Metagenomics Analysis of the Impact of Protein-Degrading Functional Microbial Agents on Composting of Chicken Manure from Cereal Hulls
Abstract
:1. Introduction
2. Materials and Methods
2.1. Composting Materials and Experimental Design
2.2. Physicochemical Analyses
2.3. 16S rRNA Analysis
2.4. Metagenomics Analysis
2.5. Data Analysis
3. Results and Discussion
3.1. Changes of Physicochemical Parameters
3.2. Nitrogen Conversion
3.3. Composition and Change of Microbial Community
3.4. Bacterial Community Network Analysis
3.5. Bacterial Metagenomics and Nitrogen Metabolism—Related Genes Analysis
3.6. Relevance Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, Z.; Wei, Y.; Li, J.; Ding, G.-C. Integrating 16S RRNA Amplicon Metagenomics and Selective Culture for Developing Thermophilic Bacterial Inoculants to Enhance Manure Composting. Waste Manag. 2022, 144, 357–365. [Google Scholar] [CrossRef]
- Wang, Z.; Xu, Y.; Yang, T.; Liu, Y.; Zheng, T.; Zheng, C. Effects of Biochar Carried Microbial Agent on Compost Quality, Greenhouse Gas Emission and Bacterial Community during Sheep Manure Composting. Biochar 2023, 5, 3. [Google Scholar] [CrossRef]
- Ravindran, B.; Nguyen, D.D.; Chaudhary, D.K.; Chang, S.W.; Kim, J.; Lee, S.R.; Shin, J.; Jeon, B.-H.; Chung, S.; Lee, J. Influence of Biochar on Physico-Chemical and Microbial Community during Swine Manure Composting Process. J. Environ. Manag. 2019, 232, 592–599. [Google Scholar] [CrossRef]
- Wang, Q.; Awasthi, M.K.; Ren, X.; Zhao, J.; Li, R.; Wang, Z.; Wang, M.; Chen, H.; Zhang, Z. Combining Biochar, Zeolite and Wood Vinegar for Composting of Pig Manure: The Effect on Greenhouse Gas Emission and Nitrogen Conservation. Waste Manag. 2018, 74, 221–230. [Google Scholar] [CrossRef]
- Li, H.; Zhang, T.; Shaheen, S.M.; Abdelrahman, H.; Ali, E.F.; Bolan, N.S.; Li, G.; Rinklebe, J. Microbial Inoculants and Struvite Improved Organic Matter Humification and Stabilized Phosphorus during Swine Manure Composting: Multivariate and Multiscale Investigations. Bioresour. Technol. 2022, 351, 126976. [Google Scholar] [CrossRef]
- Barrington, S. Effect of Carbon Source on Compost Nitrogen and Carbon Losses. Bioresour. Technol. 2002, 83, 189–194. [Google Scholar] [CrossRef]
- Chan, M.T.; Selvam, A.; Wong, J.W.C. Reducing Nitrogen Loss and Salinity during ‘Struvite’ Food Waste Composting by Zeolite Amendment. Bioresour. Technol. 2016, 200, 838–844. [Google Scholar] [CrossRef]
- Wei, Z.; Ahmed Mohamed, T.; Zhao, L.; Zhu, Z.; Zhao, Y.; Wu, J. Microhabitat Drive Microbial Anabolism to Promote Carbon Sequestration during Composting. Bioresour. Technol. 2022, 346, 126577. [Google Scholar] [CrossRef]
- Liu, H.; Huang, Y.; Wang, H.; Shen, Z.; Qiao, C.; Li, R.; Shen, Q. Enzymatic Activities Triggered by the Succession of Microbiota Steered Fiber Degradation and Humification during Co-Composting of Chicken Manure and Rice Husk. J. Environ. Manag. 2020, 258, 110014. [Google Scholar] [CrossRef]
- Chi, C.P.; Chu, S.; Wang, B.; Zhang, D.; Zhi, Y.; Yang, X.; Zhou, P. Dynamic Bacterial Assembly Driven by Streptomyces Griseorubens JSD-1 Inoculants Correspond to Composting Performance in Swine Manure and Rice Straw Co-Composting. Bioresour. Technol. 2020, 313, 123692. [Google Scholar] [CrossRef]
- Zhang, Y.; Wei, Z.; Guo, J.; Zhang, S.; Zhao, L.; Pan, C.; Wang, L.; Zhang, R.; Chen, Y. Resource Utilization of Mink Manure: Functional Microbial Inoculation to Elevate the Bioavailability of Organic Nitrogen during Composting. Bioresour. Technol. 2022, 353, 127149. [Google Scholar] [CrossRef]
- Liu, H.; Huang, Y.; Duan, W.; Qiao, C.; Shen, Q.; Li, R. Microbial Community Composition Turnover and Function in the Mesophilic Phase Predetermine Chicken Manure Composting Efficiency. Bioresour. Technol. 2020, 313, 123658. [Google Scholar] [CrossRef] [PubMed]
- Li, H.-J.; Yang, Z.-H.; Zhang, C.-Y.; Shang, W.-W.; Zhang, T.-L.; Chang, X.-J.; Wu, Z.-S.; He, Y.-H. Effect of microbial inoculum on composting efficiency in the composting process of spent mushroom substrate and chicken manure. J. Environ. Manag. 2024, 353, 120145. [Google Scholar] [CrossRef] [PubMed]
- Ji, Y.-H.; Cao, Y.-Z.; Wang, Y.; Wang, C.; Qin, Z.-H.; Cai, W.-R.; Yang, Y.; Yan, S.-D.; Guo, X.-H. Effects of adding lignocellulose-degrading microbial agents and biochar on nitrogen metabolism and microbial community succession during pig manure composting. Environ. Res. 2023, 239 Pt 1, 117400. [Google Scholar] [CrossRef] [PubMed]
- Kong, W.; Sun, B.; Zhang, J.; Zhang, Y.; Gu, L.; Bao, L.; Liu, S. Metagenomic Analysis Revealed the Succession of Microbiota and Metabolic Function in Corncob Composting for Preparation of Cultivation Medium for Pleurotus ostreatus. Bioresour. Technol. 2020, 306, 123156. [Google Scholar] [CrossRef] [PubMed]
- Qiao, C.; Ryan Penton, C.; Liu, C.; Shen, Z.; Ou, Y.; Liu, Z.; Xu, X.; Li, R.; Shen, Q. Key Extracellular Enzymes Triggered High-Efficiency Composting Associated with Bacterial Community Succession. Bioresour. Technol. 2019, 288, 121576. [Google Scholar] [CrossRef]
- Yılmaz Tuncel, N. Stabilization of Rice Bran: A Review. Foods 2023, 12, 1924. [Google Scholar] [CrossRef] [PubMed]
- McCaffrey, Z.; Cal, A.; Torres, L.; Chiou, B.-S.; Wood, D.; Williams, T.; Orts, W. Polyhydroxybutyrate Rice Hull and Torrefied Rice Hull Biocomposites. Polymers 2022, 14, 3882. [Google Scholar] [CrossRef] [PubMed]
- Coronado, M.; Blanco, T.; Quijorna, N.; Alonso-Santurde, R.; Andrés, A. Types of Waste, Properties and Durability of Toxic Waste-Based Fired Masonry Bricks. In Eco-Efficient Masonry Bricks and Blocks; Elsevier: Amsterdam, The Netherlands, 2015; pp. 129–188. [Google Scholar]
- Torres, L.F.; McCaffrey, Z.; Washington, W.; Williams, T.G.; Wood, D.F.; Orts, W.J.; McMahan, C.M. Torrefied Agro-industrial Residue as Filler in Natural Rubber Compounds. J. Appl. Polym. Sci. 2021, 138, 50684. [Google Scholar] [CrossRef]
- Attia, N.F.; Afifi, H.A.; Hassan, M.A. Synergistic Study of Carbon Nanotubes, Rice Husk Ash and Flame Retardant Materials on the Flammability of Polystyrene Nanocomposites. Mater. Today Proc. 2015, 2, 3998–4005. [Google Scholar] [CrossRef]
- Takaku, H.; Kodaira, S.; Kimoto, A.; Nashimoto, M.; Takagi, M. Microbial Communities in the Garbage Composting with Rice Hull as an Amendment Revealed by Culture-Dependent and -Independent Approaches. J. Biosci. Bioeng. 2006, 101, 42–50. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Zhao, Y.; Zhang, C.; Wei, D.; Wu, J.; Zhao, X.; Hao, J.; Wei, Z. Driving Effects of Minerals on Humic Acid Formation during Chicken Manure Composting: Emphasis on the Carrier Role of Bacterial Community. Bioresour. Technol. 2019, 294, 122239. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.-J.; Choi, W.-J.; Lim, S.-S.; Kwak, J.-H.; Chang, S.X.; Kim, H.-Y.; Yoon, K.-S.; Ro, H.-M. Changes in Nitrogen Isotopic Compositions during Composting of Cattle Feedlot Manure: Effects of Bedding Material Type. Bioresour. Technol. 2008, 99, 5452–5458. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Zhou, L.; Dai, J.; Chen, J.; Yang, X.; Wang, X.; Wang, Z.; Feng, L. Effects of the C/N Ratio on the Microbial Community and Lignocellulose Degradation, during Branch Waste Composting. Bioprocess Biosyst. Eng. 2022, 45, 1163–1174. [Google Scholar] [CrossRef] [PubMed]
- Vázquez, M.A.; Soto, M. The Efficiency of Home Composting Programmes and Compost Quality. Waste Manag. 2017, 64, 39–50. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.-Y.; Liu, N.-Y.; Zeng, R.; Liu, G.; Yao, H.; Fang, J. Change of core microorganisms and nitrogen conversion pathways in chicken manure composts by different substrates to reduce nitrogen losses. Environ. Sci. Pollut. Res. Int. 2024, 31, 14959–14970. [Google Scholar] [CrossRef] [PubMed]
- Nakasaki, K.; Hirai, H. Temperature Control Strategy to Enhance the Activity of Yeast Inoculated into Compost Raw Material for Accelerated Composting. Waste Manag. 2017, 65, 29–36. [Google Scholar] [CrossRef]
- Chen, H.; Awasthi, S.K.; Liu, T.; Duan, Y.; Ren, X.; Zhang, Z.; Pandey, A.; Awasthi, M.K. Effects of Microbial Culture and Chicken Manure Biochar on Compost Maturity and Greenhouse Gas Emissions during Chicken Manure Composting. J. Hazard. Mater. 2020, 389, 121908. [Google Scholar] [CrossRef] [PubMed]
- Nakasaki, K.; Yaguchi, H.; Sasaki, Y.; Kubota, H. Effects of PH Control On Composting of Garbage. Waste Manag. Res. J. Sustain. Circ. Econ. 1993, 11, 117–125. [Google Scholar] [CrossRef]
- Agyarko-Mintah, E.; Cowie, A.; Van Zwieten, L.; Singh, B.P.; Smillie, R.; Harden, S.; Fornasier, F. Biochar Lowers Ammonia Emission and Improves Nitrogen Retention in Poultry Litter Composting. Waste Manag. 2017, 61, 129–137. [Google Scholar] [CrossRef]
- Ma, Q.; Li, Y.; Xue, J.; Cheng, D.; Li, Z. Effects of Turning Frequency on Ammonia Emission during the Composting of Chicken Manure and Soybean Straw. Molecules 2022, 27, 472. [Google Scholar] [CrossRef] [PubMed]
- Kong, Z.; Wang, X.; Liu, Q.; Li, T.; Chen, X.; Chai, L.; Liu, D.; Shen, Q. Evolution of Various Fractions during the Windrow Composting of Chicken Manure with Rice Chaff. J. Environ. Manag. 2018, 207, 366–377. [Google Scholar] [CrossRef] [PubMed]
- Lai, T.V.; Ryder, M.H.; Rathjen, J.R.; Bolan, N.S.; Croxford, A.E.; Denton, M.D. Dissimilatory Nitrate Reduction to Ammonium Increased with Rising Temperature. Biol. Fertil. Soils 2021, 57, 363–372. [Google Scholar] [CrossRef]
- Ksheem, A.M.; Bennett, J.M.; Antille, D.L.; Raine, S.R. Towards a Method for Optimized Extraction of Soluble Nutrients from Fresh and Composted Chicken Manures. Waste Manag. 2015, 45, 76–90. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Li, L.; Pan, X.; Shi, Z.; Feng, X.; Gong, B.; Li, J.; Wang, L. Enhanced Growth and Activities of the Dominant Functional Microbiota of Chicken Manure Composts in the Presence of Maize Straw. Front. Microbiol. 2018, 9, 1131. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Zhang, S.; Nie, Q.; He, H.; Tan, H.; Geng, F.; Ji, H.; Hu, J.; Nie, S. Gut Firmicutes: Relationship with Dietary Fiber and Role in Host Homeostasis. Crit. Rev. Food Sci. Nutr. 2023, 63, 12073–12088. [Google Scholar] [CrossRef] [PubMed]
- Cui, H.; Ou, Y.; Wang, L.; Yan, B.; Bao, M. Tetracycline Hydrochloride-Stressed Succession in Microbial Communities during Aerobic Composting: Insights into Bacterial and Fungal Structures. Chemosphere 2022, 289, 133159. [Google Scholar] [CrossRef] [PubMed]
- Qiu, X.; Zhou, G.; Chen, L.; Wang, H. Additive Quality Influences the Reservoir of Antibiotic Resistance Genes during Chicken Manure Composting. Ecotoxicol. Environ. Saf. 2021, 220, 112413. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Yu, C.; Wang, X.; Hai, L. Increased Abundance of Nitrogen Transforming Bacteria by Higher C/N Ratio Reduces the Total Losses of N and C in Chicken Manure and Corn Stover Mix Composting. Bioresour. Technol. 2020, 297, 122410. [Google Scholar] [CrossRef]
- Chen, X.; Du, G.; Wu, C.; Li, Q.; Zhou, P.; Shi, J.; Zhao, Z. Effect of Thermophilic Microbial Agents on Nitrogen Transformation, Nitrogen Functional Genes, and Bacterial Communities during Bean Dregs Composting. Environ. Sci. Pollut. Res. 2022, 29, 31846–31860. [Google Scholar] [CrossRef]
- Duan, Y.; Awasthi, M.K.; Yang, J.; Tian, Y.; Li, H.; Cao, S.; Syed, A.; Verma, M.; Ravindran, B. Bacterial Community Dynamics and Co-Occurrence Network Patterns during Different Stages of Biochar-Driven Composting. Bioresour. Technol. 2023, 384, 129358. [Google Scholar] [CrossRef] [PubMed]
- Che, J.; Bai, Y.; Li, X.; Ye, J.; Liao, H.; Cui, P.; Yu, Z.; Zhou, S. Linking Microbial Community Structure with Molecular Composition of Dissolved Organic Matter during an Industrial-Scale Composting. J. Hazard. Mater. 2021, 405, 124281. [Google Scholar] [CrossRef] [PubMed]
- Tan, W.; Huang, C.; Chen, C.; Liang, B.; Wang, A. Bioaugmentation of Activated Sludge with Elemental Sulfur Producing Strain Thiopseudomonas denitrificans X2 against Nitrate Shock Load. Bioresour. Technol. 2016, 220, 647–650. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Wei, Z.; Gao, X.; Wu, J.; Chen, X.; Zhao, Y.; Jia, L.; Wen, D. Reconstruction of Core Microbes Based on Producing Lignocellulolytic Enzymes Causing by Bacterial Inoculation during Rice Straw Composting. Bioresour. Technol. 2020, 315, 123849. [Google Scholar] [CrossRef] [PubMed]
- Tu, Q.; Lin, L.; Cheng, L.; Deng, Y.; He, Z. NCycDB: A Curated Integrative Database for Fast and Accurate Metagenomic Profiling of Nitrogen Cycling Genes. Bioinformatics 2019, 35, 1040–1048. [Google Scholar] [CrossRef]
- Shi, M.; Song, C.; Xie, L.; Zhang, G.; Wei, Z. Role in Aromatic Metabolites Biodegradation and Adverse Implication of Denitrifying Microbiota in Kitchen Waste Composting. Environ. Microbiome 2023, 18, 44. [Google Scholar] [CrossRef]
TN (g/kg) | TOC (g/kg) | Organic Matter (%) | Water Content (%) | |
---|---|---|---|---|
Chaff | 11.64 ± 0.40 | 38.32 ± 0.36 | 66.08 ± 0.63 | — |
Chicken manure | 14.96 ± 1.04 | 13.26 ± 0.78 | 22.86 ± 1.35 | 71.14 ± 0.12 |
Mesothermal Stage | High-Temperature Stage | Maturation Stage | |||||||
---|---|---|---|---|---|---|---|---|---|
Nodes | Edges | Modularity | Nodes | Edges | Modularity | Nodes | Edges | Modularity | |
CK | 188 | 12,112 | 0.063 | 139 | 1766 | 0.384 | 162 | 5236 | 0.205 |
T1 | 187 | 12,098 | 0.060 | 145 | 1988 | 0.352 | 161 | 5218 | 0.200 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, J.; Wang, X.; Liu, Z.; He, L.; Jiang, H.; Yao, H.; Fang, J.; Liu, G. Metagenomics Analysis of the Impact of Protein-Degrading Functional Microbial Agents on Composting of Chicken Manure from Cereal Hulls. Agronomy 2024, 14, 1675. https://doi.org/10.3390/agronomy14081675
Zhao J, Wang X, Liu Z, He L, Jiang H, Yao H, Fang J, Liu G. Metagenomics Analysis of the Impact of Protein-Degrading Functional Microbial Agents on Composting of Chicken Manure from Cereal Hulls. Agronomy. 2024; 14(8):1675. https://doi.org/10.3390/agronomy14081675
Chicago/Turabian StyleZhao, Jinfeng, Xinyu Wang, Zhuangzhuang Liu, Liuqin He, Hongmei Jiang, Hao Yao, Jun Fang, and Gang Liu. 2024. "Metagenomics Analysis of the Impact of Protein-Degrading Functional Microbial Agents on Composting of Chicken Manure from Cereal Hulls" Agronomy 14, no. 8: 1675. https://doi.org/10.3390/agronomy14081675
APA StyleZhao, J., Wang, X., Liu, Z., He, L., Jiang, H., Yao, H., Fang, J., & Liu, G. (2024). Metagenomics Analysis of the Impact of Protein-Degrading Functional Microbial Agents on Composting of Chicken Manure from Cereal Hulls. Agronomy, 14(8), 1675. https://doi.org/10.3390/agronomy14081675