Concurrent Response of Greenhouse Soil NO3− Concentration and N2O Emissions to Nitrogen and Irrigation Management in China: A Meta-Analysis
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Compilation
2.2. Data Description
2.3. Data Analysis
3. Results
3.1. Data Exploratory Analysis
3.2. Effects of Nitrogen and Water Management on Soil NO3− Concentration and N2O Emissions
3.3. Effects of Soil Physicochemical Properties on Soil NO3− Concentration and N2O Emissions
3.4. Direct and Indirect Effects of Nitrogen and Irrigation Management and Soil Physicochemical Properties on Soil NO3− Concentration and N2O Emissions
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, X.; Li, Y.; Liu, A.; Yue, X.; Li, T. Effect of north wall materials on the thermal environment in Chinese solar greenhouse (part a: Experimental researches). Open Phys. 2019, 17, 752–767. [Google Scholar] [CrossRef]
- Lv, H.; Lin, S.; Wang, Y.; Lian, X.; Zhao, Y.; Li, Y.; Du, J.; Wang, Z.; Wang, J.; Butterbach-Bahl, K. Drip fertigation significantly reduces nitrogen leaching in solar greenhouse vegetable production system. Environ. Pollut. 2019, 245, 694–701. [Google Scholar] [CrossRef] [PubMed]
- Qasim, W.; Xia, L.; Shan, L.; Li, W.; Zhao, Y.; Butterbach-Bahl, K. Global greenhouse vegetable production systems are hotspots of soil N2O emissions and nitrogen leaching: A meta-analysis. Environ. Pollut. 2021, 272, 116372. [Google Scholar] [CrossRef] [PubMed]
- Qasim, W.; Wan, L.; Lv, H.; Zhao, Y.; Hu, J.; Meng, F.; Lin, S.; Butterbach-Bahl, K. Impact of anaerobic soil disinfestation on seasonal N2O emissions and N leaching in greenhouse vegetable production system depends on amount and quality of organic matter additions. Sci. Total Environ. 2022, 830, 154673. [Google Scholar] [CrossRef] [PubMed]
- Fan, D.J.; Song, D.P.; Jiang, R.; He, P.; Shi, Y.Y.; Pan, Z.L.; Zou, G.Y.; He, W.T. Modelling adaptation measures to improve maize production and reduce soil N2O emissions under climate change in Northeast China. Atmos. Environ. 2024, 319, 120241. [Google Scholar] [CrossRef]
- Chen, L.; Xie, H.; Wang, G.; Yuan, L.; Qian, X.; Wang, W.; Xu, Y.; Zhang, W.; Zhang, H.; Liu, L.; et al. Reducing environmental risk by improving crop management practices at high crop yield levels. Field Crops Res. 2021, 265, 108123. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, J.; Kou, X.; Wang, S.; Liu, J.; Xu, R.; Han, G.; Wu, L.; Zhu, L. Zizania aquatica–duck ecosystem with recycled biogas slurry maintained crop yield. Nutr. Cycl. Agroecosys. 2019, 115, 331–345. [Google Scholar] [CrossRef]
- Liu, Y. Interactive Effects of Irrigation and Nitrogen on Greenhouse Soil Nitrogen Utilization and Accumulation of Soil Nitrate. Master’s Thesis, Shenyang Agricultural University, Shenyang, China, 2017. (In Chinese). [Google Scholar]
- Serra, J.; Cordovil, C.M.; Marinheiro, J.; Aguilera, E.; Lassaletta, L.; SanzCobena, A.; Garnier, J.; Billen, G.; De, V.W.; Dalgaard, T.; et al. Nitrogen inputs by irrigation is a missing link in the agricultural nitrogen cycle and related policies in Europe. Sci. Total Environ. 2023, 889, 164249. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Yang, Y.; Yu, J.; Huang, J.; Kang, Y.; Du, Y.; Tian, G. Interaction of the coupled effects of irrigation mode and nitrogen fertilizer format on tomato production. Water 2023, 15, 1546. [Google Scholar] [CrossRef]
- Wu, Y.; Si, W.; Yan, S.; Wu, L.; Zhao, W.; Zhang, J.; Zhang, F.; Fan, J. Water consumption, soil nitrate-nitrogen residue and fruit yield of drip-irrigated greenhouse tomato under various irrigation levels and fertilization practices. Agric. Water Manag. 2023, 277, 108092. [Google Scholar] [CrossRef]
- Hu, Y.; Zeeshan, M.; Wang, G.; Pan, Y.; Liu, Y.; Zhou, X. Supplementary irrigation and varying nitrogen fertilizer rate mediate grain yield, soil-maize nitrogen accumulation and metabolism. Agric. Water Manag. 2023, 276, 108066. [Google Scholar] [CrossRef]
- Zhang, J. Modeling Nitrous Oxide Emissions and Nitrate Leaching from Greenhouse Vegetable System by Using a Biogeochemical Model. Ph.D. Thesis, Chinese Academy of Agricultural Sciences, Beijing, China, 2019. (In Chinese). [Google Scholar]
- Jiang, N. Study on CO2, N2O Emissions under Different Water-Fertilizer Treatment in Facility Vegetable Soil. Master’s Thesis, Capital Normal University, Beijing, China, 2011. (In Chinese). [Google Scholar]
- Zhang, Q.; Niu, W.; Du, Y.; Sun, J.; Cui, B.; Zhang, E.; Wang, Y.; Siddique, H.M. Effects of aerated drip irrigation and nitrogen doses on N2O emissions, microbial activity, and yield of tomato and muskmelon under greenhouse conditions. Agric. Water Manag. 2023, 283, 108321. [Google Scholar] [CrossRef]
- Du, Y.; Zhang, Q.; Cui, B.; Gu, X.; Niu, W. Effects of water and nitrogen coupling on soil N2O emission characteristics of greenhouse celery field under aerated irrigation. Trans. CSAE 2017, 33, 127–134. [Google Scholar]
- Graham, S.L.; Laubach, J.; Hunt, J.E.; Mudge, P.L.; Nuñez, J.; Rogers, G.N.; Buxton, R.P.; Carrick, S.; Whitehead, D. Irrigation and grazing management affect leaching losses and soil nitrogen balance of lucerne. Agric. Water Manag. 2022, 259, 107233. [Google Scholar] [CrossRef]
- Gan, X.; Sun, S.; Fan, H.; Liu, H.; Zhang, J.; Ding, Z. Research on soil nitrogen balance mechanism and optimal water and nitrogen management model for crop rotation of vegetables in facilities. Water 2023, 15, 2878. [Google Scholar] [CrossRef]
- Ding, W.; Zhang, G.L.; Xie, H.K.; Chang, N.J.; Zhang, J.; Zhang, J.F.; Li, G.C.; Li, H. Balancing high yields and low N2O emissions from greenhouse vegetable fields with large water and fertilizer input: A case study of multiple-year irrigation and nitrogen fertilizer regimes. Plant Soil 2023, 483, 131–152. [Google Scholar] [CrossRef]
- Ariani, M.; Setyanto, P.; Wihardjaka, A. Water filled-pore space and soil temperature related to N2O fluxes from shallot cultivated in rainy and dry season. IOP Conf. Ser. Earth Environ. Sci. 2021, 648, 012109. [Google Scholar] [CrossRef]
- Duan, B.; Cai, T.; Man, X.; Xiao, R.; Gao, M.; Ge, Z.; Mencuccini, M. Different variations in soil CO2, CH4, and N2O fluxes and their responses to edaphic factors along a boreal secondary forest successional trajectory. Sci. Total Environ. 2022, 838, 155983. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Batchelor, W.D.; Hu, K.; Liang, H.; Han, H.; Li, j. Simulation of N2O emissions from greenhouse vegetable production under different management systems in North China. Ecol. Model. 2022, 470, 110019. [Google Scholar] [CrossRef]
- Yin, M.; Gao, X.; Kuang, W.; Tenuta, M. Soil N2O emissions and functional genes in response to grazing grassland with livestock: A meta-analysis. Geoderma 2023, 436, 116538. [Google Scholar] [CrossRef]
- Ashiq, W.; Vasava, H.; Cheema, M.; Dunfield, K.; Daggupati, P.; Biswas, A. Interactive role of topography and best management practices on N2O emissions from agricultural landscape. Soil Tillage Res. 2021, 212, 105063. [Google Scholar] [CrossRef]
- Hedges, L.V.; Gurevitch, J.; Curtis, P.S. The meta analysis of response ratios in experimental ecology. Ecology 1999, 80, 1150–1156. [Google Scholar] [CrossRef]
- Wang, G.; Chen, X.; Cui, Z.; Yue, S.; Zhang, F. Estimated reactive nitrogen losses for intensive maize production in China. Agric. Ecosyst. Environ. 2014, 197, 293–300. [Google Scholar] [CrossRef]
- Wang, G.; Ye, Y.; Chen, X.; Cui, Z. Determining the optimal nitrogen rate for summer maize in China by integrating agronomic, economic, and environmental aspects. Biogeosciences 2014, 11, 3031–3041. [Google Scholar] [CrossRef]
- Miao, Q.; Sun, Y.; Ma, W.; Wang, G.; Wu, L.; Chen, X.; Tian, X.; Yin, Y.; Zhang, Q.; Cui, Z. Maximizing grains while minimizing yield-scaled greenhouse gas emissions for wheat production in China. Agronomy 2023, 13, 2676. [Google Scholar] [CrossRef]
- Wei, Y.; Sun, L.; Wang, S.; Wang, Y.; Zhang, Z.; Chen, Q.; Ren, H.; Gao, L. Effects of different irrigation methods on water distribution and nitrate nitrogen transport of cucumber in greenhouse. Trans. CSAE 2010, 26, 67–72. (In Chinese) [Google Scholar]
- Li, Y.; Wu, X.; Guo, W.; Xue, X. Characteristics of greenhouse soil N2O emissions in cucumber-tomato rotation system under different nitrogen conditions. Trans. CSAE 2014, 30, 260–267. (In Chinese) [Google Scholar]
- Wang, X.; Qin, J.; Jiang, M.; Fan, Y.; Wang, S. Developing a subsurface drip irrigation scheduling mode based on water evaporation: Impacts studies on cucumbers planted in a greenhouse in the North China Plain. Agronomy 2023, 13, 1957. [Google Scholar] [CrossRef]
- Zheng, X.; Liu, Q.; Ji, X.; Cao, M.; Zhang, Y.; Jiang, J. How do natural soil NH4+, NO3− and N2O interact in response to nitrogen input in different climatic zones? a global meta-analysis. Eur. J. Soil Sci. 2021, 72, 2231–2245. [Google Scholar] [CrossRef]
- Eagle, A.J.; Olander, L.P.; Locklier, K.L.; Heffernan, J.B.; Bernhardt, E.S. Fertilizer management and environmental factors drive N2O and NO3 losses in corn: A meta-analysis. Soil Sci. Soc. Am. J. 2017, 81, 1191. [Google Scholar] [CrossRef]
- Hao, X. Study on Nutrient Balance and Optimized Management in Soil-Greenhouse Vegetable System. Ph.D. Thesis, Chinese Academy of Agricultural Sciences, Beijing, China, 2012. (In Chinese). [Google Scholar]
- Cheng, W.; Han, S.; Wu, J.; Li, M.; Shi, Z.; Wang, H.; Tang, S.; Hu, P.; Huang, H. Effects of continuous straw incorporation substitute for K-fertilizer on crop yield and soil potassium balance. Soils Fertil. Sci. China 2019, 5, 72–78. (In Chinese) [Google Scholar]
- Zhang, A.; Zhang, X.; Liang, Q.; Sun, M.T. Co-application of straw incorporation and biochar addition stimulated soil N2O and NH3 productions. PLoS ONE 2024, 19, e0289300. [Google Scholar] [CrossRef]
- Gao, S.J.; Peng, Q.; Liu, X.R.; Xu, C.Y. The effect of biochar and straw return on N2O emissions and crop yield: A three-year field experiment. Agriculture 2023, 13, 2091. [Google Scholar] [CrossRef]
- Liao, S.; Chen, Y.; Li, Y.; Sun, Y. Effect of slow-release fertilizer on yield and quality of tomato and NO3-N leaching under reduction irrigation condition. Soils Fertil. Sci. China 2015, 6, 70–75. (In Chinese) [Google Scholar]
- Ma, Z.; Jia, J.; Xie, Y.; Li, Y.; Bai, C. Effects of nitrification inhibitors and biochar on N2O and CO2 emissions from vegetable soil. J. Shanxi Agric. Sci. 2019, 47, 1019–1022. (In Chinese) [Google Scholar]
- Cheng, X.; Tian, X.; Guo, Y.; Li, R.; Zhang, L.; Ji, Y.; Li, B. Effects of nitrification inhibitor/microbial inoculum on nitrogen fate in soil-vegetable system of greenhouse. Plant Nutr. Fertil. Sci. 2022, 28, 1466–1477. (In Chinese) [Google Scholar]
- Wang, Y.; Zhang, L.; Jiao, X.; Chen, Y.; Sui, Y. Effects of biochar addition on soil nitrogen migration in greenhouse vegetable field. Chin. Agric. Sci. Bull. 2020, 36, 91–95. (In Chinese) [Google Scholar]
- Yin, L. Research and Application of Preventing and Controlling Obstacles of Strawberry Continuous Planting in Greenhouse. Master’s Thesis, Yangzhou University, Yangzhou, China, 2018. (In Chinese). [Google Scholar]
- Adomako, M.O.; Roiloa, S.; Yu, F.H. Potential roles of soil microorganisms in regulating the effect of soil nutrient heterogeneity on plant performance. Microorganisms 2022, 10, 2399. [Google Scholar] [CrossRef]
- Lu, K. Optimized Management of Nitrogen Fertilizer and Strategies for Reducing Nitrogen Leaching Loss in Greenhouse Vegetable Field in Taihu Lake Region. Master’s Thesis, Nanjing Forestry University, Nanjing, China, 2011. (In Chinese). [Google Scholar]
- Che, Z. Impacts of Soil Acidification on the Structure and Function of the Nitrification and Denitrification Microbial Community. Ph.D. Thesis, Anhui Agricultural University, Hefei, China, 2017. (In Chinese). [Google Scholar]
Total N Input (kg hm−2) | Irrigation Rate (mm) | OC (g kg−1) | ||||
≤423.6 | >423.6 | ≤208.9 | >208.9 | ≤14 | >14 | |
n | 239 | 188 | 199 | 107 | 217 | 207 |
r | 0.0539 | −0.0469 | 0.0197 | −0.0110 | −0.0173 | 0.2789 ** |
TN (g kg−1) | AN (mg kg−1) | ST (°C) | ||||
≤1.7 | >1.7 | ≤144 | >144 | ≤20.4 | >20.4 | |
n | 169 | 214 | 118 | 124 | 132 | 166 |
r | −0.0200 | 0.2577 ** | −0.0300 | 0.2883 ** | 0.4631 ** | 0.0200 |
BW (g cm−1) | pH | WFPS (%) | ||||
≤1.3 | >1.3 | ≤7.4 | >7.4 | ≤56.3 | >56.3 | |
n | 216 | 211 | 120 | 307 | 143 | 146 |
r | 0.2898 ** | −0.0400 | 0.0200 | 0.2526 ** | 0.1330 | 0.1319 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, G.; Xu, H.; Huang, K.; Wang, J.; Zhao, H.; Qian, X.; Wang, J. Concurrent Response of Greenhouse Soil NO3− Concentration and N2O Emissions to Nitrogen and Irrigation Management in China: A Meta-Analysis. Agronomy 2024, 14, 1387. https://doi.org/10.3390/agronomy14071387
Wang G, Xu H, Huang K, Wang J, Zhao H, Qian X, Wang J. Concurrent Response of Greenhouse Soil NO3− Concentration and N2O Emissions to Nitrogen and Irrigation Management in China: A Meta-Analysis. Agronomy. 2024; 14(7):1387. https://doi.org/10.3390/agronomy14071387
Chicago/Turabian StyleWang, Guiliang, Haojie Xu, Kaiyuan Huang, Jinchuang Wang, Haitao Zhao, Xiaoqing Qian, and Juanjuan Wang. 2024. "Concurrent Response of Greenhouse Soil NO3− Concentration and N2O Emissions to Nitrogen and Irrigation Management in China: A Meta-Analysis" Agronomy 14, no. 7: 1387. https://doi.org/10.3390/agronomy14071387
APA StyleWang, G., Xu, H., Huang, K., Wang, J., Zhao, H., Qian, X., & Wang, J. (2024). Concurrent Response of Greenhouse Soil NO3− Concentration and N2O Emissions to Nitrogen and Irrigation Management in China: A Meta-Analysis. Agronomy, 14(7), 1387. https://doi.org/10.3390/agronomy14071387