A Deep-Learning-Based Model for the Detection of Diseased Tomato Leaves
Abstract
:1. Introduction
- Dataset enhancement and argumentation for much better precision and accurate detection performance in relation to the diseased tomato leaves.
- Developing the YAML code for the required detection output.
- Deploying and training the models based on the standard network structure of the YOLOV8s and YOLOV5 via the Ultralytics Hub, which is less time-consuming.
- Comparative analysis of the detection performance of the implemented YOLOV8s with other models, such as YOLOV5 and Faster-R-CNN, using the same parameter.
2. Materials and Methods
2.1. Materials
2.1.1. Dataset
2.1.2. Data Enhancement and Augmentation
2.2. Method
Standard YOLOV8s
2.3. Training Parameters and Setting
2.3.1. Training Environment
2.3.2. Dataset Preparation and Model Training
2.3.3. Parameters for Model Evaluation
3. Results
3.1. Comparative Analysis of the Ablation Experiments
3.2. Comparative Analysis of the Detection Output between YOLOV8 and Other Models
4. Discussion
5. Conclusions
- The ablation experiment shows that the model based on YOLOV8s exhibits significantly improved detection performance in comparison to the model based on YOLOV5. The YOLOV8s model outperformed YOLOV5, with a 2.9% increase in mean average precision (mAP), 3.2% increase in precision, and 3.1% increase in recall.
- The YOLOV8s model, which was implemented, reached a frame rate of 141.5 frames per second (FPS), satisfying the need for real-time detection and showcasing the model’s ability to identify objects at a considerably accelerated inference speed.
- Comparative investigation indicates that YOLOV8s outperforms Faster R-CNN in terms of the detection precision, mean average precision (mAP), and frames per second (FPS), possibly because of the YOLOV8s model’s lightweight architecture.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hung, J.; Goodman, A.; Ravel, D. Keras R-CNN: Library for cell detection in biological images using deep neural networks. BMC Bioinform. 2020, 21, 300. [Google Scholar] [CrossRef]
- Deng, X.; Shao, H.; Shi, L.; Wang, X.; Xie, T. A classification–detection approach of COVID-19 based on chest X-ray and CT by using Keras pre-trained deep learning models. Comput. Model. Eng. Sci. 2020, 125, 579–596. [Google Scholar] [CrossRef]
- Pachipala, Y.; Harika, M.; Aakanksha, B.; Kavitha, M. Object Detection using TensorFlow. In Proceedings of the International Conference on Electronics and Renewable Systems (ICEARS), Tuticorin, India, 16–18 March 2022; pp. 1611–1619. [Google Scholar] [CrossRef]
- Howal, S.; Jadhav, A.; Arthshi, C.; Nalavade, S.; Shinde, S. Object Detection for Autonomous Vehicle Using TensorFlow. In Advances in Intelligent Systems and Computing, Proceedings of the Intelligent Computing, Information and Control Systems, ICICCS 2019, Secunderabad, India, 27–28 June 2019; Pandian, A., Ntalianis, K., Palanisamy, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2020; Volume 1039, p. 1039. [Google Scholar] [CrossRef]
- Yue, Z.; Xue, Y.; Gefan, Z.; Jiabao, W.; Yanyi, L.; Liping, H.; Xue, J.; Xingzhao, L.; Junchi, Y.; Chengqi, L. Mmrotate: A rotated object detection benchmark using Pytorch. In Proceedings of the 30th ACM International Conference on Multimedia, Lisbon, Portugal, 10–14 October 2022; pp. 7331–7334. [Google Scholar]
- Lawal, M.O. Tomato detection based on modified YOLOv3 framework. Sci. Rep. 2021, 11, 1447. [Google Scholar] [CrossRef] [PubMed]
- Phan, Q.H.; Nguyen, V.T.; Lien, C.H.; Duong, T.P.; Hou, M.T.K.; Le, N.B. Classification of tomato fruit using yolov5 and convolutional neural network models. Plants 2023, 12, 790. [Google Scholar] [CrossRef]
- Liu, Y.; Song, Y.; Ye, R.; Zhu, S.; Huang, Y.; Chen, T.; Zhou, J.; Li, J.; Li, M.; Lv, C. High-Precision Tomato Disease Detection Using NanoSegmenter Based on Transformer and Lightweighting. Plants 2023, 12, 2559. [Google Scholar] [CrossRef]
- Tian, Y.; Yang, G.; Wang, Z.; Wang, H.; Li, E.; Liang, Z. Apple Detection during Different Growth Stages in Orchards Using the Improved YOLO-V3 Model. Comput. Electron. Agric. 2019, 157, 417–426. [Google Scholar] [CrossRef]
- Umar, M.; Altaf, S.; Ahmad, S.; Mahmoud, H.; Mohamed, A.S.N.; Ayub, R. Precision Agriculture Through Deep Learning: Tomato Plant Multiple Diseases Recognition with CNN and Improved YOLOv7. IEEE Access 2024, 12, 49167–49183. [Google Scholar] [CrossRef]
- Zayani, H.M.; Ammar, I.; Ghodhbani, R.; Maqbool, A.; Saidani, T.; Slimane, J.B.; Kachoukh, A.; Kouki, M.; Kallel, M.; Alsuwaylimi, A.A.; et al. Deep Learning for Tomato Disease Detection with YOLOv8. Eng. Technol. Appl. Sci. Res. 2024, 14, 13584–13591. [Google Scholar] [CrossRef]
- Cardellicchio, A.; Solimani, F.; Dimauro, G.; Petrozza, A.; Summerer, S.; Cellini, F.; Renò, V. Detection of Tomato Plant Phenotyping Traits Using YOLOV5-Based Single Stage Detectors. Comput. Electron. Agric. 2023, 207, 107757. [Google Scholar] [CrossRef]
- Liu, G.; Nouaze, J.C.; Touko Mbouembe, P.L.; Kim, J.H. YOLO-Tomato: A Robust Algorithm for Tomato Detection Based on YOLOV3. Sensors 2020, 20, 2145. [Google Scholar] [CrossRef]
- Yang, Y.; Li, J.; Nie, J.; Yang, S.; Tang, J. Cotton Stubble Detection Based on Improved YOLOV3. Agronomy 2023, 13, 1271. [Google Scholar] [CrossRef]
- Gai, R.; Chen, N.; Yuan, H. A detection algorithm for cherry fruits based on the improved YOLO-v4 model. Neural Comput. Appl. 2021, 35, 13895–13906. [Google Scholar] [CrossRef]
- Wu, D.; Lv, S.; Jiang, M.; Song, H. Using channel pruning-based YOLO v4 deep learning algorithm for the real-time and accurate detection of apple flowers in natural environments. Comput Electron. Agric. 2020, 178, 105742. [Google Scholar] [CrossRef]
- Li, R.; Ji, Z.; Hu, S.; Huang, X.; Yang, J.; Li, W. Tomato Maturity Recognition Model Based on Improved YOLOV5 in Greenhouse. Agronomy 2023, 13, 603. [Google Scholar] [CrossRef]
- Sozzi, M.; Cantalamessa, S.; Cogato, A.; Kayad, A.; Marinello, F. Automatic Bunch Detection in White Grape Varieties Using YOLOV3, YOLOV4, and YOLOV5 Deep Learning Algorithms. Agronomy 2022, 12, 319. [Google Scholar] [CrossRef]
- Zhou, J.; Zhang, Y.; Wang, J. RDE-YOLOV7: An Improved Model Based on YOLOV7 for Better Performance in Detecting Dragon Fruits. Agronomy 2023, 13, 1042. [Google Scholar] [CrossRef]
- Yang, H.; Liu, Y.; Wang, S.; Qu, H.; Li, N.; Wu, J.; Yan, Y.; Zhang, H.; Wang, J.; Qiu, J. Improved Apple Fruit Target Recognition Method Based on YOLOV7 Model. Agriculture 2023, 13, 1278. [Google Scholar] [CrossRef]
- Yang, D.; Zhou, J.; Song, T.; Zhang, X.; Song, Y. PGDS-YOLOV8s: An Improved YOLOV8s Model for Object Detection in Fisheye Images. Appl. Sci. 2024, 14, 44. [Google Scholar] [CrossRef]
- Yang, G.; Wang, J.; Nie, Z.; Yang, H.; Yu, S. A Lightweight YOLOV8 Tomato Detection Algorithm Combining Feature Enhancement and Attention. Agronomy 2023, 13, 1824. [Google Scholar] [CrossRef]
- Qadri, S.A.A.; Huang, N.F.; Wani, T.M.; Bhat, S.A. Plant Disease detection and segmentation using End-to-End YOLOV8: A Comprehensive Approach. In Proceedings of the IEEE 13th International Conference on Control System, Computing and Engineering (ICCSCE), Penang, Malaysia, 25–26 August 2023; pp. 155–160. [Google Scholar] [CrossRef]
- Arun Pandian, J.; Geetharamani, G. Data for Identification of Plant Leaf Diseases Using a 9-layer Deep Convolutional Neural Network, Version 1; Mendeley Data; Elsevier Inc.: Amsterdam, The Netherlands, 2019. [Google Scholar] [CrossRef]
- Agarwal, S.; Terrail, J.O.D.; Jurie, F. Recent advances in object detection in the age of deep convolutional neural networks. arXiv 2018, arXiv:1809.03193. [Google Scholar]
- Mohit, A.; Abhishek, S.; Siddhartha, A.; Amit, S.; Suneet, G. ToLeD: Tomato Leaf Disease Detection using Convolution Neural Network.Procedia. Comput. Sci. 2020, 167, 293–301. [Google Scholar]
- Liu, W.; Zhai, Y.; Xia, Y. Tomato Leaf Disease Identification Method Based on Improved YOLOX. Agronomy 2023, 13, 1455. [Google Scholar] [CrossRef]
- Yue, X.; Qi, K.; Yang, F.; Na, X.; Liu, Y.; Liu, C. RSR-YOLO: A real-time method for small target tomato detection based on improved YOLOv8 network. Discov. Appl. Sci. 2024, 6, 268. [Google Scholar] [CrossRef]
- Tian, Y. Effective Image Enhancement and Fast Object Detection for Improved UAV Applications. Master’s Thesis, University of Strathclyde, Glasgow, UK, 2023. [Google Scholar]
Category | Configuration |
---|---|
CPU | Intel core i7-3517U@3.06 Hz 16 G |
GPU | NVIDIA GeforceGT 635M |
System environment | Windows 10 |
Training the interface | Ultralytic Hub web |
Network | P (%) | R (%) | mAP (%) | FPS | Model Size (M) |
---|---|---|---|---|---|
YOLOV5 | 90.1 | 87.1 | 89.6 | 102.7 | 32.6 |
YOLOV8s | 93.2 | 90.3 | 92.5 | 141.5 | 23.2 |
Network | P (%) | R (%) | mAP (%) | FPS |
---|---|---|---|---|
Faster R-CNN | 76.8 | 81.7 | 77.3 | 11 |
YOLOV5 | 90.1 | 87.1 | 89.6 | 102.7 |
YOLOV8s | 93.2 | 90.3 | 92.5 | 141.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdullah, A.; Amran, G.A.; Tahmid, S.M.A.; Alabrah, A.; AL-Bakhrani, A.A.; Ali, A. A Deep-Learning-Based Model for the Detection of Diseased Tomato Leaves. Agronomy 2024, 14, 1593. https://doi.org/10.3390/agronomy14071593
Abdullah A, Amran GA, Tahmid SMA, Alabrah A, AL-Bakhrani AA, Ali A. A Deep-Learning-Based Model for the Detection of Diseased Tomato Leaves. Agronomy. 2024; 14(7):1593. https://doi.org/10.3390/agronomy14071593
Chicago/Turabian StyleAbdullah, Akram, Gehad Abdullah Amran, S. M. Ahanaf Tahmid, Amerah Alabrah, Ali A. AL-Bakhrani, and Abdulaziz Ali. 2024. "A Deep-Learning-Based Model for the Detection of Diseased Tomato Leaves" Agronomy 14, no. 7: 1593. https://doi.org/10.3390/agronomy14071593
APA StyleAbdullah, A., Amran, G. A., Tahmid, S. M. A., Alabrah, A., AL-Bakhrani, A. A., & Ali, A. (2024). A Deep-Learning-Based Model for the Detection of Diseased Tomato Leaves. Agronomy, 14(7), 1593. https://doi.org/10.3390/agronomy14071593