Survey of Potato Growers’ Perception of Climate Change and Its Impacts on Potato Production in Germany, Switzerland, and Austria
Abstract
:1. Introduction
2. Materials and Methods
2.1. Survey
2.2. Survey Participants Characteristics and Site Conditions
3. Results
3.1. Impact of Climate Change on Potato Growers in the DACH Region
3.2. Impact of Drought on Potato Growers in the DACH Region
3.3. Impact of Heat on Potato Production in the DACH Region
3.4. Further Impacts on Potato Production in the DACH Region: Pests, Pathogens, and Other Climatic Factors
3.5. Adaptation Strategies for Mitigating Climate Change Effects on Potato Production
4. Discussion
4.1. Climate-Change-Related Impacts Were Perceived by 88% of Potato Growers
4.2. Drought Is the Most Common Negative Influence on Potato Production in the DACH Region
4.3. Heat Waves Increasingly Impact Potato Production
4.4. German and Austrian Potato Growers Suffer from Pests and Pathogens
4.5. Heavy Precipitation Impacts Potato Production in Switzerland and Austria, as Well as Flash Floods and Soil Erosion in Austria
4.6. Late Spring Frost Is a Problem in Austria
4.7. Potato Growers’ Desired Adaptation Strategies for Mitigating Climate Change Effects
4.8. Differences of Organic and Conventional Potato Growers in Austria
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- European Statistical Office (Eurostat). Crop Production in EU Standard Humidity. Available online: https://ec.europa.eu/eurostat/databrowser/view/apro_cpsh1__custom_9818412/default/table?lang=en (accessed on 18 January 2024).
- European Statistical Office (Eurostat). Organic Crop Area by Agricultural Production Methods and Crops. Available online: https://ec.europa.eu/eurostat/databrowser/view/org_cropar__custom_9410894/default/table (accessed on 18 January 2024).
- Bundesanstalt für Landwirtschaft und Ernährung (BLE). Bericht zur Markt- und Versorgungslage Kartoffeln; Bundesanstalt für Landwirtschaft und Ernährung: Bonn, Germany, 2022. [Google Scholar]
- Deutscher Wetterdienst (DWD). Zeitreihen und Trends. Available online: https://www.dwd.de/DE/leistungen/zeitreihen/zeitreihen.html?nn=480164 (accessed on 6 April 2022).
- Swisspatat. Statistische Angaben 2021 Über Kartoffelbau und Kartoffelverwertung; Swisspatat: Bern, Switzerland, 2021. [Google Scholar]
- Meteoswiss. Normal Values per Measured Parameter. Available online: https://www.meteoswiss.admin.ch/home/climate/swiss-climate-in-detail/climate-normals/normal-values-per-measured-parameter.html (accessed on 6 April 2022).
- Bundesanstalt Statistik Österreich. Pro-Kopf-Verbrauch von Bier 2020/21 Gesunken; Kartoffelverbrauch Gestiegen [Press Release 12.798-096/22]; Bundesanstalt Statistik Österreich: Vienna, Austria, 2022. [Google Scholar]
- Agrarmarkt Austria (AMA). AMA Flächenauswertung 2022: Kartoffeln. Available online: https://www.ama.at/marktinformationen/obst-und-gemuse/aktuelle-informationen/2022/ama-flaechenauswertung-2022-kartoffeln#:~:text=Die%20j%C3%A4hrliche%20Auswertung%20des%20AMA,auf%2019.435%20ha%20Kartoffeln%20produziert (accessed on 18 September 2023).
- Zentralanstalt für Meteorologie und Geodynamik (ZAMG). Klimamittel. Available online: https://www.zamg.ac.at/cms/de/klima/informationsportal-klimawandel/daten-download/klimamittel (accessed on 6 April 2022).
- United Nations Office for Disaster Risk Reduction (UNDRR). The Human Cost of Disasters: An Overview of the Last 20 Years (2000–2019); United Nations Office for Disaster Risk Reduction (UNDRR): Washington, DC, USA, 2020; p. 30. [Google Scholar]
- World Meterological Organisation (WMO). State of the Global Climate 2020; World Meterological Organisation (WMO): Geneva, Switzerland, 2021; ISBN 978-92-63-11264-4. [Google Scholar]
- Food and Agriculture Organization (FAO). Potato. Available online: https://www.fao.org/land-water/databases-and-software/crop-information/potato/en (accessed on 6 April 2022).
- AgriAdapt. Sustainable Adaptation of Typical EU Farming Systems to Climate Change. A1: Baseline Reports for the 4 Main EU Climate Risk Regions. 2017. Available online: https://climate-adapt.eea.europa.eu/en/metadata/projects/sustainable-adaptation-of-typical-eu-farming-systems-to-climate-change (accessed on 6 April 2022).
- Rykaczewska, K. Impact of heat and drought stresses on size and quality of the potato yield. Plant Soil Environ. 2017, 63, 40–46. [Google Scholar] [CrossRef]
- Singh, B.; Kukreja, S.; Goutam, U. Impact of heat stress on potato (Solanum tuberosum L.): Present scenario and future opportunities. J. Hortic. Sci. Biotechnol. 2020, 95, 407–424. [Google Scholar] [CrossRef]
- Tang, R.; Niu, S.; Zhang, G.; Chen, G.; Haroon, M.; Yang, Q.; Rajora, O.P.; Li, X.-Q. Physiological and growth responses of potato cultivars to heat stress. Botany 2018, 96, 897–912. [Google Scholar] [CrossRef]
- Poggi, S.; Le Cointe, R.; Lehmhus, J.; Plantegenest, M.; Furlan, L. Alternative Strategies for Controlling Wireworms in Field Crops: A Review. Agriculture 2021, 11, 436. [Google Scholar] [CrossRef]
- Nasir, M.W.; Toth, Z. Effect of Drought Stress on Potato Production: A Review. Agronomy 2022, 12, 635. [Google Scholar] [CrossRef]
- Pulatov, B.; Jönsson, A.M.; Wilcke, R.A.I.; Linderson, M.-L.; Hall, K.; Bärring, L. Evaluation of the phenological synchrony between potato crop and Colorado potato beetle under future climate in Europe. Agric. Ecosyst. Environ. 2016, 224, 39–49. [Google Scholar] [CrossRef]
- Wójtowicz, A.; Wójtowicz, M.; Sigvald, R. Forecasting the influence of temperature increase on the development of the Colorado potato beetle [Leptinotarsa decemlineata (Say)] in the Wielkopolska region of Poland. Acta Agric. Scand. Sect. B-Soil Plant Sci. 2013, 63, 136–146. [Google Scholar] [CrossRef]
- Xu, Y.; Gray, S.M. Aphids and their transmitted potato viruses: A continuous challenges in potato crops. J. Integr. Agric. 2020, 19, 367–375. [Google Scholar] [CrossRef]
- von Gehren, P.; Bomers, S.; Tripolt, T.; Söllinger, J.; Prat, N.; Redondo, B.; Vorss, R.; Teige, M.; Kamptner, A.; Ribarits, A. Farmers Feel the Climate Change: Variety Choice as an Adaptation Strategy of European Potato Farmers. Climate 2023, 11, 189. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023. [Google Scholar]
- Li, Y.; Johnson, E.J.; Zaval, L. Local warming: Daily temperature change influences belief in global warming. Psychol. Sci. 2011, 22, 454–459. [Google Scholar] [CrossRef]
- Weber, E.U.; Stern, P.C. Public understanding of climate change in the United States. Am. Psycholist 2011, 66, 315–328. [Google Scholar] [CrossRef] [PubMed]
- Macholdt, J.; Honermeier, B. Impact of Climate Change on Cultivar Choice: Adaptation Strategies of Farmers and Advisors in German Cereal Production. Agronomy 2016, 6, 40. [Google Scholar] [CrossRef]
- Macholdt, J.; Honermeier, B. Variety choice in crop production for climate change adaptation. Outlook Agric. 2016, 45, 117–123. [Google Scholar] [CrossRef]
- Menapace, L.; Colson, G.; Raffaelli, R. Climate change beliefs and perceptions of agricultural risks: An application of the exchangeability method. Glob. Environ. Change 2015, 35, 70–81. [Google Scholar] [CrossRef]
- Goffart, J.P.; Haverkort, A.; Storey, M.; Haase, N.; Martin, M.; Lebrun, P.; Ryckmans, D.; Florins, D.; Demeulemeester, K. Potato Production in Northwestern Europe (Germany, France, the Netherlands, United Kingdom, Belgium): Characteristics, Issues, Challenges and Opportunities. Potato Res. 2022, 65, 503–547. [Google Scholar] [CrossRef] [PubMed]
- MeteoSchweiz. Klimareport 2020; Bundesamt für Meteorologie und Klimatologie MeteoSchweiz: Zürich, Switzerland, 2021. [Google Scholar]
- Zentralanstalt für Meteorologie und Geodynamik (ZAMG). 2015: Zweitwärmstes Jahr der Messgeschichte. Available online: https://www.zamg.ac.at/cms/de/klima/news/2015-zweitwaermstes-jahr-der-messgeschichte (accessed on 30 June 2023).
- Zarzyńska, K.; Boguszewska-Mańkowska, D.; Nosalewicz, A. Differences in size and architecture of the potato cultivars root system and their tolerance to drought stress. Plant Soil Environ. 2017, 63, 159–164. [Google Scholar] [CrossRef]
- Zaki, H.E.M.; Radwan, K.S.A. Response of potato (Solanum tuberosum L.) cultivars to drought stress under in vitro and field conditions. Chem. Biol. Technol. Agric. 2022, 9, 1. [Google Scholar] [CrossRef]
- Deblonde, P.M.K.; Ledent, J.F. Effects of moderate drought conditions on green leaf number, stem height, leaf length and tuber yield of potato cultivars. Eur. J. Agron. 2001, 14, 31–41. [Google Scholar] [CrossRef]
- Statistisches Bundesamt (DESTATIS). Landwirtschaftliche Betriebe Mit Bewässerungsmöglichkeit Auf Freilandflächen-ohne Frostschutzberegnung-und Bewässerte Fläche 2019. Available online: https://www.destatis.de/DE/Themen/Branchen-Unternehmen/Landwirtschaft-Forstwirtschaft-Fischerei/Produktionsmethoden/Tabellen/bewaesserungsmoeglichkeiten.html (accessed on 12 March 2024).
- Eisenring, S.; Holzkämper, A.; Calanca, P. Berechnung der Bewässerungsbedürfnisse unter aktuellen und zukünftigen Bedinungen in der Schweiz. Agroscope Schweiz. 2021, 107, 55. [Google Scholar] [CrossRef]
- Scherrer, S.C.; Hirschi, M.; Spirig, C.; Maurer, F.; Kotlarski, S. Trends and drivers of recent summer drying in Switzerland. Environ. Res. Commun. 2022, 4, 025004. [Google Scholar] [CrossRef]
- Deutscher Wetterdienst (DWD). Aus Extrem Wurde Normal: Sommer in Deutschland, der Schweiz und Österreich Immer heißer. Available online: https://www.dwd.de/DE/presse/pressemitteilungen/DE/2020/20200702_dach_news.html (accessed on 9 May 2022).
- Friedrich, K.; Kaspar, F. Rückblick auf das Jahr 2018-das Bisher Wärmste Jahr in Deutschland; Deutscher Wetterdienst: Berlin, Germany, 2019. [Google Scholar]
- Formayer, H.; Clementschitsch, L.; Hofstätter, M.; Kromp-Kolb, H. Vor Sicht Klima! Klimawandel in Österreich, Regional Betrachtet (Endbericht Global 2000, Mai 2008); BOKU-Met Report 16; Boku: Vienna, Austria, 2009; Available online: https://meteo.boku.ac.at/report/boku-met_report_16_online.pdf (accessed on 6 April 2022).
- Trnka, M.; Balek, J.; Štěpánek, P.; Zahradníček, P.; Možný, M.; Eitzinger, J.; Žalud, Z.; Formayer, H.; Turňa, M.; Nejedlík, P.; et al. Drought trends over part of Central Europe between 1961 and 2014. Clim. Res. 2016, 70, 143–160. [Google Scholar] [CrossRef]
- Statistik Austria. Feldfruchtproduktion ab 1970. Available online: https://www.statistik.at/web_de/statistiken/wirtschaft/land_und_forstwirtschaft/agrarstruktur_flaechen_ertraege/feldfruechte/index.html (accessed on 9 May 2022).
- Bundesministerium für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft (BMLFUW). Grüner Bericht 2016; Die Republik Österreich: Vienna, Austria, 2016. [Google Scholar]
- Kim, Y.U.; Lee, B.W. Differential Mechanisms of Potato Yield Loss Induced by High Day and Night Temperatures During Tuber Initiation and Bulking: Photosynthesis and Tuber Growth. Front. Plant Sci. 2019, 10, 300. [Google Scholar] [CrossRef] [PubMed]
- Meinert, T.; Frühauf, C.; Plückhahn, B.; Brömser, A. Die Trockenheit in Deutschland im Sommer 2022 aus Agrarmeterologischer Sicht; Deutscher Wetterdienst: Berlin, Germany, 2022. [Google Scholar]
- SwissInfo. Kartoffelernte in der Schweiz war 2013 so Schlecht Wie Noch Nie. Available online: https://www.swissinfo.ch/ger/alle-news-in-kuerze/kartoffelernte-in-der-schweiz-war-2013-so-schlecht-wie-noch-nie/37493486 (accessed on 18 September 2023).
- Singh, B.K.; Delgado-Baquerizo, M.; Egidi, E.; Guirado, E.; Leach, J.E.; Liu, H.; Trivedi, P. Climate change impacts on plant pathogens, food security and paths forward. Nat. Rev. Microbiol. 2023, 21, 640–656. [Google Scholar] [CrossRef]
- Velásquez, A.C.; Castroverde, C.D.M.; He, S.Y. Plant-Pathogen Warfare under Changing Climate Conditions. Curr. Biol. 2018, 28, R619–R634. [Google Scholar] [CrossRef]
- Haverkort, A.J.; Verhagen, A. Climate Change and Its Repercussions for the Potato Supply Chain. Potato Res. 2008, 51, 223. [Google Scholar] [CrossRef]
- Kroschel, J.; Mujica, N.; Okonya, J.; Alyokhin, A. Insect Pests Affecting Potatoes in Tropical, Subtropical, and Temperate Regions. In The Potato Crop; Springer: Berlin/Heidelberg, Germany, 2020; pp. 251–306. [Google Scholar]
- Yihdego, Y.; Salem, H.S.; Muhammed, H.H. Agricultural Pest Management Policies during Drought: Case Studies in Australia and the State of Palestine. Nat. Hazards Rev. 2019, 20, 05018010. [Google Scholar] [CrossRef]
- Cohen, A.; Basu, S.; Crowder, D.W. Drought stress affects interactions between potato plants, psyllid vectors, and a bacterial pathogen. FEMS Microbiol. Ecol. 2022, 99, fiac142. [Google Scholar] [CrossRef] [PubMed]
- Wu, E.-J.; Wang, Y.-P.; Yahuza, L.; He, M.-H.; Sun, D.-L.; Huang, Y.-M.; Liu, Y.-C.; Yang, L.-N.; Zhu, W.; Zhan, J. Rapid adaptation of the Irish potato famine pathogen Phytophthora infestans to changing temperature. Evol. Appl. 2020, 13, 768–780. [Google Scholar] [CrossRef]
- Degefu, Y. Lesson from the emergence, spread and decline of Dickeya solani, the virulent potato blackleg and soft rot bacterial pathogen in Finland. J. Phytopathol. 2024, 172, e13282. [Google Scholar] [CrossRef]
- Toth, I.K.; van der Wolf, J.M.; Saddler, G.; Lojkowska, E.; Hélias, V.; Pirhonen, M.; Tsror, L.; Elphinstone, J.G. Dickeya species: An emerging problem for potato production in Europe. Plant Pathol. 2011, 60, 385–399. [Google Scholar] [CrossRef]
- Wechselberger, K. Praxisbasierte und Nachhaltige Regulation von Drahtwürmern. Available online: https://dafne.at/projekte/drahtwurm-control (accessed on 18 September 2023).
- Bundesministerium Nachhaltigkeit und Tourismus (BMNT). Grüner Bericht 2019; Die Republik Österreich: Vienna, Austria, 2019. [Google Scholar]
- Ember, I.; Talaber, C.; ACS, Z.; Nagy, Z.; Kölber, M. Study of stolbur phytoplasma tuber transmission in potato varieties of high starch content. Bull. Insectology 2011, 64, 209–210. [Google Scholar]
- Land Schafft Leben. Kartoffel aus Österreich. Available online: https://www.landschafftleben.at/lebensmittel/kartoffel (accessed on 3 July 2023).
- proPlant. Klimawandel in Nordrhein Westfalen. Auswirkungen auf Schädlinge und Pilzkrankheiten Wichtiger Ackerbaukulturen; proPlant GmbH: Münster, Germany, 2010. [Google Scholar]
- Bundesamt für Umwelt (BAFU). Hydrologische Ereignisse. Available online: https://www.bafu.admin.ch/bafu/de/home/themen/wasser/dossiers/hydrologische-ereignisse.html#-993382691 (accessed on 31 August 2022).
- Bundesministerium für Land- und Forstwirtschaft, Regionen und Wasserwirtschaft (BML). Chronik Besonderer Ereignisse. Available online: https://info.bml.gv.at/themen/wasser/wasser-oesterreich/hydrographie/chronik-besonderer-ereignisse.html (accessed on 31 August 2022).
- Chimani, B.; Heinrich, G.; Hofstätter, M.; Kerschbaumer, M.; Kienberger, S.; Leuprecht, A.; Lexer, A.; Peßenteiner, S.; Poetsch, M.S.; Salzmann, M.; et al. ÖKS15–Klimaszenarien für Österreich. Daten, Methoden und Klimaanalyse; Bundesministerium für Klimaschutz: Vienna, Austria, 2016. [Google Scholar]
- Deutscher Wetterdienst (DWD). Was wir heute über das Extremwetter in Deutschland wissen. Stand der Wissenschaft zu extremen Wetterphänomenen im Klimawandel in Deutschland. In Proceedings of the Extremwetterkongress, Hamburg, Germany, 22 September 2021. [Google Scholar]
- Lemann, T.; Sprafke, T.; Bachmann, F.; Prasuhn, V.; Schwilch, G. The effect of the Dyker on infiltration, soil erosion, and waterlogging on conventionally farmed potato fields in the Swiss Plateau. Catena 2019, 174, 130–141. [Google Scholar] [CrossRef]
- AgrarMarkt Austria (AMA). ÖPUL 2023 Erosionsschutz Acker; Agrarmarkt Austria: Vienna, Austria, 2023. [Google Scholar]
- Li, P.H.; Huner, N.P.A.; Toivio-Kinnucan, M.; Chen, H.H.; Palta, J.P. Potato freezing injury and survival, and their relationships to other stress. Am. Potato J. 1981, 58, 15–29. [Google Scholar] [CrossRef]
- Stegner, M.; Schafernolte, T.; Neuner, G. New Insights in Potato Leaf Freezing by Infrared Thermography. Appl. Sci. 2019, 9, 819. [Google Scholar] [CrossRef] [PubMed]
- Fierros-González, I.; López-Feldman, A. Farmers’ Perception of Climate Change: A Review of the Literature for Latin America. Front. Environ. Sci. 2021, 9, 672399. [Google Scholar] [CrossRef]
- Mitter, H.; Larcher, M.; Schonhart, M.; Stottinger, M.; Schmid, E. Exploring Farmers’ Climate Change Perceptions and Adaptation Intentions: Empirical Evidence from Austria. Environ. Manag. 2019, 63, 804–821. [Google Scholar] [CrossRef] [PubMed]
- Raymundo, R.; Asseng, S.; Robertson, R.; Petsakos, A.; Hoogenboom, G.; Quiroz, R.; Hareau, G.; Wolf, J. Climate change impact on global potato production. Eur. J. Agron. 2018, 100, 87–98. [Google Scholar] [CrossRef]
- Jennings, S.A.; Koehler, A.-K.; Nicklin, K.J.; Deva, C.; Sait, S.M.; Challinor, A.J. Global Potato Yields Increase Under Climate Change With Adaptation and CO2 Fertilisation. Front. Sustain. Food Syst. 2020, 4, 519324. [Google Scholar] [CrossRef]
- Ogola, J.R.O.; Ouko, K.O.; Kirina, T.K.; Droppers, B. Assessment of Experts’ Opinion on Irish Potato Farmers Perceptions about Climate Change and the Use of Climate Smart Agriculture Adaptation Strategies in Kenya. J. Agric. Econ. 2021, 7, 967–977. [Google Scholar]
- Challinor, A.J.; Watson, J.; Lobell, D.B.; Howden, S.M.; Smith, D.R.; Chhetri, N. A meta-analysis of crop yield under climate change and adaptation. Nat. Clim. Change 2014, 4, 287–291. [Google Scholar] [CrossRef]
- Zabel, F.; Muller, C.; Elliott, J.; Minoli, S.; Jagermeyr, J.; Schneider, J.M.; Franke, J.A.; Moyer, E.; Dury, M.; Francois, L.; et al. Large potential for crop production adaptation depends on available future varieties. Glob. Change Biol. 2021, 27, 3870–3882. [Google Scholar] [CrossRef] [PubMed]
- Lahlou, O.; Ledent, J.-F. Root mass and depth, stolons and roots formed on stolons in four cultivars of potato under water stress. Eur. J. Agron. 2005, 22, 159–173. [Google Scholar] [CrossRef]
- Aliche, E.B.; Oortwijn, M.; Theeuwen, T.P.J.M.; Bachem, C.W.B.; Visser, R.G.F.; van der Linden, C.G. Drought response in field grown potatoes and the interactions between canopy growth and yield. Agric. Water Manag. 2018, 206, 20–30. [Google Scholar] [CrossRef]
- Islam, S.; Li, J.; Rahman, M.A.; Xie, F.; Song, B.; Nie, B. Resistance to biotic and abiotic stress in potato: The origin of the genes and corresponding molecular markers. Phytopathol. Res. 2024, 6, 4. [Google Scholar] [CrossRef]
- Djaman, K.; Irmak, S.; Koudahe, K.; Allen, S. Irrigation Management in Potato (Solanum tuberosum L.) Production: A Review. Sustainability 2021, 13, 1504. [Google Scholar] [CrossRef]
- Riedel, A. Verbesserung der Nährstoffeffizienz durch Bewässerung. In Proceedings of the Bewässerung in der Landwirtschaft, Suderburg, Germany, 11–12 September 2017; pp. 89–102. [Google Scholar]
- Landesamt für Statistik Niedersachsen (LSN). Die Hälfte der Deutschen Kartoffeln Kommt aus Niedersachsen. Available online: https://www.statistik.niedersachsen.de/presse/die-haelfte-der-deutschen-kartoffeln-kommt-aus-niedersachsen-137273.html (accessed on 18 September 2023).
- Holden, N.M.; Brereton, A.J.; Fealy, R.; Sweeney, J. Possible change in Irish climate and its impact on barley and potato yields. Agric. For. Meteorol. 2003, 116, 181–196. [Google Scholar] [CrossRef]
- Janssens, P.; Piccard, I.; Pauly, K.; Garre, S.; Dumont, G.; von Hebel, C.; Andersen, M.N.; Manevski, K.; Peng, J.; Korup, K.; et al. Variable Rate Irrigation and Nitrogen Fertilization in Potato; Engage the Spatial Variation (Potential); Bodemkundige Dienst van België vzw: Leuven, Belgium, 2020. [Google Scholar]
- Vanuytrecht, E.; Raes, D.; Willems, P. Regional and global climate projections increase mid-century yield variability and crop productivity in Belgium. Reg. Environ. Change 2015, 16, 659–672. [Google Scholar] [CrossRef]
- Wheeler, R.; Lobley, M. Managing extreme weather and climate change in UK agriculture: Impacts, attitudes and action among farmers and stakeholders. Clim. Risk Manag. 2021, 32, 100313. [Google Scholar] [CrossRef]
- Kompetenzzentrum Bewässerung. Bewässerung in Österreich. Available online: http://kompetenzzentrum-bewaesserung.at/ (accessed on 9 May 2022).
- Lutz, L.; Hofmann, H.; Angelmaier, M.; Konheisner, G.; Rakaseder, S. Wasserzukunft Niederösterreich 2050; Amt der niederösterreichischen Landesregierung, Gruppe Wasser: St. Pölten, Austria, 2019. [Google Scholar]
- Macholdt, J.; Honermeier, B. Importance of variety choice: Adapting to climate change in organic and conventional farming systems in Germany. Outlook Agric. 2017, 46, 178–184. [Google Scholar] [CrossRef]
- Sendhil, R.; Nyika, J.; Yadav, S.; Mackolil, J.; Prashat, G.R.; Workie, E.; Ragupathy, R.; Ramasundaram, P. Genetically modified foods: Bibliometric analysis on consumer perception and preference. GM Crops Food 2022, 13, 65–85. [Google Scholar] [CrossRef]
- Woźniak-Gientka, E.; Agata, T.; Milica, P.; Anna, B.; Dennis, E.; Nick, V.; Godelieve, G.; Selim, C.; Naghmeh, A.; Tomasz, T. Public perception of plant gene technologies worldwide in the light of food security. GM Crops Food 2022, 13, 218–241. [Google Scholar] [CrossRef] [PubMed]
DACH | A | |||||
---|---|---|---|---|---|---|
D (%) | CH (%) | A (%) | Conv. (%) | Org. (%) | Mix (%) | |
Yes | 97.5 | 88.7 | 89.9 | 93.2 | 83.0 | 93.8 |
No | 2.5 | 11.3 | 10.1 | 6.8 | 17.0 | 6.2 |
DACH | A | |||||||
---|---|---|---|---|---|---|---|---|
D (%) | CH (%) | A (%) | p | Conv. (%) | Org. (%) | Mix (%) | p | |
Drought | 92.2 | 85.1 | 94.4 | 93.9 | 97.7 | 93.3 | ||
Heat | 97.4 | 97.9 | 83.9 | 90.2 | 77.3 | 66.7 | ||
Pests and pathogens induced by climatic conditions | 59.7 | 38.3 | 65.0 | * | 64.6 | 68.2 | 60.0 | |
Heavy precipitation | 24.7 | 44.7 | 42.7 | * | 41.5 | 52.3 | 26.7 | * |
Late spring frosts | 7.8 | 14.9 | 25.9 | ** | 24.4 | 31.8 | 26.7 | * |
Flash floods | 6.5 | 6.4 | 18.2 | * | 15.9 | 27.3 | 13.3 | ** |
Soil erosion | 11.7 | 6.4 | 18.2 | 15.9 | 20.5 | 6.7 | ||
Others | 6.5 | 4.3 | 7.7 | 8.5 | 6.8 | 6.7 | ||
Early autumn frosts | 1.3 | 0.0 | 2.1 | 2.4 | 2.3 | 0.0 |
DACH ** | A | |||||
---|---|---|---|---|---|---|
D (%) | CH (%) | A (%) | Conv. (%) | Org. (%) | Mix (%) | |
<300 mm | 0.0 | 0.0 | 6.3 | 4.6 | 7.6 | 12.5 |
300–500 mm | 8.9 | 9.4 | 40.9 | 50.0 | 32.1 | 18.8 |
500–700 mm | 75.9 | 13.2 | 32.1 | 30.7 | 39.6 | 18.8 |
700–900 mm | 15.2 | 45.3 | 10.1 | 9.1 | 9.4 | 18.7 |
>900 mm | 0.0 | 30.2 | 3.8 | 4.5 | 1.9 | 6.2 |
Unsure | 0.0 | 1.9 | 6.9 | 1.1 | 9.4 | 25.0 |
DACH ** | A | |||||
---|---|---|---|---|---|---|
D (%) | CH (%) | A (%) | Conv. (%) | Org. (%) | Mix (%) | |
Yes | 27.8 | 50.9 | 22.6 | 21.6 | 28.3 | 12.5 |
No | 50.6 | 34.0 | 61.0 | 58.0 | 62.3 | 68.7 |
Partially | 21.5 | 15.1 | 16.4 | 20.4 | 9.4 | 18.8 |
(a) | DACH | A ** | (b) | DACH | A ** | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
D (%) | CH (%) | A (%) | Conv. (%) | Org. (%) | Mix (%) | D (%) | CH (%) | A (%) | Conv. (%) | Org. (%) | Mix (%) | |||
High | 82.3 | 83.0 | 71.7 | 85.3 | 54.7 | 50.0 | 50.6 | 37.7 | 44.0 | 53.4 | 32.1 | 100.0 | ||
Medium | 16.5 | 15.1 | 22.6 | 12.5 | 32.1 | 50.0 | 43.0 | 50.9 | 41.5 | 40.9 | 39.6 | 0.0 | ||
Low | 0.0 | 0.0 | 3.8 | 1.1 | 9.4 | 0.0 | 5.1 | 9.4 | 12.6 | 3.4 | 26.4 | 0.0 | ||
Unsure | 1.3 | 1.9 | 1.9 | 1.1 | 3.8 | 0.0 | 1.3 | 1.9 | 1.9 | 2.3 | 1.9 | 0.0 |
DACH | A | |||||||
---|---|---|---|---|---|---|---|---|
D (%) | CH (%) | A (%) | p | Conv. (%) | Org. (%) | Mix (%) | p | |
Planting an adapted variety | 72.7 | 69.8 | 70.4 | 76.1 | 62.3 | 62.5 | ||
Change of planting and harvesting date | 46.8 | 45.3 | 61.0 | 61.4 | 62.3 | 62.5 | ||
Tillage | 59.5 | 43.4 | 52.2 | 59.1 | 49.1 | 31.2 | * | |
Change in crop rotation | 44.3 | 28.3 | 39.6 | 38.6 | 45.3 | 31.2 | ||
Irrigation | 58.2 | 54.7 | 29.6 | ** | 30.7 | 28.3 | 25.0 | |
Planting an adapted genetically modified or genome edited variety | 34.2 | 28.3 | 15.7 | * | 23.9 | 7.5 | 0.0 | ** |
Others | 0.0 | 1.9 | 3.1 | 3.4 | 1.9 | 6.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bomers, S.; Ribarits, A.; Kamptner, A.; Tripolt, T.; von Gehren, P.; Prat, N.; Söllinger, J. Survey of Potato Growers’ Perception of Climate Change and Its Impacts on Potato Production in Germany, Switzerland, and Austria. Agronomy 2024, 14, 1399. https://doi.org/10.3390/agronomy14071399
Bomers S, Ribarits A, Kamptner A, Tripolt T, von Gehren P, Prat N, Söllinger J. Survey of Potato Growers’ Perception of Climate Change and Its Impacts on Potato Production in Germany, Switzerland, and Austria. Agronomy. 2024; 14(7):1399. https://doi.org/10.3390/agronomy14071399
Chicago/Turabian StyleBomers, Svenja, Alexandra Ribarits, Anita Kamptner, Tanja Tripolt, Philipp von Gehren, Noémie Prat, and Josef Söllinger. 2024. "Survey of Potato Growers’ Perception of Climate Change and Its Impacts on Potato Production in Germany, Switzerland, and Austria" Agronomy 14, no. 7: 1399. https://doi.org/10.3390/agronomy14071399
APA StyleBomers, S., Ribarits, A., Kamptner, A., Tripolt, T., von Gehren, P., Prat, N., & Söllinger, J. (2024). Survey of Potato Growers’ Perception of Climate Change and Its Impacts on Potato Production in Germany, Switzerland, and Austria. Agronomy, 14(7), 1399. https://doi.org/10.3390/agronomy14071399