Valorizing Combustible and Compostable Fractions of Municipal Solid Waste to Biochar and Compost as an Alternative to Chemical Fertilizer for Improving Soil Health and Sunflower Yield
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection of Materials
2.2. Derivation of BC and CP from MSW Components
2.3. Characterization of BC and CP Derived from MSW Components
2.3.1. Proximate and Elemental Analyses of BC and CP
2.3.2. Physicochemical Analyses of BC, CP and Soil
2.3.3. Surface and Structural Characterization of BC and CP
2.4. Crop Performance of Sunflower in Potted Soils Amended with BC and CP Derived from MSW
2.4.1. Sunflower Pot Cultivation Trial in Potted Soils Amended with BC and CP
2.4.2. Sunflower Crop Performance in Pot Trial
2.4.3. Oil Contents in Sunflower Seeds Derived from Pot Cultivation Trial
2.5. Statistical Analysis
3. Results and Discussion
3.1. Obtained Yield of BC and CP
3.2. Characterization of BC and CP
3.2.1. Proximate and Ultimate Analyses of BC and CP
3.2.2. Physico-Chemical and Elemental Analyses of Soil, BC, and CP before Cultivation of Sunflower
3.2.3. Surface and Structural Characterization of BC and CP
3.3. Soil Health Improvement Induced by BC, CP, and Its Combinations
3.4. Crop Performance of Sunflower in the Presence of BC, CP and Its Combinations
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Vijay, V.; Shreedhar, S.; Adlak, K.; Payyanad, S.; Sreedharan, V.; Gopi, G.; Aravind, P.V. Review of large-scale biochar field-trials for soil amendment and the observed influences on crop yield variations. Front. Energy. Res. 2021, 9, 710766. [Google Scholar] [CrossRef]
- Agegnehu, G.; Bass, A.M.; Nelson, P.N.; Bird, M.I. Benefits of Biochar, Compost and Biochar-Compost for Soil Quality, maize Yield and Greenhouse Gas Emissions in a Tropical Agricultural Soil. Sci. Total Environ. 2016, 543, 295–306. [Google Scholar] [CrossRef] [PubMed]
- Nair, V.D.; Nair, P.K.R.; Dari, B.; Freitas, A.M.; Chatterjee, N.; Pinheiro, F.M. Biochar in the Agroecosystem-Climate-Change-Sustainability Nexus. Front. Plant Sci. 2017, 8, 2051. [Google Scholar] [CrossRef] [PubMed]
- Bizuhoraho, T.; Kayiranga, A.; Manirakiza, N.; Mourad, K.A. The effect of land use systems on soil properties; A case study from Rwanda. Sustain. Agric. Res. 2018, 7, 30–40. [Google Scholar] [CrossRef]
- Gumisiriza, R.; Hawumba, J.F.; Okure, M.; Hensel, O. Biomass waste-to-energy valorisation technologies: A review case for banana processing in Uganda. Biotechnol. Biofuels. 2017, 10, 1–29. [Google Scholar] [CrossRef] [PubMed]
- Jeyasubramanian, K.; Thangagiri, B.; Sakthivel, A.; Dhaveethu Raja, J.; Seenivasan, S.; Vallinayagam, P. A Complete Review on Biochar: Production, Property, Multifaceted Applications, Interaction Mechanism and Computational Approach. Fuel 2021, 292, 120243. [Google Scholar] [CrossRef]
- Godlewska, P.; Ok, Y.S.; Oleszczuk, P. The Dark Side of Black Gold: Ecotoxicological Aspects of Biochar and Biochar-Amended Soils. J. Hazard. Mater. 2021, 403, 123833. [Google Scholar] [CrossRef] [PubMed]
- Xiao, X.; Chen, B.; Chen, Z.; Zhu, L.; Schnoor, J.L. Insight into Multiple and Multilevel Structures of Biochars and Their Potential Environmental Applications: A Critical Review. Environ. Sci. Technol. 2018, 52, 5027–5047. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Liu, Y.; Mo, C.; Jiang, Z.; Yang, J.; Lin, J. Microbial Mechanism of Biochar Addition on Nitrogen Leaching and Retention in tea Soils from Different Plantation Ages. Sci. Total Environ. 2021, 757, 143817. [Google Scholar] [CrossRef]
- Khan, N.; Bolan, N.; Jospeh, S.; Anh, M.T.L.; Meier, S.; Kookana, R.; Qiu, R. Complementing compost with biochar for agriculture, soil remediation and climate mitigation. Adv. Agron. 2023, 179, 1–90. [Google Scholar]
- Agegnehu, G.; Srivastava, A.K.; Bird, M.I. The role of biochar and biochar-compost in improving soil quality and crop performance: A review. Appl. Soil Ecol. 2017, 119, 156–170. [Google Scholar] [CrossRef]
- Jayawardhana, Y.; Mayakaduwa, S.S.; Kumarathilaka, P.; Gamage, S.; Vithanage, M. Municipal solid waste-derived biochar for the removal of benzene from landfill leachate. Environ. Geochem. Health 2019, 41, 1739–1753. [Google Scholar] [CrossRef] [PubMed]
- Rynk, R.; Van de Kamp, M.; Willson, G.B.; Singley, M.E.; Richard, T.L.; Kolega, J.J.; Gouin, F.R.; Laliberty, L.; Kay, D.; Murphy, D.; et al. On-Farm Composting Handbook (NRAES 54); Northeast Regional Agricultural Engineering Service: Ithaca, NY, USA, 1992. [Google Scholar]
- ASTM International. Standard Practice for Proximate Analysis of Coal and Coke; ASTM International: West Conshohocken, PA, USA, 2013. [Google Scholar]
- ASTM. Standard test method for chemical analysis of wood charcoal-D1762-84. Am. Soc. Test Mater. 2001, 84, 1–2. [Google Scholar]
- Nazir, A.; Laila, U.E.; Bareen, F.E.; Hameed, E.; Shafiq, M. Sustainable management of peanut shell through biochar and its application as soil ameliorant. Sustainability 2021, 13, 13796. [Google Scholar] [CrossRef]
- Bordoloi, N.; Narzari, R.; Chutia, R.S.; Bhaskar, T.; Ataki, R. Pyrolysis of Mesua ferrea and Pongamia glabra seed cover: Characterization of bio-oil and its sub-fractions. Bioresour. Technol. 2015, 178, 83–89. [Google Scholar] [CrossRef]
- Lu, R.K. Assay on Agro-Chemical Properties of Soil; China Agricultural Science and Technology Press: Beijing, China, 2000.
- Brewer, C.E.; Levine, J. Weight or Volume for Handling Biochar and Biomss? In the Biochar Journal, 2015, Arbaz, Switzerland. Available online: http://www.biochar-journal.org/en/Ct/71 (accessed on 15 June 2022).
- Schulte, E.E.; Hopkins, B.G. Estimation of soil organic matter by weight loss-on-ignition. Soil Org. Matter Anal. Interpret. 1996, 46, 21–31. [Google Scholar]
- Baird, R.B.; Eaton, A.D. Standard Methods for the Examination of Water and Wastewater; Rice, E.W., Ed.; American Public Health Association: Washington, DC, USA, 2017; Volume 23, pp. 5–41. [Google Scholar]
- Li, F.; Shen, K.; Long, X.; Wen, J.; Xie, X.; Zeng, X.; Liang, Y.; Wei, Y.; Lin, Z.; Huang, W. Preparation and characterization of biochars from Eichornia crassipes for cadmium removal in aqueous solutions. PLoS ONE 2016, 11, 0148132. [Google Scholar] [CrossRef] [PubMed]
- Bremner, J.M.; Tabatabai, M.A. Use of an ammonia electrode for determination of ammonium in Kjeldahl analysis of soils. Commun. Soil. Sci. Plant. Anal. 1972, 3, 159–165. [Google Scholar] [CrossRef]
- Watanabe, F.S.; Olsen, S.R. Test of an ascorbic acid method for determining phosphorus in water and NaHCO3 extracts from soil. Soil. Sci. Soc. Am. J. 1965, 29, 677–678. [Google Scholar] [CrossRef]
- Lu, R.K. Analytical Methods of Soil Agrochemistry; Chinese Agricultural Science and Technology Publishing House: Beijing, China, 2000; pp. 18–99. [Google Scholar]
- Waqas, M.; Aburiazaiza, A.S.; Miandad, R.; Rehan, M.; Barakat, M.A.; Nizami, A.S. Development of biochar as fuel and catalyst in energy recovery technologies. J. Clean. Prod. 2018, 188, 477–488. [Google Scholar] [CrossRef]
- Zornoza, R.; Moreno-Barriga, F.; Acosta, J.A.; Muñoz, M.A.; Faz, A. Stability, nutrient availability and hydrophobicity of biochars derived from manure, crop residues, and municipal solid waste for their use as soil amendments. Chemosphere 2016, 144, 122–130. [Google Scholar] [CrossRef] [PubMed]
- Gomez, K.A.; Gomez, A.A. Chapter 2 Single-Factor Experiments. In Statistical Procedures for Agricultural Research; A Wiley-Interscience Publication; John Wiley & Sons: New York, NY, USA; Chichester, UK; Brisbane, QC, Australia; Toronto, ON, Canada; Singapore, 1984. [Google Scholar]
- Abdulrazzaq, H.; Jol, H.; Husni, A.; Abu-Bakr, R. Characterization and stabilisation of biochars obtained from empty fruit bunch, wood, and rice husk. BioResources 2014, 9, 2888–2898. [Google Scholar] [CrossRef]
- Chen, T.; Zhang, Y.; Wang, H.; Lu, W.; Zhou, Z.; Zhang, Y.; Ren, L. Influence of pyrolysis temperature on characteristics and heavy metal adsorptive performance of biochar derived from municipal sewage sludge. Bioresour. Technol. 2014, 164, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Shen, F.; Yang, G.; Zhang, Y.; Deng, S.; Zhang, J.; Zeng, Y.; Luo, T.; Mei, Z. Valorizing Rice Straw and Its Anaerobically Digested Residues for Biochar to Remove Pb(II) from Aqueous Solution. Int. J. Polym. Sci. 2018, 2018, 2684962. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, P.; Yuan, X.; Li, Y.; Han, L. Effect of pyrolysis temperature and correlation analysis on the yield and physicochemical properties of crop residue biochar. Bioresour. Technol. 2020, 296, 122318. [Google Scholar] [CrossRef] [PubMed]
- Leng, L.; Xiong, Q.; Yang, L.; Li, H.; Zhou, Y.; Zhang, W.; Jiang, S.; Li, H.; Huang, H. An overview on engineering the surface area and porosity of biochar. Sci. Total Environ. 2021, 763, 144204. [Google Scholar] [CrossRef] [PubMed]
- Qureshi, T.; Shoaib, H.M.; Ali, U.; Siddiqi, M.H.; Hussain, M.A.; Lateef, H.U. Comparison of Physio-Chemical Characteristics of Different Compost Samples. Int. J. Thermal. Environ. Eng. 2021, 18, 09–17. [Google Scholar]
- Agrafioti, E.; Kalderis, D.; Diamadopoulos, E. Arsenic and chromium removal from water using biochars derived from rice husk, organic solid wastes and sewage sludge. J. Environ. Manag. 2014, 133, 309–314. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.H.; Xu, R.K. The amelioration effects of low temperature biochar generated from nine crop residues on an acidic Ultisol. Soil Use Manag. 2011, 27, 110–115. [Google Scholar] [CrossRef]
- Wei, Y.; Liang, Z.; Zhang, Y. Evolution of physicochemical proper ties and bacterial community in aerobic composting of swine manure based on a patent compost tray. Bioresour. Technol. 2022, 343, 126136. [Google Scholar] [CrossRef]
- Alkurdi, S.S.; Al-Juboori, R.A.; Bundschuh, J.; Bowtel, L.; McKnight, S. Effect of pyrolysis conditions on bone char characterization and its ability for arsenic and fluoride removal. Environ. Pollut. 2020, 262, 114–221. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Chandel, M.K. Physicochemical and FTIR spectroscopic analysis of fine fraction from a municipal solid waste dumpsite for potential reclamation of materials. Waste Manag. Res. 2021, 39, 374–385. [Google Scholar] [CrossRef] [PubMed]
- Han, L.; Sun, K.; Yang, Y.; Xia, X.; Li, F.; Yang, Z.; Xing, B. Biochar’s stability and effect on the content, composition and turnover of soil organic carbon. Geoderma 2020, 364, 114184. [Google Scholar] [CrossRef]
- Chen, S.; Qin, C.; Wang, T.; Chen, F.; Li, X.; Hou, H.; Zhou, M. Study on the adsorption of dyestuffs with different properties by sludge-rice husk biochar: Adsorption capacity, isotherm, kinetic, thermodynamics and mechanism. J. Mol. Liq. 2019, 285, 62–74. [Google Scholar] [CrossRef]
- Yaashikaa, P.R.; Kumar, P.S.; Varjani, S.; Saravanan, A. A critical review on the biochar production techniques, characterization, stability and applications for circular bioeconomy. Biotechnol. Rep. 2020, 28, e00570. [Google Scholar] [CrossRef] [PubMed]
- Rashid, J.; Tehreem, F.; Rehman, A.; Kumar, R. Synthesis using natural functionalization of activated carbon from pumpkin peels for decolourization of aqueous methylene blue. Sci. Total Environ. 2019, 671, 369–376. [Google Scholar] [CrossRef]
- Hoslett, J.; Ghazal, H.; Mohamad, N.; Jouhara, H. Removal of methylene blue from aqueous solutions by biochar prepared from the pyrolysis of mixed municipal discarded material. Sci. Total Environ. 2020, 714, 136–832. [Google Scholar] [CrossRef]
- Sigmund, G.; Hüffer, T.; Hofmann, T.; Kah, M. Biochar total surface area and total pore volume determined by N2 and CO2 physisorption are strongly influenced by degassing temperature. Sci. Total Environ. 2017, 580, 770–775. [Google Scholar] [CrossRef]
- Papurello, D.; Gandiglio, M.; Kafashan, J.; Lanzini, A. Biogas purification: A comparison of adsorption wood-derived char using isotherm equations. Processes 2019, 7, 774. [Google Scholar] [CrossRef]
- Mujtaba, G.; Hayat, R.; Hussain, Q.; Ahmed, M. Physico-Chemical Characterization of Biochar, Compost and Co-Composted Biochar Derived from Green Waste. Sustainability 2021, 13, 4628. [Google Scholar] [CrossRef]
- Sun, Y.; Xiong, X.; He, M.; Xu, Z.; Hou, D.; Zhang, W.; Tsang, D.C. Roles of biochar-derived dissolved organic matter in soil amendment and environmental remediation: A critical review. J. Chem. Eng. 2021, 424, 130387. [Google Scholar] [CrossRef]
- Mohammad, M.I.; Al-Wabel, A.; Al-Omran, A.M.; El-Naggar, M.; Nadeem, A.R.A. Usman. Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from conocarpus wastes. Bioresour. Technol. 2014, 131, 374–379. [Google Scholar]
- Mary, G.S.; Sugumaran, P.; Niveditha, S.; Ramalakshmi, B.; Ravichandran, P.; Seshadri, S. Production, characterization and evaluation of biochar from pod (Pisum sativum), leaf (Brassica oleracea) and peel (Citrus sinensis) wastes. Int. J. Recycl. Org. Waste Agric. 2016, 5, 43–53. [Google Scholar] [CrossRef]
- Jean, K.; Emanuella, G.; Souza, D.; Mychel, Í.; Leite, G.; Sá, D.; Meili, L. Bioresource Technology Wodyetia bifurcata biochar for methylene blue removal from aqueous matrix. Bioresour. Technol. 2019, 293, 122093. [Google Scholar]
- Saffari, N.; Hajabbasi, M.A.; Shirani, H.; Mosaddeghi, M.R.; Mamedov, A.I. Biochar type and pyrolysis temperature effects on soil quality indicators and structural stability. J. Environ. Manag. 2020, 261, 110190. [Google Scholar] [CrossRef] [PubMed]
- Dhyani, V.; Awasthi, M.K.; Wang, Q.; Kumar, J.; Ren, X.; Zhao, J.; Chen, H.; Wang, M.; Bhaskar, T.; Zhang, Z. Effect of composting on the thermal decomposition behavior and kinetic parameters of pig manure-derived solid waste. Bioresour. Technol. 2018, 252, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; Wang, J.; Yang, Y.; Zhang, Y.; Zhao, C.; Yu, Y.; Wang, S. Comparison of the thermal degradation behaviors and kinetics of palm oil waste under nitrogen and air atmosphere in TGA-FTIR with a complementary use of model-free and model-fitting approaches. J. Anal. Appl. Pyrol. 2018, 134, 12–24. [Google Scholar] [CrossRef]
- Martinsen, V.; Alling, V.; Nurida, N.L.; Mulder, J.; Hale, S.E.; Ritz, C.; Cornelissen, G. pH effects of the addition of three biochars to acidic Indonesian mineral soils. Soil. Sci. Plant. Nutr. 2015, 61, 821–834. [Google Scholar] [CrossRef]
- Khan, N.; Clark, I.; Sanchez-Monedero, M.A.; Shea, S.; Meier, S.; Qi, F.J.; Kookana, R.S.; Bolan, N. Physical and chemical properties of biochars co-composted with biowastes and incubated with a chicken litter compost. Chemosphere 2016, 142, 14–23. [Google Scholar] [CrossRef]
- Ozlu, E.; Kumar, S. Response of soil organic carbon, ph, electrical conductivity, and water stable aggregates to long-term annual manure and inorganic fertilizer. Soil Sci. Soc. Am. J. 2018, 82, 1243–1251. [Google Scholar] [CrossRef]
- Williams, A.; Hunter, M.C.; Kammerer, M.; Kane, D.A.; Jordan, N.R.; Mortensen, D.A. Soil water holding capacity mitigates downside risk and volatility in US rainfed maize: Time to invest in soil organic matter. PLoS ONE 2016, 11, e0160974. [Google Scholar] [CrossRef] [PubMed]
- Manna, M.C.; Rahman, M.M.; Naidu, R.; Sahu, A.; Bhattacharjya, S.; Wanjari, R.H.; Khanna, S.S. Bio-waste management in subtropical soils of India: Future challenges and opportunities in agriculture. Adv. Agron. 2018, 152, 87–148. [Google Scholar]
- Yousra, M.; Hussain, Q.; Khan, K.S.; Ansar, M.; Sarwar, S.; Khan, M.Z. Soil Organic Carbon Pools in Benchmark Soils of Punjab, Pakistan. Commun. Soil Sci. Plant Anal. 2023, 54, 571–585. [Google Scholar] [CrossRef]
- Chan, K.Y.; Xu, Z. Biochar: Nutrient properties and their enhancement. In Biochar for Environmental Management; Lehmann, J., Joseph, S., Eds.; Earthscan: London, UK, 2009; pp. 67–84. [Google Scholar]
- Doan, T.T.; Tureaux, T.H.; Rumpel, C.; Janeau, J.L.; Jouquet, P. Impact of compost, vermicompost andbiochar on soil fertility, maize yield and soil erosion in Northern Vietnam: A three-year mesocosm experiment. Sci. Total Environ. 2015, 514, 147–154. [Google Scholar] [CrossRef] [PubMed]
- Akdeniz, N. A systematic review of biochar use in animal waste composting. Waste Manag. 2019, 88, 291–300. [Google Scholar] [CrossRef]
- Farid, I.M.; Siam, H.S.; Abbas, M.H.; Mohamed, I.; Mahmoud, S.A.; Tolba, M.; Shaheen, S.M. Co-composted biochar derived from rice straw and sugarcane bagasse improved soil properties, carbon balance, and zucchini growth in a sandy soil: A trial for enhancing the health of low fertile arid soils. Chemosphere 2022, 292, 133389. [Google Scholar] [CrossRef]
Control | Dose | SOAs | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Soil only | Soil + CF | BC | CP | BC + CP | ||||||||||||||||
Replicates | Replicates | |||||||||||||||||||
R1 | R2 | R3 | R4 | R1 | R2 | R3 | R4 | R1 | R2 | R3 | R4 | R1 | R2 | R3 | R4 | R1 | R2 | R3 | R4 | |
S-R1 | S-R2 | S-R3 | S-R4 | S + CFR1 | S + CFR2 | S + CFR3 | S + CFR14 | L | BC-L-R1 | BC-L-R2 | BC-L-R3 | BC-L-R4 | CP-L-R1 | CP-L-R2 | CP-L-R3 | CP-L-R4 | BC + CP-L-R1 | BC + CP-L-R2 | BC + CP-L-R3 | BC + CP-L-R4 |
M | BC-M-R1 | BC-M-R2 | BC-M-R3 | BC-M-R4 | CP-M-R1 | CP-M-R2 | CP-M-R3 | CP-M-R4 | BC + CP-M-R1 | BC + CP-M-R2 | BC + CP-M-R3 | BC + CP-M-R4 | ||||||||
H | BC-H-R1 | BC-H-R2 | BC-H-R3 | BC-H-R4 | CP-H-R1 | CP-H-R2 | CP-H-R3 | CP-H-R4 | BC + CP-H-R1 | BC + CP-H-R2 | BC + CP-H-R3 | BC + CP-H-R4 |
Elemental Constituents | Units | SOAs | |
---|---|---|---|
BC | CP | ||
C | Wt.% | 42.86 ± 1.16 a | 17.44 ± 1.07 b |
H | 2.85 ± 0.44 a | 1.43 ± 0.18 b | |
S | 0.55 ± 0.02 a | 0.36 ± 0.05 b | |
N | 0.90 ± 0.10 b | 1.92 ± 0.01 a |
Anlyses Type | Parameter | Units | Soil | BC | CP |
---|---|---|---|---|---|
Physico-chemical analysis | pH (1:20) | - | 7.39 ± 0.11 | 8.73 ± 0.11 | 7.67 ± 0.17 |
ECe1:20 | mS cm−1 | 364.3 ± 2.1 | 422.3 ± 1.45 | 553.66 ± 2.33 | |
WHC | (wt.%) | 19.91 ± 0.62 | 33.5 ± 0.97 | 24.41 ± 0.22 | |
SOM | 0.55 ± 0.07 | 7.14 ± 0.78 | 15.78 ± 1.66 | ||
BD | (g cm−3) | 1.25 ± 0.02 | 1.09 ± 0.11 | 0.60 ± 0.02 | |
CEC | (cmolc kg−1) | 22.29 ± 1.58 | 46.69 ± 0.94 | 43.06 ± 0.74 | |
Elemental analyses | N | (wt.%) | 0.17 ± 0.02 | 0.90 ± 0.10 | 1.92 ± 0.01 |
P | 0.06 ± 0.01 | 1.5 ± 0.01 | 1.69 ± 0.14 | ||
K | 0.03 ± 0.006 | 1.90 ± 0.49 | 0.89 ± 0.11 | ||
C | ND | 42.86 ± 1.16 | 17.44 ± 1.07 | ||
H | ND | 2.85 ± 0.44 | 1.43 ± 0.18 | ||
S | ND | 0.55 ± 0.02 | 0.36 ± 0.05 | ||
Ca | ppm | 1.003 ± 0.06 | 1.17 ± 0.04 | 2.22 ± 0.55 | |
Mg | 1.36 ± 0.07 | 3.03 ± 0.18 | 1.52 ± 0.67 | ||
Zn | 0.23 ± 0.02 | 0.49 ± 0.01 | 0.56 ± 0.01 | ||
Cu | 0.02 ± 0.01 | 0.11 ± 0.01 | 0.14 ± 0.005 |
Biochar | Compost | |||
---|---|---|---|---|
Elements | Weight (%) | Atomic (%) | Weight (%) | Atomic (%) |
C | 77.73 ± 0.01 | 87.3 ± 0.006 | 10.6 ± 0.41 | 15.31 ± 0.61 |
O | 9.8 ± 0.10 | 8.36 ± 0008 | 46.01 ± 2.48 | 53.59 ± 6.19 |
Na | 0.36 ± 0.005 | 0.24 ± 0.01 | 1.75 ± 0.13 | 1.29 ± 0.07 |
Mg | 0.39 ± 0.005 | 0.26 ± 0.01 | 2.33 ± 0.49 | 2.01 ± 0.54 |
Si | 1.48 ± 0.003 | 0.76 ± 0.008 | 22.28 ± 2.53 | 16.04 ± 2.68 |
K | 2.91 ± 0.003 | 1.1 ± 0.003 | 3.31 ± 0.49 | 2.11 ± 0.54 |
Ca | 12.41 ± 006 | 4.52 ± 0.01 | 1.88 ± 0.42 | 1.12 ± 0.17 |
Al | 0.63 ± 0.01 | 0.33 ± 0.01 | 9.50 ± 1.25 | 6.92 ± 1.22 |
Fe | - | - | 2.27 ± 0.55 | 0.54 ± 0.03 |
P | - | - | 0.25 ± 0.01 | 0.14 ± 0.01 |
Treatments | pH | EC (mS cm−1) | BD (g cm−3) | CEC (Cmolc kg−1) | SOM | WHC | N | P | |
---|---|---|---|---|---|---|---|---|---|
Wt. (%) | |||||||||
Control | Soil only | 7.49 ± 0.03 | 415.6 ± 1.97 | 1.22 ± 0.01 | 20.22 ± 0.52 | 1.23 ± 0.04 | 53.72 ± 0.02 | 0.175 ± 0.04 | 0.21 ± 0.03 |
Soil + CF | 8.56 ± 0.09 | 538.5 ± 0.52 | 1.12 ± 0.002 | 28.63 ± 0.66 | 5.40 ± 0.11 | 84.55 ± 0.17 | 1.61 ± 0.02 | 1.52 ± 0.10 | |
BC-L | 8.13 ± 0.05 | 23.42 ± 0.47 | 1.16 ± 0.01 | 23.42 ± 0.47 | 5.12 ± 0.05 | 70.41 ± 0.02 | 0.675 ± 0.02 | 1.21 ± 0.16 | |
BC-M | 8.37 ± 0.09 | 519.25 ± 0.84 | 1.14 ± 0.001 | 25.75 ± 0.50 | 4.98 ± 0.14 | 66.57 ± 0.13 | 0.59 ± 0.03 | 1.38 ± 0.11 | |
BC-H | 8.06 ± 0.01 | 510.52 ± 0.14 | 1.11 ± 0.007 | 27.27 ± 0.45 | 5.42 ± 0.05 | 66.41 ± 0.02 | 0.74 ± 0.01 | 1.59 ± 0.09 | |
CP-L | 8.59 ± 0.02 | 557 ± 1.44 | 1.18 ± 0.002 | 27.16 ± 0.8 | 8.33 ± 0.12 | 63.79 ± 1.00 | 1.18 ± 0.06 | 1.47 ± 0.17 | |
CP-M | 8.05 ± 0.01 | 563.7 ± 0.09 | 1.11 ± 0.002 | 29.44 ± 0.55 | 8.44 ± 0.11 | 59.75 ± 0.01 | 1.66 ± 0.01 | 1.63 ± 0.1 | |
CP-H | 8.65 ± 0.01 | 548.075 ± 2.5 | 1.10 ± 0.01 | 30.38 ± 0.65 | 7.81 ± 0.40 | 57.61 ± 0.95 | 1.73 ± 0.02 | 1.66 ± 0.09 | |
BC + CP-L | 8.63 ± 0.03 | 536.15 ± 1.88 | 1.06 ± 0.01 | 29.32 ± 0.33 | 8.57 ± 0.16 | 68.86 ± 0.01 | 1.78 ± 0.01 | 1.85 ± 0.01 | |
BC + CP-M | 8.24 ± 0.29 | 583.37 ± 0.13 | 1.05 ± 0.004 | 31.90 ± 0.86 | 9.26 ± 0.23 | 62.73 ± 0.57 | 1.82 ± 0.01 | 1.83 ± 1.0.03 | |
BC + CP-H | 86.26 ± 0.01 | 574 ± 0.075 | 1.008 ± 0.15 | 32.31 ± 1.51 | 13.21 ± 0.43 | 86.26 ± 0.01 | 1.85 ± 0.01 | 1.91 ± 0.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aslam, S.; Nazir, A. Valorizing Combustible and Compostable Fractions of Municipal Solid Waste to Biochar and Compost as an Alternative to Chemical Fertilizer for Improving Soil Health and Sunflower Yield. Agronomy 2024, 14, 1449. https://doi.org/10.3390/agronomy14071449
Aslam S, Nazir A. Valorizing Combustible and Compostable Fractions of Municipal Solid Waste to Biochar and Compost as an Alternative to Chemical Fertilizer for Improving Soil Health and Sunflower Yield. Agronomy. 2024; 14(7):1449. https://doi.org/10.3390/agronomy14071449
Chicago/Turabian StyleAslam, Samreen, and Aisha Nazir. 2024. "Valorizing Combustible and Compostable Fractions of Municipal Solid Waste to Biochar and Compost as an Alternative to Chemical Fertilizer for Improving Soil Health and Sunflower Yield" Agronomy 14, no. 7: 1449. https://doi.org/10.3390/agronomy14071449
APA StyleAslam, S., & Nazir, A. (2024). Valorizing Combustible and Compostable Fractions of Municipal Solid Waste to Biochar and Compost as an Alternative to Chemical Fertilizer for Improving Soil Health and Sunflower Yield. Agronomy, 14(7), 1449. https://doi.org/10.3390/agronomy14071449