± 2.18 a | |
2018–2019 (2018) | NP | 11.14 ± 2.42 a | 10.57 ± 1.38 a | 13.21 ± 1.73 a | 10.90 ± 1.96 a | 32.42 ± 5.84 a |
NPK | 9.56 ± 1.23 a | 6.36 ± 2.20 b | 7.95 ± 2.75 b | 8.22 ± 1.31 a | 24.45 ± 3.69 ab | |
NPS | 12.09 ± 1.95 a | 7.18 ± 2.19 ab | 8.97 ± 2.74 ab | 10.02 ± 0.53 a | 29.82 ± 1.57 a | |
2019–2020 (2019) | NP | 10.00 ± 1.77 b | 15.97 ± 1.77 c | 19.96 ± 2.21 c | 12.50 ± 0.96 c | 37.20 ± 2.85 c |
NPK | 9.73 ± 2.96 b | 18.72 ± 0.60 ab | 23.39 ± 0.75 ab | 13.50 ± 1.87 bc | 40.18 ± 5.57 bc | |
NPS | 17.17 ± 3.09 a | 17.15 ± 1.73 bc | 21.43 ± 2.17 bc | 17.16 ± 1.07 a | 51.05 ± 3.17 a | |
5-year average | NP | 3.76 ± 0.86 b | 8.25 ± 0.36 a | 8.60 ± 0.45 a | 5.65 ± 0.68 b | 16.80 ± 2.03 b |
NPK | 3.85 ± 0.75 b | 6.37 ± 0.86 a | 6.64 ± 2.16 a | 4.91 ± 1.30 b | 14.61 ± 3.87 b | |
NPS | 8.21 ± 0.83 a | 7.87 ± 1.73 a | 8.20 ± 0.84 a | 8.07 ± 0.45 a | 24.00 ± 1.33 a |
Treatment | Organic Matter (g kg−1) | Total Nitrogen (g kg−1) | Available Phosphors (mg kg−1) | Available Potassium (mg kg−1) | pH |
---|---|---|---|---|---|
Initial value | 15.80 ± 0.42 c | 0.90 ± 0.02 c | 10.39 ± 0.31 c | 166.00 ± 4.12 c | 7.30 ± 0.26 c |
CK | 12.8 ± 0.51 d | 0.7 ± 0.08 d | 3.9 ± 0.26 d | 198 ± 6.17 b | 7.99 ± 0.36 a |
NP | 18.2 ± 0.45 b | 0.94 ± 0.05 b | 11.3 ± 0.30 b | 218 ± 12.31 b | 7.66 ± 0.29 b |
NPK | 21.6 ± 0.56 b | 1.0 ± 0.12 b | 11.6 ± 0.26 b | 331 ± 13.24 a | 7.74 ± 0.30 b |
NPS | 24.6 ± 0.68 a | 1.2 ± 0.22 a | 13.1 ± 0.52 a | 382 ± 16.58 a | 7.96 ± 0.34 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, J.; Jiang, P.; Zhang, J.; Dong, S.; Tian, W.; Li, J.; Li, F.; Lv, J.; Yao, Y.; Hou, Y.; et al. Straw Return Substituting Potassium Fertilizer Increases Crop Yield, Efficiency, and Quality in Maize-Wheat Rotation System. Agronomy 2024, 14, 1266. https://doi.org/10.3390/agronomy14061266
Guo J, Jiang P, Zhang J, Dong S, Tian W, Li J, Li F, Lv J, Yao Y, Hou Y, et al. Straw Return Substituting Potassium Fertilizer Increases Crop Yield, Efficiency, and Quality in Maize-Wheat Rotation System. Agronomy. 2024; 14(6):1266. https://doi.org/10.3390/agronomy14061266
Chicago/Turabian StyleGuo, Jinhua, Peipei Jiang, Jun Zhang, Shiyan Dong, Wenzhong Tian, Junhong Li, Fang Li, Junjie Lv, Yuqing Yao, Yuanquan Hou, and et al. 2024. "Straw Return Substituting Potassium Fertilizer Increases Crop Yield, Efficiency, and Quality in Maize-Wheat Rotation System" Agronomy 14, no. 6: 1266. https://doi.org/10.3390/agronomy14061266
APA StyleGuo, J., Jiang, P., Zhang, J., Dong, S., Tian, W., Li, J., Li, F., Lv, J., Yao, Y., Hou, Y., Wu, S., Shaaban, M., Huang, M., & Li, Y. (2024). Straw Return Substituting Potassium Fertilizer Increases Crop Yield, Efficiency, and Quality in Maize-Wheat Rotation System. Agronomy, 14(6), 1266. https://doi.org/10.3390/agronomy14061266